1
|
Ustyugova IV, Pougatcheva S, Farrell T, Strugnell T, Ganesh V, Zeldovich KB, Chivukula S, Goncalvez AP, Barro M. AF03 adjuvant improves anti-hemagglutinin and anti-neuraminidase immune responses induced by licensed seasonal quadrivalent influenza vaccines in mice. Vaccine 2023; 41:2022-2034. [PMID: 36803901 DOI: 10.1016/j.vaccine.2023.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 02/21/2023]
Abstract
Seasonal influenza remains a serious public health concern as the viral infection spreads easily from person to person and due to antigenic drift of neutralizing epitopes. Vaccination is the best method for disease prevention, however current seasonal influenza vaccines stimulate antibodies which are often effective against only antigenically similar strains. To boost the immune responses and increase vaccine effectiveness, adjuvants have been used for the past 20 years. The current study explores the use of oil-in-water adjuvant, AF03 to improve an immunogenicity of 2 licensed vaccines. A standard-dose inactivated quadrivalent influenza vaccine (IIV4-SD), containing both hemagglutinin (HA) and neuraminidase (NA) antigens, and recombinant quadrivalent influenza vaccine (RIV4), containing only HA-antigen were adjuvanted with AF03 in naïve BALB/c mouse model. Functional HA-specific antibody titers against all four homologous vaccine strains were enhanced by AF03, indicating potential increase in protective immunity. An increase in HA-specific total immunoglobulin G (IgG) binding titers were detected against homologous HAs, heterologous panel of 30 H3 HAs and seven Influenza B HAs. The neuraminidase inhibition (NAI) activity was significantly higher in IIV4-SD-AF03 group. Use of AF03 adjuvant improved the immune response to two influenza vaccines in a mouse model via an increase in functional and total antibodies against NA and a broad panel of HA-antigens.
Collapse
|
2
|
Haveri A, Ikonen N, Savolainen-Kopra C, Julkunen I. Long-lasting heterologous antibody responses after sequential vaccination with A/Indonesia/5/2005 and A/Vietnam/1203/2004 pre-pandemic influenza A(H5N1) virus vaccines. Vaccine 2020; 39:402-411. [PMID: 33246672 DOI: 10.1016/j.vaccine.2020.11.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 11/04/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Avian influenza A(H5N1) viruses have caused sporadic infections in humans and thus they pose a significant global health threat. Among symptomatic patients the case fatality rate has been ca. 50%. H5N1 viruses exist in multiple clades and subclades and several candidate vaccines have been developed to prevent A(H5N1) infection as a principal measure for preventing the disease. METHODS Serum antibodies against various influenza A(H5N1) clade viruses were measured in adults by ELISA-based microneutralization and haemagglutination inhibition tests before and after vaccination with two different A(H5N1) vaccines in 2009 and 2011. RESULTS Two doses of AS03-adjuvanted A/Indonesia/5/2005 vaccine induced good homologous but poor heterologous neutralizing antibody responses against different clade viruses. However, non-adjuvanted A/Vietnam/1203/2004 booster vaccination in 2011 induced very strong and long-lasting homologous and heterologous antibody responses while homologous response remained weak in naïve subjects. CONCLUSIONS Sequential vaccination with two different A(H5N1) pre-pandemic vaccines induced long-lasting high level cross-clade immunity against influenza A(H5N1) strains, thus supporting a prime-boost vaccination strategy in pandemic preparedness plans.
Collapse
Affiliation(s)
- Anu Haveri
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare (THL), POB 30, 00271 Helsinki, Finland.
