1
|
Zhang RR, Yang XY, Yang YL, Guo TK, Huang JS, Yang YS, Shi CW, Yang GL, Huang HB, Wang JZ, Jiang YL, Cao X, Wang N, Zeng Y, Yang WT, Wang CF. TLR3/TRIF and MAVS Signaling Is Essential in Regulating Mucosal T Cell Responses during Rotavirus Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1008-1022. [PMID: 39194407 DOI: 10.4049/jimmunol.2300867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/30/2024] [Indexed: 08/29/2024]
Abstract
The functions of the natural dsRNA sensors TLR3 (TRIF) and RIG-I (MAVS) are crucial during viral challenge and have not been accurately clarified in adaptive immune responses to rotavirus (RV) infection. In this study, we found that RV infection caused severe pathological damage to the small intestine of TLR3-/- and TRIF-/- mice. Our data found that dendritic cells from TLR3-/- and TRIF-/- mice had impaired Ag presentation to the RV and attenuated initiation of T cells upon viral infection. These attenuated functions resulted in impaired CD4+ T and CD8+ T function in mice lacking TLR3-TRIF signaling postinfection. Additionally, attenuated proliferative capacity of T cells from TLR3-/- and TRIF-/- mice was observed. Subsequently, we observed a significant reduction in the absolute number of memory T cells in the spleen and mesenteric lymph node (MLN) of TRIF-/- recipient mice following RV infection in a bone marrow chimeric model. Furthermore, there was reduced migration of type 2 classical dendritic cells from the intestine to MLNs after RV infection in TLR3-/- and TRIF-/- mice. Notably, RV infection resulted in attenuated killing of spleen and MLN tissues in TRIF-/- and MAVS-/- mice. Finally, we demonstrated that RV infection promoted apoptosis of CD8+ T cells in TRIF-/- and TLR3-/-MAVS-/- mice. Taken together, our findings highlight an important mechanism of TLR3 signaling through TRIF in mucosal T cell responses to RV and lay the foundation for the development of a novel vaccine.
Collapse
Affiliation(s)
- Rong-Rong Zhang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xue-Yao Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yong-Lei Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Tian-Kui Guo
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jing-Shu Huang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ying-Shi Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Wei Shi
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hai-Bin Huang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jian-Zhong Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan-Long Jiang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Cao
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wen-Tao Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Feng Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
2
|
Strachan M, Mashapa T, Gildenhuys S. Spectroscopic analysis of the bacterially expressed head domain of rotavirus VP6. Biosci Rep 2024; 44:BSR20232178. [PMID: 38592735 PMCID: PMC11065646 DOI: 10.1042/bsr20232178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/10/2024] Open
Abstract
The rotavirus capsid protein VP6 forms the middle of three protein layers and is responsible for many critical steps in the viral life cycle. VP6 as a structural protein can be used in various applications including as a subunit vaccine component. The head domain of VP6 (VP6H) contains key sequences that allow the protein to trimerize and that represent epitopes that are recognized by human antibodies in the viral particle. The domain is rich in β-sheet secondary structures. Here, VP6H was solubilised from bacterial inclusion bodies and purified using a single affinity chromatography step. Spectral (far-UV circular dichroism and intrinsic tryptophan fluorescence) analysis revealed that the purified domain had native-like secondary and tertiary structures. The domain could maintain structure up to 44°C during thermal denaturation following which structural changes result in an intermediate forming and finally irreversible aggregation and denaturation. The chemical denaturation with urea and guanidinium hydrochloride produces intermediates that represent a loss in the cooperativity. The VP6H domain is stable and can fold to produce its native structure in the absence of the VP6 base domain but cannot be defined as an independent folding unit.
