1
|
Kuri PR, Goswami P. Unravelling aggregation propensity of rotavirus A VP6 expressed as E. coli inclusion bodies through in silico prediction. Sci Rep 2024; 14:21464. [PMID: 39271700 PMCID: PMC11399443 DOI: 10.1038/s41598-024-69896-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024] Open
Abstract
The inner capsid protein of rotavirus, VP6, emerges as a promising candidate for next-generation vaccines against rotaviruses owing to its abundance in virion particles and high conservation. However, the formation of inclusion bodies during prokaryotic VP6 expression poses a significant hurdle to rotavirus research and applications. Here, we employed experimental and computational approaches to investigate inclusion body formation and aggregation-prone regions (APRs). Heterologous recombinant VP6 expression in Escherichia coli BL21(DE3) cells resulted in inclusion body formation, confirmed by transmission electron microscopy revealing amorphous aggregates. Thioflavin T assay demonstrated incubation temperature-dependent aggregation of VP6 inclusion bodies. Computational predictions of APRs in rotavirus A VP6 protein were performed using sequence-based tools (TANGO, AGGRESCAN, Zyggregator, Waltz, FoldAmyloid, ANuPP, Camsol intrinsic) and structure-based tools (SolubiS, CamSol structurally corrected, Aggrescan3D). A total of 24 consensus APRs were identified, with 21 of them being surface-exposed in VP6. All identified APRs display a predominance of hydrophobic amino acids, ranging from 33 to 100%. Computational identification of these APRs corroborates our experimental observation of VP6 inclusion body or aggregate formation. Characterization of VP6's aggregation propensity facilitates understanding of its behaviour during prokaryotic expression and opens avenues for protein engineering of soluble variants, advancing research on rotavirus VP6 in pathology, therapy, and diagnostics.
Collapse
Affiliation(s)
- Pooja Rani Kuri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
2
|
Yan W, Huang S, Zhang L, Yang Q, Liu S, Wang Z, Chu Q, Tian M, Zhao L, Sun Y, Lei C, Wang H, Yang X. Virus-like Particles vaccine based on co-expression of G5 Porcine rotavirus VP2-VP6-VP7 induces a powerful immune protective response in mice. Vet Microbiol 2024; 298:110241. [PMID: 39226763 DOI: 10.1016/j.vetmic.2024.110241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Porcine rotavirus (PoRV), a member of the Reoviridae family, constitutes a principal etiological agent of acute diarrhea in piglets younger than eight weeks of age, and it is associated with considerable morbidity and mortality within the swine industry. The G5 genotype rotavirus strain currently predominates in circulation. To develop a safe and effective porcine rotavirus vaccine, we generated an insect cell-baculovirus expression system, and successfully expressed these three viral proteins and assembled them into virus-like particles (VLPs) co-displaying VP2, VP6, and VP7. Transmission electron microscopy (TEM) analysis revealed that the VP2-VP6-VP7 VLPs exhibited a "wheeled" morphology resembling that of native rotavirus particles, with an estimated diameter of approximately 65 nm. To evaluate the immunogenicity and protective efficacy of these VP2-VP6-VP7 VLPs, we immunized BALB/C mice with four escalating doses of the VLPs, ranging from 5 to 40 μg of VLP protein per dose. ELISA-based assessments of PoRV-specific antibodies and T cell cytokines, including IL-4, IL-2, and IFN-γ, demonstrate that immunization with VP2-VP6-VP7 VLPs can effectively elicit both humoral and cellular immune responses in mice, resulting in a notable induction of neutralizing antibodies. On days 4, 6, 8, and 10 post-infection (dpi), the VLP-vaccinated group exhibited significantly reduced levels of PoRV RNA copy numbers when compared to the PBS controls. Histological examination of the duodenum, ileum, and kidneys revealed that VP2-VP6-VP7 VLPs provided effective protection against PoRV induced intestinal injury. Collectively, these findings indicate that the VLPs generated in this study possess strong immunogenicity and suggest the considerable promise of the VLP-based vaccine candidate in the prevention and containment of Porcine Rotavirus infections.