| | - Niina Ikonen
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare (THL), POB 30, 00271 Helsinki, Finland
| | - Carita Savolainen-Kopra
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare (THL), POB 30, 00271 Helsinki, Finland
| | - Ilkka Julkunen
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare (THL), POB 30, 00271 Helsinki, Finland; Institute of Biomedicine, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, 20520 Turku, Finland
| |
Collapse
|
3
|
Jung YJ, Kim KH, Ko EJ, Lee Y, Kim MC, Lee YT, Kim CH, Jeeva S, Park BR, Kang SM. Adjuvant effects of killed Lactobacillus casei DK128 on enhancing T helper type 1 immune responses and the efficacy of influenza vaccination in normal and CD4-deficient mice. Vaccine 2020; 38:5783-5792. [PMID: 32674907 PMCID: PMC7453881 DOI: 10.1016/j.vaccine.2020.06.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 11/23/2022]
Abstract
Lactic acid bacteria Lactobacillus casei DK128 isolated from fermented vegetable foods was suggested to stimulate innate immune responses. Here, we investigated whether heat-killed DK128 would exhibit adjuvant effects on enhancing the efficacy of influenza vaccination. Immunization of mice with split influenza virus vaccine in the presence of heat-killed DK128 induced significantly higher levels of both IgG1 and IgG2c isotype antibodies than those by vaccine only. A single dose DK128-adjuvanted influenza vaccination conferred higher efficacy of protection, as evidenced by intact lung function, less weight loss, enhanced clearance of lung viral loads, and lower levels of inflammatory cytokines and infiltrates. Immunization of CD4 T cell-knockout (CD4KO) mice with influenza vaccine and DK128, but not with vaccine alone, induced isotype-switched IgG antibodies and protection against lethal challenge in CD4KO mice. The results in this study suggest heat-killed DK128 as a potential vaccine adjuvant, promoting the induction of IgG isotype switching in CD4-deficient condition and enhancing protective efficacy of split influenza vaccination in immunocompromised and immune-competent subjects.
Collapse
Affiliation(s)
- Yu-Jin Jung
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Eun-Ju Ko
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA; College of Veterinary Medicine, Jeju National University, Jeju, Jeju-do, Republic of Korea
| | - Youri Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Min-Chul Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA; CARESIDE Co., Ltd., Seongnam, Gyeonggi-do, Republic of Korea
| | - Young-Tae Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Cheol-Hyun Kim
- Department of Animal Resource Science, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Subbiah Jeeva
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Bo Ryoung Park
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
4
|
Emerging Role of Mucosal Vaccine in Preventing Infection with Avian Influenza A Viruses. Viruses 2020; 12:v12080862. [PMID: 32784697 PMCID: PMC7472103 DOI: 10.3390/v12080862] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Avian influenza A viruses (AIVs), as a zoonotic agent, dramatically impacts public health and the poultry industry. Although low pathogenic avian influenza virus (LPAIV) incidence and mortality are relatively low, the infected hosts can act as a virus carrier and provide a resource pool for reassortant influenza viruses. At present, vaccination is the most effective way to eradicate AIVs from commercial poultry. The inactivated vaccines can only stimulate humoral immunity, rather than cellular and mucosal immune responses, while failing to effectively inhibit the replication and spread of AIVs in the flock. In recent years, significant progresses have been made in the understanding of the mechanisms underlying the vaccine antigen activities at the mucosal surfaces and the development of safe and efficacious mucosal vaccines that mimic the natural infection route and cut off the AIVs infection route. Here, we discussed the current status and advancement on mucosal immunity, the means of establishing mucosal immunity, and finally a perspective for design of AIVs mucosal vaccines. Hopefully, this review will help to not only understand and predict AIVs infection characteristics in birds but also extrapolate them for distinction or applicability in mammals, including humans.