Collapse
Affiliation(s)
- Milaan Simone Strachan
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X6, Florida, Roodepoort 1710, South Africa
| | - Tshepo Mashapa
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X6, Florida, Roodepoort 1710, South Africa
| | - Samantha Gildenhuys
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X6, Florida, Roodepoort 1710, South Africa
| |
Collapse
|
3
|
Antigen Targeting of Porcine Skin DEC205+ Dendritic Cells. Vaccines (Basel) 2022; 10:vaccines10050684. [PMID: 35632440 PMCID: PMC9147619 DOI: 10.3390/vaccines10050684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 01/25/2023] Open
Abstract
Dendritic cell (DC) targeting by DEC205+ cells effectively promotes the internalization of antigens that may trigger a specific immune response. In this study, we evaluated the ability of a recombinant antibody, anti-DEC205 (rAb ZH9F7), to trigger cellular endocytosis in subpopulations of DCs and targeted cells after intradermal injection and subsequent migration toward lymph nodes. Furthermore, the cellular immune response was evaluated in pigs after intradermal application of the antigenized rAb ZH9F7 combined with porcine circovirus type 2 cap antigen (rAb ZH9F7-Cap). We demonstrated that rAb ZH9F7 recognized conventional type 1 and 2 DCs from the blood and skin and monocytes. It promoted receptor-mediated endocytosis and migration of cDCs and moDCs toward regional lymph nodes. Intradermal application of rAb ZH9F7-Cap induced a higher frequency of IFN-γ-secreting CD4+CD8+ T lymphocytes and antibodies against Cap protein than that in the control group. In conclusion, the rAb ZH9F7-Cap system promoted the target of skin cDC1 and cDC2, provoking migration to the regional lymph nodes and inducing a Th1 response, as evidenced by the proliferation of double-positive CD4+CD8+ T cells, which correlates with an enhanced ability to target the cDC1 subset both in vitro and in vivo.
Collapse
|
4
|
Castillo-Esparza JF, Gómez-Lim MA. Transient Expression in Cytoplasm and Apoplast of Rotavirus VP6 Protein Fused to Anti-DEC205 Antibody in Nicotiana benthamiana and Nicotiana sylvestris. Mol Biotechnol 2021; 63:973-982. [PMID: 34146324 PMCID: PMC8214057 DOI: 10.1007/s12033-021-00359-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/14/2021] [Indexed: 11/29/2022]
Abstract
Rotavirus is the most common cause of severe diarrhea in infants and children worldwide and is responsible for about 215,000 deaths annually. Over 85% of these deaths originate in low-income/developing countries in Asia and Africa. Therefore, it is necessary to explore the development of vaccines that avoid the use of "living" viruses and furthermore, vaccines that have viral antigens capable of generating powerful heterotypic responses. Our strategy is based on the expression of the fusion of the anti-DEC205 single-chain variable fragment (scFv) coupled by an OLLAS tag to a viral protein (VP6) of Rotavirus in Nicotiana plants. It was possible to express transiently in N. benthamiana and N. sylvestris a recombinant protein consisting of the single chain variable fragment linked by an OLLAS tag to the VP6 protein. The presence of the recombinant protein, which had a molecular weight of approximately 75 kDa, was confirmed by immunodetection, in both plant species and in both cellular compartments (cytoplasm and apoplast) where it was expressed. In addition, the recombinant protein was modeled, and it was observed that some epitopes of interest are exposed on the surface, which could favor their immunogenic response.
Collapse
Affiliation(s)
- J Francisco Castillo-Esparza
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, 36824, Irapuato, Guanajuato, Mexico.
| | - Miguel A Gómez-Lim
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, 36824, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
5
|
Anderluh M, Berti F, Bzducha‐Wróbel A, Chiodo F, Colombo C, Compostella F, Durlik K, Ferhati X, Holmdahl R, Jovanovic D, Kaca W, Lay L, Marinovic‐Cincovic M, Marradi M, Ozil M, Polito L, Reina‐Martin JJ, Reis CA, Sackstein R, Silipo A, Švajger U, Vaněk O, Yamamoto F, Richichi B, van Vliet SJ. Emerging glyco-based strategies to steer immune responses. FEBS J 2021; 288:4746-4772. [PMID: 33752265 PMCID: PMC8453523 DOI: 10.1111/febs.15830] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/12/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
Glycan structures are common posttranslational modifications of proteins, which serve multiple important structural roles (for instance in protein folding), but also are crucial participants in cell-cell communications and in the regulation of immune responses. Through the interaction with glycan-binding receptors, glycans are able to affect the activation status of antigen-presenting cells, leading either to induction of pro-inflammatory responses or to suppression of immunity and instigation of immune tolerance. This unique feature of glycans has attracted the interest and spurred collaborations of glyco-chemists and glyco-immunologists to develop glycan-based tools as potential therapeutic approaches in the fight against diseases such as cancer and autoimmune conditions. In this review, we highlight emerging advances in this field, and in particular, we discuss on how glycan-modified conjugates or glycoengineered cells can be employed as targeting devices to direct tumor antigens to lectin receptors on antigen-presenting cells, like dendritic cells. In addition, we address how glycan-based nanoparticles can act as delivery platforms to enhance immune responses. Finally, we discuss some of the latest developments in glycan-based therapies, including chimeric antigen receptor (CAR)-T cells to achieve targeting of tumor-associated glycan-specific epitopes, as well as the use of glycan moieties to suppress ongoing immune responses, especially in the context of autoimmunity.