Collapse
Affiliation(s)
- Wenjun Yan
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science. Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Siyu Huang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science. Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China; Sichuan Animal Science Academy (SASA), Chengdu 610066, China
| | - Lan Zhang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science. Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Qingcheng Yang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science. Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Song Liu
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science. Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Zheng Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science. Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Qinyuan Chu
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science. Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Mingyue Tian
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science. Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Lijun Zhao
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science. Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Yue Sun
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science. Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Changwei Lei
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science. Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Hongning Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science. Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Xin Yang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science. Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China.
| |
Collapse
|
3
|
Wang J, Wang H, Zhang D, Liu F, Li X, Gao M, Cheng M, Bao H, Zhan J, Zeng Y, Wang C, Cao X. Lactiplantibacillus plantarum surface-displayed VP6 (PoRV) protein can prevent PoRV infection in piglets. Int Immunopharmacol 2024; 133:112079. [PMID: 38615376 DOI: 10.1016/j.intimp.2024.112079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Porcine rotavirus (PoRV) poses a threat to the development of animal husbandry and human health, leading to substantial economic losses. VP6 protein is the most abundant component in virus particles and also the core structural protein of the virus. Firstly, this study developed an antibiotic-resistance-free, environmentally friendly expression vector, named asd-araC-PBAD-alr (AAPA). Then Recombinant Lactiplantibacillus plantarum (L. plantarum) strains induced by arabinose to express VP6 and VP6-pFc fusion proteins was constructed. Subsequently, This paper discovered that NC8/Δalr-pCXa-VP6-S and NC8/Δalr-pCXa-VP6-pFc-S could enhance host immunity and prevent rotavirus infection in neonatal mice and piglets. The novel recombinant L. plantarum strains constructed in this study can serve as oral vaccines to boost host immunity, offering a new strategy to prevent PoRV infection.
Collapse
Affiliation(s)
- Junhong Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Haixu Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Dongliang Zhang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Fangyuan Liu
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Xiaoxu Li
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Ming Gao
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Mingyang Cheng
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Hongyu Bao
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jiaxing Zhan
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Xin Cao
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
4
|
Soliman RM, Nishioka K, Murakoshi F, Nakaya T. Use of live attenuated recombinant Newcastle disease virus carrying avian paramyxovirus 2 HN and F protein genes to enhance immune responses against species A rotavirus VP6 protein. Vet Res 2024; 55:16. [PMID: 38317245 PMCID: PMC10845738 DOI: 10.1186/s13567-024-01271-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
Numerous infectious diseases in cattle lead to reductions in body weight, milk production, and reproductive performance. Cattle are primarily vaccinated using inactivated vaccines due to their increased safety. However, inactivated vaccines generally result in weaker immunity compared with live attenuated vaccines, which may be insufficient in certain cases. Over the last few decades, there has been extensive research on the use of the Newcastle disease virus (NDV) as a live vaccine vector for economically significant livestock diseases. A single vaccination dose of NDV can sufficiently induce immunity; therefore, a booster vaccination dose is expected to yield limited induction of further immune response. We previously developed recombinant chimeric NDV (rNDV-2F2HN), in which its hemagglutinin-neuraminidase (HN) and fusion (F) proteins were replaced with those of avian paramyxovirus 2 (APMV-2). In vitro analysis revealed that rNDV-2F2HN expressing human interferon-gamma had potential as a cancer therapeutic tool, particularly for immunized individuals. In the present study, we constructed rNDV-2F2HN expressing the bovine rotavirus antigen VP6 (rNDV-2F2HN-VP6) and evaluated its immune response in mice previously immunized with NDV. Mice primarily inoculated with recombinant wild-type NDV expressing VP6 (rNDV-WT-VP6), followed by a booster inoculation of rNDV-2F2HN-VP6, showed a significantly stronger immune response than that in mice that received rNDV-WT-VP6 as both primary and booster inoculations. Therefore, our findings suggest that robust immunity could be obtained from the effects of chimeric rNDV-2F2HN expressing the same or a different antigen of a particular pathogen as a live attenuated vaccine vector.