Collapse
|
5
|
Pandemic influenza virus vaccines boost hemagglutinin stalk-specific antibody responses in primed adult and pediatric cohorts. NPJ Vaccines 2019; 4:51. [PMID: 31839997 PMCID: PMC6898674 DOI: 10.1038/s41541-019-0147-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/13/2019] [Indexed: 01/08/2023] Open
Abstract
Licensed influenza virus vaccines target the head domain of the hemagglutinin (HA) glycoprotein which undergoes constant antigenic drift. The highly conserved HA stalk domain is an attractive target to increase immunologic breadth required for universal influenza virus vaccines. We tested the hypothesis that immunization with a pandemic influenza virus vaccine boosts pre-existing anti-stalk antibodies. We used chimeric cH6/1, full length H2 and H18 HA antigens in an ELISA to measure anti-stalk antibodies in recipients participating in clinical trials of A/H1N1, A/H5N1 and A/H9N2 vaccines. The vaccines induced high titers of anti-H1 stalk antibodies in adults and children, with higher titers elicited by AS03-adjuvanted vaccines. We also observed cross-reactivity to H2 and H18 HAs. The A/H9N2 vaccine elicited plasmablast and memory B-cell responses. Post-vaccination serum from vaccinees protected mice against lethal challenge with cH6/1N5 and cH5/3N4 viruses. These findings support the concept of a chimeric HA stalk-based universal influenza virus vaccine. clinicaltrials.gov: NCT02415842. The head domain of influenza virus hemagglutinin (HA), the main target of licensed influenza virus vaccines, undergoes constant antigenic drift. The HA stalk domain, on the other hand, is highly conserved and is thus an attractive target for developing universal influenza vaccine formulations. Raffael Nachbagauer and colleagues now show that vaccination with pandemic influenza virus vaccines boosts pre-existing antibody responses to HA stalk domains in pediatric cohorts. Analysis of serum from individuals immunized with pandemic vaccines A/H1N1, A/H5N1 and A/H9N2, revealed basal levels of anti-stalk antibodies that were increased following immunization. The elicited antibodies had neutralization properties, and plasmablast responses from peripheral blood immune cells recovered from vaccinated individuals were also recorded. These findings support pandemic vaccines as a potential strategy towards universal influenza virus vaccines by expanding pre-existing antibodies against conserved HA stalk structures.
Collapse
|
6
|
Tegenge MA, Von Tungeln LS, Anderson SA, Mitkus RJ, Vanlandingham MM, Forshee RA, Beland FA. Comparative pharmacokinetic and biodistribution study of two distinct squalene-containing oil-in-water emulsion adjuvants in H5N1 influenza vaccines. Regul Toxicol Pharmacol 2019; 108:104436. [PMID: 31381939 DOI: 10.1016/j.yrtph.2019.104436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/15/2019] [Accepted: 08/01/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND In recent years, there has been great interest from academia, industry and government scientists for an increased understanding of the mode of action of vaccine adjuvants to characterize the safety and efficacy of vaccines. In this context, pharmacokinetic (PK) and biodistribution studies are useful for quantifying the concentration of vaccine adjuvants in mechanistically or toxicologically relevant target tissues. METHODS In this study, we conducted a comparative analysis of the PK and biodistribution profile of radiolabeled squalene for up to 336 h (14 days) after intramuscular injection of mice with adjuvanted H5N1 influenza vaccines. The evaluated adjuvants included an experimental-grade squalene-in-water (SQ/W) emulsion (AddaVax®) and an adjuvant system (AS03®) that contained squalene and α-tocopherol in the oil phase of the emulsion. RESULTS The half-life of the initial exponential decay from quadriceps muscle was 1.5 h for AS03 versus 12.9 h for AddaVax. At early time points (1-6 h), there was about a 10-fold higher concentration of labeled squalene in draining lymph nodes following AS03 injection compared to AddaVax. The area-under-concentration curve up to 336 h (AUC0-336hr) and peak concentration of squalene in spleen (immune organ) was about 1.7-fold higher following injection of AS03 than AddaVax. The peak systemic tissue concentration of squalene from the two adjuvants, with or without antigen, remained below 1% of injected dose for toxicologically relevant target tissues, such as spinal cord, brain, and kidney. The pharmacokinetics of AS03 was unaffected by the presence of H5N1 antigen. CONCLUSIONS This study demonstrates a rapid decline of AS03 from the quadriceps muscles of mice as compared to conventional SQ/W emulsion adjuvant, with an increased transfer to mechanistically relevant tissues such as local lymph nodes. Systemic tissue exposure to potential toxicological target tissues was very low.