Collapse
Affiliation(s)
- Marko Anderluh
- Chair of Pharmaceutical ChemistryFaculty of PharmacyUniversity of LjubljanaSlovenia
| | | | - Anna Bzducha‐Wróbel
- Department of Biotechnology and Food MicrobiologyWarsaw University of Life Sciences‐SGGWPoland
| | - Fabrizio Chiodo
- Department of Molecular Cell Biology and ImmunologyCancer Center AmsterdamAmsterdam Infection and Immunity InstituteAmsterdam UMCVrije Universiteit AmsterdamNetherlands
| | - Cinzia Colombo
- Department of Chemistry and CRC Materiali Polimerici (LaMPo)University of MilanItaly
| | - Federica Compostella
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanItaly
| | - Katarzyna Durlik
- Department of Microbiology and ParasitologyJan Kochanowski UniversityKielcePoland
| | - Xhenti Ferhati
- Department of Chemistry ‘Ugo Schiff’University of FlorenceFlorenceItaly
| | - Rikard Holmdahl
- Division of Medical Inflammation ResearchDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Dragana Jovanovic
- Vinča Institute of Nuclear Sciences ‐ National Institute of the Republic of SerbiaUniversity of BelgradeSerbia
| | - Wieslaw Kaca
- Department of Microbiology and ParasitologyJan Kochanowski UniversityKielcePoland
| | - Luigi Lay
- Department of Chemistry and CRC Materiali Polimerici (LaMPo)University of MilanItaly
| | - Milena Marinovic‐Cincovic
- Vinča Institute of Nuclear Sciences ‐ National Institute of the Republic of SerbiaUniversity of BelgradeSerbia
| | - Marco Marradi
- Department of Chemistry ‘Ugo Schiff’University of FlorenceFlorenceItaly
| | - Musa Ozil
- Department of ChemistryFaculty of Arts and SciencesRecep Tayyip Erdogan University RizeTurkey
| | | | | | - Celso A. Reis
- I3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortugal
- IPATIMUP‐Institute of Molecular Pathology and ImmunologyInstituto de Ciências Biomédicas Abel SalazarUniversity of PortoPortugal
| | - Robert Sackstein
- Department of Translational Medicinethe Translational Glycobiology InstituteHerbert Wertheim College of MedicineFlorida International UniversityMiamiFLUSA
| | - Alba Silipo
- Department of Chemical SciencesUniversity of Naples Federico IIComplesso Universitario Monte Sant’AngeloNapoliItaly
| | - Urban Švajger
- Blood Transfusion Center of SloveniaLjubljanaSlovenia
| | - Ondřej Vaněk
- Department of BiochemistryFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Fumiichiro Yamamoto
- Immunohematology & Glycobiology LaboratoryJosep Carreras Leukaemia Research InstituteBadalonaSpain
| | - Barbara Richichi
- Department of Chemistry ‘Ugo Schiff’University of FlorenceFlorenceItaly
| | - Sandra J. van Vliet
- Department of Molecular Cell Biology and ImmunologyCancer Center AmsterdamAmsterdam Infection and Immunity InstituteAmsterdam UMCVrije Universiteit AmsterdamNetherlands
| |
Collapse
|
6
|
Shrestha A, Sadeyen JR, Lukosaityte D, Chang P, Smith A, Van Hulten M, Iqbal M. Selectively targeting haemagglutinin antigen to chicken CD83 receptor induces faster and stronger immunity against avian influenza. NPJ Vaccines 2021; 6:90. [PMID: 34267228 PMCID: PMC8282863 DOI: 10.1038/s41541-021-00350-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
The immunogenicity and protective efficacy of vaccines can be enhanced by the selective delivery of antigens to the antigen-presenting cells (APCs). In this study, H9N2 avian influenza virus haemagglutinin (HA) antigen, was targeted by fusing it to single-chain fragment variable (scFv) antibodies specific to CD83 receptor expressed on chicken APCs. We observed an increased level of IFNγ, IL6, IL1β, IL4, and CxCLi2 mRNA upon stimulation of chicken splenocytes ex vivo by CD83 scFv targeted H9HA. In addition, CD83 scFv targeted H9HA induced higher serum haemagglutinin inhibition activity and virus neutralising antibodies compared to untargeted H9HA, with induction of antibodies as early as day 6 post primary vaccination. Furthermore, chickens vaccinated with CD83 scFv targeted H9HA showed reduced H9N2 challenge virus shedding compared to untargeted H9HA. These results suggest that targeting antigens to CD83 receptors could improve the efficacy of poultry vaccines.
Collapse
Affiliation(s)
- Angita Shrestha
- grid.63622.330000 0004 0388 7540The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom ,grid.4991.50000 0004 1936 8948Department of Zoology, Peter Medawar Building, University of Oxford, Oxford, United Kingdom
| | - Jean-Remy Sadeyen
- grid.63622.330000 0004 0388 7540The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - Deimante Lukosaityte
- grid.63622.330000 0004 0388 7540The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - Pengxiang Chang
- grid.63622.330000 0004 0388 7540The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - Adrian Smith
- grid.4991.50000 0004 1936 8948Department of Zoology, Peter Medawar Building, University of Oxford, Oxford, United Kingdom
| | - Marielle Van Hulten
- grid.420097.80000 0004 0407 6096Global Poultry R&D Biologicals Boxmeer, Intervet International BV, MSD Animal Health, Boxmeer, The Netherlands
| | - Munir Iqbal
- grid.63622.330000 0004 0388 7540The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| |
Collapse
|
7
|
Shrestha A, Sadeyen JR, Lukosaityte D, Chang P, Van Hulten M, Iqbal M. Targeting Haemagglutinin Antigen of Avian Influenza Virus to Chicken Immune Cell Receptors Dec205 and CD11c Induces Differential Immune-Potentiating Responses. Vaccines (Basel) 2021; 9:vaccines9070784. [PMID: 34358200 PMCID: PMC8310205 DOI: 10.3390/vaccines9070784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 11/16/2022] Open
Abstract
Improving the immunogenicity and protective efficacy of vaccines is critical to reducing disease impacts. One strategy used to enhance the immunogenicity of vaccines is the selective delivery of protective antigens to the antigen presenting cells (APCs). In this study, we have developed a targeted antigen delivery vaccine (TADV) system by recombinantly fusing the ectodomain of hemagglutinin (HA) antigen of H9N2 influenza A virus to single chain fragment variable (scFv) antibodies specific for the receptors expressed on chicken APCs; Dec205 and CD11c. Vaccination of chickens with TADV containing recombinant H9HA Foldon-Dec205 scFv or H9HA Foldon-CD11c scFv proteins elicited faster (as early as day 6 post primary vaccination) and higher anti-H9HA IgM and IgY, haemagglutination inhibition, and virus neutralisation antibodies compared to the untargeted H9HA protein. Comparatively, CD11c scFv conjugated H9HA protein showed higher immunogenic potency compared to Dec205 scFv conjugated H9HA protein. The higher immune potentiating ability of CD11c scFv was also reflected in ex-vivo chicken splenocyte stimulation assay, whereby H9HA Foldon-CD11c scFv induced higher levels of cytokines (IFNγ, IL6, IL1β, and IL4) compared to H9HA Foldon-Dec205 scFv. Overall, the results conclude that TADV could be a better alternative to the currently available inactivated virus vaccines.
Collapse
Affiliation(s)
- Angita Shrestha
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK; (A.S.); (J.-R.S.); (D.L.); (P.C.)
- Department of Zoology, Peter Medawar Building, South Parks Road, University of Oxford, Oxford OX1 3SY, UK
| | - Jean-Remy Sadeyen
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK; (A.S.); (J.-R.S.); (D.L.); (P.C.)
| | - Deimante Lukosaityte
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK; (A.S.); (J.-R.S.); (D.L.); (P.C.)
| | - Pengxiang Chang
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK; (A.S.); (J.-R.S.); (D.L.); (P.C.)
| | - Marielle Van Hulten
- Global Poultry R&D Biologicals Boxmeer, Intervet International BV, MSD Animal Health, Wim De Körverstraat 35, 5831 AN Boxmeer, The Netherlands;
| | - Munir Iqbal
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK; (A.S.); (J.-R.S.); (D.L.); (P.C.)