Collapse
Affiliation(s)
- Million A Tegenge
- Office of Biostatistics & Epidemiology, Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, 20993, USA.
| | - Linda S Von Tungeln
- Division of Biochemical Toxicology, National Center for Toxicological Research, FDA, Jefferson, AR, 72079, USA
| | - Steven A Anderson
- Office of Biostatistics & Epidemiology, Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, 20993, USA
| | - Robert J Mitkus
- Office of Biostatistics & Epidemiology, Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, 20993, USA; Current Address: BASF Corporation, 26 Davis Drive, Durham, NC, 27709, USA
| | - Michelle M Vanlandingham
- Division of Biochemical Toxicology, National Center for Toxicological Research, FDA, Jefferson, AR, 72079, USA
| | - Richard A Forshee
- Office of Biostatistics & Epidemiology, Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, 20993, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, FDA, Jefferson, AR, 72079, USA
| |
Collapse
|
7
|
Levine MZ, Holiday C, Jefferson S, Gross FL, Liu F, Li S, Friel D, Boutet P, Innis BL, Mallett CP, Tumpey TM, Stevens J, Katz JM. Heterologous prime-boost with A(H5N1) pandemic influenza vaccines induces broader cross-clade antibody responses than homologous prime-boost. NPJ Vaccines 2019; 4:22. [PMID: 31149353 PMCID: PMC6541649 DOI: 10.1038/s41541-019-0114-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/03/2019] [Indexed: 11/29/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) A(H5Nx) viruses continue to pose a pandemic threat. US national vaccine stockpiles are a cornerstone of the influenza pandemic preparedness plans. However, continual genetic and antigenic divergence of A(H5Nx) viruses requires the development of effective vaccination strategies using stockpiled vaccines and adjuvants for pandemic preparedness. Human sera collected from healthy adults who received either homologous (2 doses of a AS03A-adjuvanted A/turkey/Turkey/1/2005, A/Turkey), or heterologous (primed with AS03A-adjuvanted A/Indonesia/5/2005, A/Indo, followed by A/Turkey boost) prime-boost vaccination regimens were analyzed by hemagglutination inhibition and microneutralization assays against 8 wild-type HPAI A(H5Nx) viruses from 6 genetic clades. Molecular, structural and antigenic features of the A(H5Nx) viruses that could influence the cross-clade antibody responses were also explored. Compared with homologous prime-boost vaccinations, priming with a clade 2.1.3.2 antigen (A/Indo) followed by one booster dose of a clade 2.2.1 antigen (A/Turkey) administered 18 months apart did not compromise the antibody responses to the booster vaccine (A/Turkey), it also broadened the cross-clade antibody responses to several antigenically drifted variants from 6 heterologous clades, including an antigenically distant A(H5N8) virus (A/gyrfalcon/Washington/410886/2014, clade 2.3.4.4) that caused recent outbreaks in US poultry. The magnitude and breadth of the cross-clade antibody responses against emerging HPAI A(H5Nx) viruses are associated with genetic, structural and antigenic differences from the vaccine viruses and enhanced by the inclusion of an adjuvant. Heterologous prime-boost vaccination with AS03A adjuvanted vaccine offers a vaccination strategy to use existing stockpiled vaccines for pandemic preparedness against new emerging HPAI A(H5Nx) viruses. Influenza viruses are highly variable and display continuous antigenic drift, limiting the effectiveness of vaccine stockpiles and demanding new strategies to enhance vaccine effectiveness. Here, Min Levine from the Centers for Disease Control and Prevention and colleagues report a heterologous prime-boost A(H5N1) vaccination regimen that induced a broader cross-clade response when compared with homologous vaccination. In the study, adults primed with a clade 2.1.3.2 antigen (A/Indo) followed by one booster dose of a clade 2.2.1 antigen (A/Turkey) presented with enhanced hemagglutinin inhibition and neutralizing antibody titers to eight A(H5Nx) viruses without limiting the antibody response to the A/Turkey booster vaccine. Given that no individual H5 clade has led to protection against all H5 viruses, heterologous vaccination strategies that provide cross-clade reactivity may lead to more effective protection against influenza virus infection.