- Correspondence: or ; Tel.: +44-(0)-1483-231441
| |
Collapse
|
8
|
Badillo-Godinez O, Pedroza-Saavedra A, Valverde-Garduño V, Bermudez-Morales V, Maldonado-Gama M, Leon-Letelier R, Bonifaz LC, Esquivel-Guadarrama F, Gutierrez-Xicotencatl L. Induction of Therapeutic Protection in an HPV16-Associated Mouse Tumor Model Through Targeting the Human Papillomavirus-16 E5 Protein to Dendritic Cells. Front Immunol 2021; 12:593161. [PMID: 33717073 PMCID: PMC7947241 DOI: 10.3389/fimmu.2021.593161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/14/2021] [Indexed: 01/05/2023] Open
Abstract
HPV E5 is an oncoprotein mainly expressed in premalignant lesions, which makes it an important target for a vaccine to prevent or cure cervical cancer (CC). In this study, we evaluated whether E5 targeted to DEC-205, present in dendritic cells (DCs), could induce a therapeutic protection against HPV16-induced tumor cells in a mouse model. The HPV-16 E5 (16E5) protein was cross-linked to a monoclonal antibody (mAb) specific to mouse DEC-205 (anti-DEC-205:16E5) or to an isotype control mAb (isotype:16E5). Rotavirus VP6 was cross-linked to the mouse anti-DEC-205 mAb (anti-DEC-205:VP6) as a non-specific antigen control. BALB/c mice were inoculated subcutaneously (s.c.) with the 16E5-expressing BMK-16/myc tumor cells, and 7 and 14 days later the mice were immunized s.c. with the conjugates, free 16E5 or PBS in the presence of adjuvant. Tumor growth was monitored to evaluate protection. A strong protective immune response against the tumor cells was induced when the mice were inoculated with the anti-DEC-205:16E5 conjugate, since 70% of the mice controlled the tumor growth and survived, whereas the remaining 30% developed tumors and died by day 72. In contrast, 100% of the mice in the control groups died by day 30. The anti-DEC-205:16E5 conjugate was found to induce 16E5-specific memory T cells, with a Th1/Th17 profile. Both CD4+ and CD8+ T cells contributed to the observed protection. Finally, treating mice that had developed tumors with an anti-PD-1 mAb, delayed the tumor growth for more than 20 days. These results show that targeting 16E5 to DEC-205, alone or combined with an immune checkpoint blockade, could be a promising protocol for the treatment of the early stages of HPV-associated cancer.
Collapse
Affiliation(s)
- Oscar Badillo-Godinez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Adolfo Pedroza-Saavedra
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Veronica Valverde-Garduño
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Victor Bermudez-Morales
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Minerva Maldonado-Gama
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Ricardo Leon-Letelier
- Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Laura C Bonifaz
- Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | | |
Collapse
|
9
|
Li Z, Cui K, Huang K, Liu F, Shi D, Liu Q. Self-assembling Rotavirus VP6 Nanoparticle Vaccines Expressed in Escherichia coli Elicit Systemic and Mucosal Responses in Mice. Protein Pept Lett 2019; 26:904-909. [DOI: 10.2174/0929866526666190820161328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 06/05/2019] [Accepted: 07/05/2019] [Indexed: 11/22/2022]
Abstract
Background:
Rotavirus is the most common cause of infectious diarrhea in infants and
young children around the world. The inner capsid protein VP6 has been discussed as alternative
vaccine as it can induce cross-protective immune responses against different RV strai. The use of
ferritin nanoparticle may enhance the immunogenicity of the subunit vaccine.
Objective:
In this article, our motivation is to design and obtain a self-assemble rotavirus
nanoparticle vaccine which can induce efficiency immune response.
Methods:
The VP6 protein was fused with ferritin and expressed in the Escherichia coli expression
system. The recombinant VP6-ferritin (rVP6-ferritin) protein was purified by His-tag affinity
chromatography and fast protein liquid chromatography. Transmission electron micrographic
analysis was used to detect the nanostructure of the self-assembled protein. Mice were gavage with
the protein and ELISA was used to detect the titer of the VP6 specific antibody.
Results:
The recombined VP6-ferritin was expressed in the Escherichia coli as an inclusion body
form and the purified protein has similar antigenicity to rotavirus VP6. Transmission electron
micrographic analysis of rVP6-ferritin exhibited spherical architecture with a uniform size
distribution, which is similar to the ferritin nanocage. Immune response analysis showed that mice
immunized by rVP6-ferritin protein induced 8000 (8000±1093) anti-VP6 IgG titers or 1152
(1152±248.8) anti-VP6 IgA titers.