Collapse
Affiliation(s)
- Min Z Levine
- 1Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Crystal Holiday
- 1Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Stacie Jefferson
- 1Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - F Liaini Gross
- 1Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA USA.,2Battelle Memorial Institute, Atlanta, GA USA
| | - Feng Liu
- 1Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Sheng Li
- 5Biomedical Advanced Research and Development Authority, Washington, DC USA.,Present Address: Sciogen, Los Altos, CA USA
| | | | | | - Bruce L Innis
- GSK Vaccines, Rockville, MD USA.,7Present Address: PATH, Washington, DC USA
| | | | - Terrence M Tumpey
- 1Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - James Stevens
- 1Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Jacqueline M Katz
- 1Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA USA
| |
Collapse
|
8
|
Cheng A, Hsieh SM, Pan SC, Li YH, Hsieh EF, Lee HC, Lin TW, Lai KL, Chen C, Shi-Chung Chang S, Chang SC. The safety and immunogenicity of a cell-derived adjuvanted H5N1 vaccine - A phase I randomized clinical trial. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2019; 52:685-692. [PMID: 31255574 DOI: 10.1016/j.jmii.2019.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 02/09/2019] [Accepted: 03/25/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Development of an efficacious egg-free mock-up H5N1 vaccine is key to our preparedness against pandemic avian flu. METHODS This is a single-center, randomized, observer-blinded phase I clinical trial evaluating the safety and immunogenicity of an alum-adjuvanted Madin-Darby canine kidney (MDCK)-derived inactivated whole-virion H5N1 influenza vaccine in healthy adults. Hemagglutination inhibition (HAI) and neutralizing antibody titers were measured using horse and turkey red blood cells (RBCs). RESULTS Thirty-six adult subjects were randomized to receive two doses of 0.5 mL of the MDCK-derived H5N1 alum-adjuvanted vaccine containing 7.5, 15, or 30 μg of hemagglutinin (HA) 21 days apart. The candidate vaccine was well tolerated and safe across the three dosing groups. The most frequent adverse event was injection site pain (46.5%). Both HAI and neutralizing antibody titers increased after each vaccination in all three dosing groups. The best HAI responses, namely a seroconversion rate of 91.7% and a geometric mean ratio of 9.51 were achieved with the HA dose of 30 μg assayed using horse RBCs at day 42. HAI titers against H5N1 avian influenza virus was significantly higher when measured using horse RBCs compared with turkey RBCs. CONCLUSIONS This Phase I trial showed the MDCK-derived H5N1 candidate vaccine is safe and immunogenic. The source of RBCs has a significant impact on the measurement of HAI titers (ClinicalTrials.gov number: NCT01675284.).
Collapse
Affiliation(s)
- Aristine Cheng
- Department of Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Szu-Min Hsieh
- Department of Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sung-Ching Pan
- Department of Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Han Li
- Medigen Vaccine Biologics Corporation, Hsinchu, Taiwan
| | | | | | - Ting-Wan Lin
- Medigen Vaccine Biologics Corporation, Hsinchu, Taiwan
| | | | - Charles Chen
- Medigen Vaccine Biologics Corporation, Hsinchu, Taiwan
| | | | - Shan-Chwen Chang
- Department of Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
9
|
Safety and immunogenicity of influenza A(H5N1) vaccine stored up to twelve years in the National Pre-Pandemic Influenza Vaccine Stockpile (NPIVS). Vaccine 2018; 37:435-443. [PMID: 30553570 DOI: 10.1016/j.vaccine.2018.11.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND As part of the U.S. Department of Health and Human Services (HHS) Pandemic Influenza Plan preparedness and response strategy, the National Pre-Pandemic Influenza Vaccine Stockpile (NPIVS) program was established by the Biomedical Advanced Research and Development Authority (BARDA) in 2005 with the goal of building and maintaining a stockpile of vaccines for influenza viruses with pandemic potential to vaccinate 20 million people in the critical workforce in the event of a pandemic. The NPIVS program continuously monitors the integrity of influenza vaccine antigens and adjuvants stored within the stockpile. In addition to monitoring physical and chemical properties in stability studies, it is important to regularly assess the safety and immunogenicity of stockpiled vaccines and adjuvants to maintain preparedness for use in the event of an influenza pandemic. METHODS BARDA conducted a randomized, double-blinded Phase 2 clinical study with the oldest stockpiled influenza A(H5N1) antigen, stored over the previous 10-12 years administered with or without MF59® adjuvant, stored over the previous 2-7 years at the time of vaccination. RESULTS Stockpiled vaccines were well-tolerated, adverse events were generally mild, and there was no drop in immunogenicity to the oldest stockpiled A(H5N1) vaccine. Compared to unadjuvanted vaccine, greater peak antibody responses were observed in subjects who were vaccinated with MF59-adjuvanted vaccines, regardless of antigen dose. Vaccination with the A(H5N1) vaccine antigen also results in cross-reactive antibody responses to contemporary circulating strains of A(H5) influenza viruses. CONCLUSIONS The frequency, type, and severity of AEs observed during this study are similar to historical clinical study data with A(H5N1) vaccines and MF59 adjuvant indicating that a stockpiled A(H5N1) vaccine appears to remain safe and tolerable. The vaccines were immunogenic when administered as a two-dose vaccine regimen in healthy adults, despite extended storage of HA antigen or MF59 adjuvant within the NPIVS. TRIAL REGISTRATION ClinicalTrials.gov: NCT02680002.
Collapse
|
10
|
Abstract
In spite of current influenza vaccines being immunogenic, evolution of the influenza virus can reduce efficacy and so influenza remains a major threat to public health. One approach to improve influenza vaccines is to include adjuvants; substances that boost the immune response. Adjuvants are particularly beneficial for influenza vaccines administered during a pandemic when a rapid response is required or for use in patients with impaired immune responses, such as infants and the elderly. This review outlines the current use of adjuvants in human influenza vaccines, including what they are, why they are used and what is known of their mechanism of action. To date, six adjuvants have been used in licensed human vaccines: Alum, MF59, AS03, AF03, virosomes and heat labile enterotoxin (LT). In general these adjuvants are safe and well tolerated, but there have been some rare adverse events when adjuvanted vaccines are used at a population level that may discourage the inclusion of adjuvants in influenza vaccines, for example the association of LT with Bell's Palsy. Improved understanding about the mechanisms of the immune response to vaccination and infection has led to advances in adjuvant technology and we describe the experimental adjuvants that have been tested in clinical trials for influenza but have not yet progressed to licensure. Adjuvants alone are not sufficient to improve influenza vaccine efficacy because they do not address the underlying problem of mismatches between circulating virus and the vaccine. However, they may contribute to improved efficacy of next-generation influenza vaccines and will most likely play a role in the development of effective universal influenza vaccines, though what that role will be remains to be seen.
Collapse
Affiliation(s)
- John S Tregoning
- a Mucosal Infection and Immunity group, Section of Virology, Department of Medicine , St Mary's Campus, Imperial College London , UK
| | - Ryan F Russell
- a Mucosal Infection and Immunity group, Section of Virology, Department of Medicine , St Mary's Campus, Imperial College London , UK
| | - Ekaterina Kinnear
- a Mucosal Infection and Immunity group, Section of Virology, Department of Medicine , St Mary's Campus, Imperial College London , UK
| |
Collapse
|
11
|
Song JY, Choi MJ, Noh JY, Choi WS, Cheong HJ, Wie SH, Lee JS, Woo GJ, Lee SH, Kim WJ. Randomized, double-blind, multi-center, phase III clinical trial to evaluate the immunogenicity and safety of MG1109 (egg-based pre-pandemic influenza A/H5N1 vaccine) in healthy adults. Hum Vaccin Immunother 2016; 13:1190-1197. [PMID: 27996363 DOI: 10.1080/21645515.2016.1263410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Considering the pandemic potential of avian influenza A/H5N1, development of an effective and well-tolerated vaccine is an essential part of pandemic preparedness plans. This phase III, randomized, double-blind study was conducted to assess the immunogenicity and safety profile of an alum-adjuvanted, whole virion, pre-pandemic influenza A/H5N1 vaccine (MG1109). Healthy individuals were randomly assigned, in a 3:1 ratio, to receive two doses of either MG1109 or placebo containing alum gel. Immunogenicity was determined by hemagglutination inhibition (HI) and microneutralization (MN) assays. Solicited and unsolicited adverse events were assessed after vaccination. Among 420 enrolled subjects, 418 were available for safety analysis, and 298 MG1109 recipients were available for per-protocol immunogenicity analyses. According to the HI assays, after two vaccine doses, all three of the Committee for Medicinal Products for Human Use (CHMP) criteria were met against the vaccine strain for all age groups: seroprotection rate = 74.8% (95% CI: 69.9 - 79.8), seroconversion rate = 67.8% (95% CI: 62.5-73.1), and geometric mean titer ratio (GMTR) = 5.9 (95% CI: 5.4 - 6.4). According to the MN assays, the GMTR was 2.4 (95% CI: 2.1 - 2.7) and 7.0 (95% CI: 6.3 - 7.9) three weeks after the first and second vaccine doses, respectively. Solicited local and systemic adverse events were mostly mild to moderate and were not significantly different between MG1109 and placebo recipients. In conclusion, two-dose administration of alum-adjuvanted H5N1 pre-pandemic influenza vaccine (MG1109) was highly immunogenic and tolerable in adults.