Conclusion:
According to the above research, the rotavirus VP6-ferritin protein can be easily
express and self-assemble to the nano-vaccine and induce efficiency humoral and mucosal
immunity. Our research makes a foundation for the development of oral rotavirus vaccine.
Collapse
Affiliation(s)
- Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530005, China
| | - Kuiqing Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530005, China
| | - Kongwei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530005, China
| | - Fuhang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530005, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530005, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530005, China
| |
Collapse
|
10
|
Targeting M2e to DEC-205 induces an enhanced serum antibody-dependent heterosubtypic protection against influenza A virus infection. Vaccine 2019; 37:2624-2633. [DOI: 10.1016/j.vaccine.2019.02.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/23/2019] [Accepted: 02/15/2019] [Indexed: 01/07/2023]
|
11
|
Afchangi A, Jalilvand S, Mohajel N, Marashi SM, Shoja Z. Rotavirus VP6 as a potential vaccine candidate. Rev Med Virol 2019; 29:e2027. [DOI: 10.1002/rmv.2027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Atefeh Afchangi
- Virology Department, School of Public Health; Tehran University of Medical Sciences; Tehran Iran
| | - Somayeh Jalilvand
- Virology Department, School of Public Health; Tehran University of Medical Sciences; Tehran Iran
| | - Nasir Mohajel
- Virology Department; Pasteur Institute of Iran; Tehran Iran
| | - Sayed Mahdi Marashi
- Virology Department, School of Public Health; Tehran University of Medical Sciences; Tehran Iran
| | | |
Collapse
|
12
|
Antonio-Herrera L, Badillo-Godinez O, Medina-Contreras O, Tepale-Segura A, García-Lozano A, Gutierrez-Xicotencatl L, Soldevila G, Esquivel-Guadarrama FR, Idoyaga J, Bonifaz LC. The Nontoxic Cholera B Subunit Is a Potent Adjuvant for Intradermal DC-Targeted Vaccination. Front Immunol 2018; 9:2212. [PMID: 30319653 PMCID: PMC6171476 DOI: 10.3389/fimmu.2018.02212] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
CD4+ T cells are major players in the immune response against several diseases; including AIDS, leishmaniasis, tuberculosis, influenza and cancer. Their activation has been successfully achieved by administering antigen coupled with antibodies, against DC-specific receptors in combination with adjuvants. Unfortunately, most of the adjuvants used so far in experimental models are unsuitable for human use. Therefore, human DC-targeted vaccination awaits the description of potent, yet nontoxic adjuvants. The nontoxic cholera B subunit (CTB) can be safely used in humans and it has the potential to activate CD4+ T cell responses. However, it remains unclear whether CTB can promote DC activation and can act as an adjuvant for DC-targeted antigens. Here, we evaluated the CTB's capacity to activate DCs and CD4+ T cell responses, and to generate long-lasting protective immunity. Intradermal (i.d.) administration of CTB promoted late and prolonged activation and accumulation of skin and lymphoid-resident DCs. When CTB was co-administered with anti-DEC205-OVA, it promoted CD4+ T cell expansion, differentiation, and infiltration to peripheral nonlymphoid tissues, i.e., the skin, lungs and intestine. Indeed, CTB promoted a polyfunctional CD4+ T cell response, including the priming of Th1 and Th17 cells, as well as resident memory T (RM) cell differentiation in peripheral nonlymphoid tissues. It is worth noting that CTB together with a DC-targeted antigen promoted local and systemic protection against experimental melanoma and murine rotavirus. We conclude that CTB administered i.d. can be used as an adjuvant to DC-targeted antigens for the induction of broad CD4+ T cell responses as well as for promoting long-lasting protective immunity.
Collapse
Affiliation(s)
- Laura Antonio-Herrera
- Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Inmunoquímica, Mexico City, Mexico.,Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Oscar Badillo-Godinez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, SS, Cuernavaca, Mexico
| | - Oscar Medina-Contreras
- Immunology and Proteomics Laboratory, Mexico Children's Hospital "Federico Gómez", Mexico City, Mexico
| | - Araceli Tepale-Segura
- Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Inmunoquímica, Mexico City, Mexico
| | - Alberto García-Lozano
- Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Inmunoquímica, Mexico City, Mexico
| | | | - Gloria Soldevila
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Juliana Idoyaga
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Laura C Bonifaz
- Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Inmunoquímica, Mexico City, Mexico
| |
Collapse
|
13
|
Heinimäki S, Malm M, Vesikari T, Blazevic V. Intradermal and intranasal immunizations with oligomeric middle layer rotavirus VP6 induce Th1, Th2 and Th17 T cell subsets and CD4 + T lymphocytes with cytotoxic potential. Antiviral Res 2018; 157:1-8. [DOI: 10.1016/j.antiviral.2018.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/09/2018] [Accepted: 06/19/2018] [Indexed: 12/26/2022]
|
14
|
Labastida-Conde RG, Ramírez-Pliego O, Peleteiro-Olmedo M, Lopez-Guerrero DV, Badillo-Godinez OD, Gutiérrez-Xicoténcatl MDL, Rosas-Salgado G, González-Fernández Á, Esquivel-Guadarrama FR, Santana MA. Flagellin is a Th1 polarizing factor for human CD4 + T cells and induces protection in a murine neonatal vaccination model of rotavirus infection. Vaccine 2018; 36:4188-4197. [PMID: 29891347 DOI: 10.1016/j.vaccine.2018.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/29/2018] [Accepted: 06/03/2018] [Indexed: 02/07/2023]
Abstract
Neonates have an increased susceptibility to infections, particularly those caused by intracellular pathogens, leading to high morbidity and mortality rates. This is partly because of a poor response of neonatal CD4+ T cells, leading to deficient antibody production and a low production of IFN-γ, resulting in deficient elimination of intracellular pathogens. The poor memory response of human neonates has underpinned the need for improving vaccine formulations. Molecular adjuvants that improve the response of neonatal lymphocytes, such as the ligands of toll-like receptors (TLRs), are attractive candidates. Among them, flagellin, the TLR5 ligand, is effective at very low doses; prior immunity to flagellin does not impair its adjuvant activity. Human CD4+ and CD8+ T cells express TLR5. We found that flagellin induces the expression of IFN-γ, IL-1β and IL-12 in mononuclear cells from human neonate and adult donors. When human naïve CD4+ T cells were activated in the presence of flagellin, there was high level of expression of IFN-γ in both neonates and adults. Furthermore, flagellin induced IFN-γ production in Th1 cells obtained from adult donors; in the Th2 population, it inhibited IL-4 cytokine production. Flagellin also promoted expression of the IFN-γ receptor in naive CD4+ T cells from neonates and adults. To test the adjuvant capacity of flagellin in vivo, we used a murine neonate vaccination model for infection with rotavirus, a pathogen responsible for severe diarrhea in young infants. Using the conserved VP6 antigen, we observed an 80% protection against rotavirus infection in the presence of flagellin, but only in those mice previously primed in the neonatal period. Our data suggest that flagellin could be an attractive adjuvant for achieving a Th1 response.
Collapse
Affiliation(s)
| | - Oscar Ramírez-Pliego
- Centro de Investigación en Dinámica Celular (IICBA), Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Mercedes Peleteiro-Olmedo
- Inmunología, Centro de Investigaciones Biomédicas (CINBIO), Centro Singular de Investigación de Galicia, Instituto de Investigación Sanitaria Galicia Sur, Universidad de Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain
| | | | | | | | - Gabriela Rosas-Salgado
- Facultad de Medicina, Universidad Autonoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - África González-Fernández
- Inmunología, Centro de Investigaciones Biomédicas (CINBIO), Centro Singular de Investigación de Galicia, Instituto de Investigación Sanitaria Galicia Sur, Universidad de Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain
| | | | - M Angélica Santana
- Centro de Investigación en Dinámica Celular (IICBA), Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
15
|
Lopez-Guerrero DV, Arias N, Gutierrez-Xicotencatl L, Chihu-Amparan L, González A, Pedroza-Saavedra A, Rosas-Salgado G, Villegas-Garcia JC, Badillo-Godinez O, Fernandez G, Lopez S, Esquivel-Guadarrama F. Enhancement of VP6 immunogenicity and protective efficacy against rotavirus by VP2 in a genetic immunization. Vaccine 2018; 36:3072-3078. [PMID: 28465094 DOI: 10.1016/j.vaccine.2017.03.104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/08/2017] [Accepted: 03/31/2017] [Indexed: 12/15/2022]
Abstract
VP2/VP6 virus like particles (VLPs) are very effective in inducing protection against the rotavirus infection in animal models. Individually, VP6 can also induce protection. However, there is no information about the immunogenicity of VP2. The aim of this work was to evaluate the efficacy of DNA vaccines codifying for VP2 or VP6, alone or combined, to induce protection against the rotavirus infection. Murine rotavirus VP2 and VP6 genes were cloned into the pcDNA3 vector. Adult BALB/c mice were inoculated three times by intramuscular (i.m.) injections with 100 or 200µg of pcDNA3-VP2 or pcDNA3-VP6 alone or co-administered with 100µg of pcDNA3-VP2/100µg of pcDNA3-VP6. Two weeks after the last inoculation, mice were challenged with the wild type murine rotavirus strain epizootic diarrhea of infant mice (EDIMwt). We found that both plasmids, pcDNA3-VP2 and pcDNA3-VP6, were able to induce rotavirus-specific serum antibodies, but not intestinal rotavirus-specific IgA; only 200µg of pcDNA3-VP6 induced 35% protection against the infection. A similar level of protection was found when mice were co-administered with 100µg of pcDNA3-VP2/100µg of pcDNA3-VP6 (1:1 ratio). However, the best protection (up to 58%) occurred when mice were inoculated with 10µg of pcDNA3-VP2/100µg of pcDNA3-VP6 (1:10 ratio). These results indicate that the DNA plasmid expressing VP6 is a better vaccine candidate that the one expressing VP2. However, when co-expressed, VP2 potentiates the immunogenicity and protective efficacy of VP6.