Collapse
Affiliation(s)
- Joon Young Song
- a Division of Infectious Diseases, Department of Internal Medicine , Korea University College of Medicine , Seoul , Republic of Korea.,b Transgovernmental Enterprise for Pandemic Influenza in Korea , Seoul , Republic of Korea
| | - Min Joo Choi
- a Division of Infectious Diseases, Department of Internal Medicine , Korea University College of Medicine , Seoul , Republic of Korea.,b Transgovernmental Enterprise for Pandemic Influenza in Korea , Seoul , Republic of Korea
| | - Ji Yun Noh
- a Division of Infectious Diseases, Department of Internal Medicine , Korea University College of Medicine , Seoul , Republic of Korea.,b Transgovernmental Enterprise for Pandemic Influenza in Korea , Seoul , Republic of Korea
| | - Won Suk Choi
- a Division of Infectious Diseases, Department of Internal Medicine , Korea University College of Medicine , Seoul , Republic of Korea
| | - Hee Jin Cheong
- a Division of Infectious Diseases, Department of Internal Medicine , Korea University College of Medicine , Seoul , Republic of Korea
| | - Seong-Heon Wie
- c St. Vincent's Hospital , Catholic University of Korea College of Medicine , Suwon , Gyeonggi-do , Republic of Korea
| | - Jin-Soo Lee
- d Inha University College of Medicine , Incheon , Republic of Korea
| | - Gyu-Jin Woo
- e Vaccine team , MOGAM Biotechnology Institute , Yong-in , Gyeonggi-do , Republic of Korea
| | - Sang Ho Lee
- e Vaccine team , MOGAM Biotechnology Institute , Yong-in , Gyeonggi-do , Republic of Korea
| | - Woo Joo Kim
- a Division of Infectious Diseases, Department of Internal Medicine , Korea University College of Medicine , Seoul , Republic of Korea.,b Transgovernmental Enterprise for Pandemic Influenza in Korea , Seoul , Republic of Korea
| |
Collapse
|
12
|
Antibody Persistence and Booster Responses to Split-Virion H5N1 Avian Influenza Vaccine in Young and Elderly Adults. PLoS One 2016; 11:e0165384. [PMID: 27814377 PMCID: PMC5096706 DOI: 10.1371/journal.pone.0165384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 10/10/2016] [Indexed: 11/19/2022] Open
Abstract
Avian influenza continues to circulate and remains a global health threat not least because of the associated high mortality. In this study antibody persistence, booster vaccine response and cross-clade immune response between two influenza A(H5N1) vaccines were compared. Participants aged over 18-years who had previously been immunized with a clade 1, A/Vietnam vaccine were re-immunized at 6-months with 7.5 μg of the homologous strain or at 22-months with a clade 2, alum-adjuvanted, A/Indonesia vaccine. Blood sampled at 6, 15 and 22-months after the primary course was used to assess antibody persistence. Antibody concentrations 6-months after primary immunisation with either A/Vietnam vaccine 30 μg alum-adjuvanted vaccine or 7.5 μg dose vaccine were lower than 21-days after the primary course and waned further with time. Re-immunization with the clade 2, 30 μg alum-adjuvanted vaccine confirmed cross-clade reactogenicity. Antibody cross-reactivity between A(H5N1) clades suggests that in principle a prime-boost vaccination strategy may provide both early protection at the start of a pandemic and improved antibody responses to specific vaccination once available. TRIAL REGISTRATION ClinicalTrials.gov NCT00415129.
Collapse
|
13
|
Tegenge MA, Von Tungeln LS, Mitkus RJ, Anderson SA, Vanlandingham MM, Forshee RA, Beland FA. Pharmacokinetics and biodistribution of squalene-containing emulsion adjuvant following intramuscular injection of H5N1 influenza vaccine in mice. Regul Toxicol Pharmacol 2016; 81:113-119. [PMID: 27498239 DOI: 10.1016/j.yrtph.2016.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 11/15/2022]
Abstract
Squalene is a component of oil-in-water emulsion adjuvants developed for potential use in some influenza vaccines. The biodistribution of the squalene-containing emulsion adjuvant (AddaVax™) alone and as part of complete H5N1 vaccine was quantified in mechanistically and toxicologically relevant target tissues up to 336 h (14 days) following injection into quadriceps muscle. At 1 h, about 55% of the intramuscularly injected dose of squalene was detected in the local quadriceps muscles and this decreased to 26% at 48 h. Twenty-four hours after the injection, approximately 5%, 1%, and 0.6% of the injected dose was detected in inguinal fat, draining lymph nodes, and sciatic nerve, respectively. The peak concentration for kidney, brain, spinal cord, bone marrow, and spleen was each less than 1% of the injected dose, and H5N1 antigen did not significantly alter the biodistribution of squalene to these tissues. The area-under-blood-concentration curve (AUC) and peak blood concentration (Cmax) of squalene were slightly higher (20-25%) in the presence of H5N1 antigen. A population pharmacokinetic model-based statistical analysis identified body weight and H5N1 antigen as covariates influencing the clearance of squalene. The results contribute to the body of knowledge informing benefit-risk analyses of squalene-containing emulsion vaccine adjuvants.
Collapse
Affiliation(s)
- Million A Tegenge
- Office of Biostatistics & Epidemiology, Center for Biologics Evaluation and Research, FDA, USA.
| | - Linda S Von Tungeln
- Division of Biochemical Toxicology, National Center for Toxicological Research, FDA, USA
| | - Robert J Mitkus
- Office of Biostatistics & Epidemiology, Center for Biologics Evaluation and Research, FDA, USA
| | - Steven A Anderson
- Office of Biostatistics & Epidemiology, Center for Biologics Evaluation and Research, FDA, USA
| | | | - Richard A Forshee
- Office of Biostatistics & Epidemiology, Center for Biologics Evaluation and Research, FDA, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, FDA, USA
| |
Collapse
|
14
|
Zhang N, Zheng BJ, Lu L, Zhou Y, Jiang S, Du L. Advancements in the development of subunit influenza vaccines. Microbes Infect 2014; 17:123-34. [PMID: 25529753 DOI: 10.1016/j.micinf.2014.12.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/07/2014] [Accepted: 12/08/2014] [Indexed: 12/19/2022]
Abstract
The ongoing threat of influenza epidemics and pandemics has emphasized the importance of developing safe and effective vaccines against infections from divergent influenza viruses. In this review, we first introduce the structure and life cycle of influenza A viruses, describing major influenza A virus-caused pandemics. We then compare different types of influenza vaccines and discuss current advancements in the development of subunit influenza vaccines, particularly those based on nucleoprotein (NP), extracellular domain of matrix protein 2 (M2e) and hemagglutinin (HA) proteins. We also illustrate potential strategies for improving the efficacy of subunit influenza vaccines.
Collapse
Affiliation(s)
- Naru Zhang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Bo-Jian Zheng
- Department of Microbiology, University of Hong Kong, Pokfulam, Hong Kong
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, China
| | - Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA; Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, China.
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA.
| |
Collapse
|