Collapse
Affiliation(s)
- D V Lopez-Guerrero
- Facultad de Medicina, Universidad Autonoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - N Arias
- Facultad de Medicina, Universidad Autonoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - L Gutierrez-Xicotencatl
- Centro de Investigaciones Sobre Enfermedades Infecciosas, INSP, SSA, Cuernavaca, Morelos, Mexico
| | - L Chihu-Amparan
- Centro de Investigaciones Sobre Enfermedades Infecciosas, INSP, SSA, Cuernavaca, Morelos, Mexico
| | - A González
- Centro de Investigacion en Dinamica Celular, Universidad Autonoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - A Pedroza-Saavedra
- Centro de Investigaciones Sobre Enfermedades Infecciosas, INSP, SSA, Cuernavaca, Morelos, Mexico
| | - G Rosas-Salgado
- Facultad de Medicina, Universidad Autonoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - J C Villegas-Garcia
- Facultad de Medicina, Universidad Autonoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - O Badillo-Godinez
- Facultad de Medicina, Universidad Autonoma del Estado de Morelos, Cuernavaca, Morelos, Mexico; Centro de Investigaciones Sobre Enfermedades Infecciosas, INSP, SSA, Cuernavaca, Morelos, Mexico
| | - G Fernandez
- Instituto de Biotecnologia-UNAM, Cuernavaca, Morelos, Mexico
| | - S Lopez
- Instituto de Biotecnologia-UNAM, Cuernavaca, Morelos, Mexico
| | - F Esquivel-Guadarrama
- Facultad de Medicina, Universidad Autonoma del Estado de Morelos, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
16
|
Schulze K, Ebensen T, Riese P, Prochnow B, Lehr CM, Guzmán CA. New Horizons in the Development of Novel Needle-Free Immunization Strategies to Increase Vaccination Efficacy. Curr Top Microbiol Immunol 2017; 398:207-234. [PMID: 27370343 DOI: 10.1007/82_2016_495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The young twenty-first century has already brought several medical advances, such as a functional artificial human liver created from stem cells, improved antiviral (e.g., against HIV) and cancer (e.g., against breast cancer) therapies, interventions controlling cardiovascular diseases, and development of new and optimized vaccines (e.g., HPV vaccine). However, despite this substantial progress and the achievements of the last century, humans still suffer considerably from diseases, especially from infectious diseases. Thus, almost one-fourth of all deaths worldwide are caused directly or indirectly by infectious agents. Although vaccination has led to the control of many diseases, including smallpox, diphtheria, and tetanus, emerging diseases are still not completely contained. Furthermore, pathogens such as Bordetella pertussis undergo alterations making adaptation of the respective vaccine necessary. Moreover, insufficient implementation of vaccination campaigns leads to re-emergence of diseases which were believed to be already under control (e.g., poliomyelitis). Therefore, novel vaccination strategies need to be developed in order to meet the current challenges including lack of compliance, safety issues, and logistic constraints. In this context, mucosal and transdermal approaches constitute promising noninvasive vaccination strategies able to match these demands.
Collapse
Affiliation(s)
- Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.
| | - Peggy Riese
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Blair Prochnow
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Claus-Michael Lehr
- Department of Drug Delivery, Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Braunschweig, Germany.,Department of Pharmacy, Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany
| | - Carlos A Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| |
Collapse
|