Collapse
Affiliation(s)
- Rofaida Mostafa Soliman
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Animal Medicine (Infectious Diseases Division), Faculty of Veterinary Medicine, Damanhour University, Damanhour, El‑Beheira, Egypt
| | - Keisuke Nishioka
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Fumi Murakoshi
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Miyagi, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| |
Collapse
|
5
|
Latifi T, Jalilvand S, Golsaz-Shirazi F, Arashkia A, Kachooei A, Afchangi A, Zafarian S, Roohvand F, Shoja Z. Characterization and immunogenicity of a novel chimeric hepatitis B core-virus like particles (cVLPs) carrying rotavirus VP8*protein in mice model. Virology 2023; 588:109903. [PMID: 37832344 DOI: 10.1016/j.virol.2023.109903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/23/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
Given the efficacy and safety issues of the WHO for approved/prequalified live attenuated rotavirus (RV) vaccines, studies on alternative non-replicating modals and proper RV antigens are actively undertaken. Herein, we report the novel chimeric hepatitis B core-virus like particles (VLPs) carrying RV VP8*26-231 protein of a P [8] strain (cVLPVP8*), as a parenteral VLP RV vaccine candidate. SDS-PAGE and Western blotting analyses indicated the expected size of the E. coli-derived HBc-VP8* protein that self-assembled to cVLPVP8* particles. Immunization in mice indicated development of higher levels of IgG and IgA as well as higher IgG1/IgG2a ratios by cVLPVP8* vaccination compared to the VP8* alone. Assessment of neutralizing antibodies (nAbs) indicated development of heterotypic nAbs with cross-reactivity to a heterotypic RV strain by cVLPVP8* immunization compared to VP8* alone. The observed anti-VP8* cross-reactivity might indicate the possibility of developing a Pan-genomic RVA vaccine based on the cVLPVP8* formulation that deserves further challenge studies.
Collapse
Affiliation(s)
- Tayebeh Latifi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Arashkia
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran; Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Atefeh Kachooei
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atefeh Afchangi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Saman Zafarian
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran; Department of Microbial Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Zabihollah Shoja
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran; Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
6
|
Kachooei A, Tava Koli A, Minaeian S, Hosseini M, Jalilvand S, Latifi T, Arashkia A, Ataei-Pirkooh A, Shoja Z. Molecular characterization of rotavirus infections in children less than 5 years of age with acute gastroenteritis in Tehran, Iran, 2021-2022: Emergence of uncommon G9P[4] and G9P[8] rotavirus strains. J Med Virol 2023; 95:e28529. [PMID: 36698258 DOI: 10.1002/jmv.28529] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
The present study was conducted to monitor the genotypes of circulating species A rotavirus (RVA) in Iran and investigate genetic linkages between specific RVA VP7, VP4, VP6, and NSP4 segments. For this purpose, 48 RVA strains were detected during the 2021-2022 seasons. The two combinations of G9P[4] and G9P[8] RVA strains were predominant. However, several other combinations of RVA also were detected. Based on the distribution of I and E genotypes (46 strains) with respect to G and P, the most common strains were G9P[4]-I2-E2 (19.5%), G9P[4]-I2-E1 (6.5%), G9P[4]-I1-E1 (4.3%), G9P[8]-I1-E1 (19.5%), and G9P[8]-I2-E2 (10.9%), which were followed by several other combinations of G and P RVA strains with different pattern of I-E genotypes and also emerging, rare and uncommon strains. The present study described the continued circulation of G9 strains with the emergence of uncommon G9P[4] and G9P[8] reassortants with three and two different I-E genotypes, respectively, which have not been reported previously in Iran. Our findings indicated that these uncommon strains exhibited a unique genotype pattern comprising a mixture of genogroup 1 and 2 genes and suggest the need for further analysis of rare, uncommon, and emerging strains of RVA at all 11 gene segments to determine intergenogroup and intragenotype reassortments.
Collapse
Affiliation(s)
- Atefeh Kachooei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Ahmad Tava Koli
- Rsearch Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Minaeian
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Hosseini
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Latifi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.,Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Angila Ataei-Pirkooh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zabihollah Shoja
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.,Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
7
|
Shoja Z, Jalilvand S, Latifi T, Roohvand F. Rotavirus VP6: involvement in immunogenicity, adjuvant activity, and use as a vector for heterologous peptides, drug delivery, and production of nano-biomaterials. Arch Virol 2022; 167:1013-1023. [PMID: 35292854 PMCID: PMC8923333 DOI: 10.1007/s00705-022-05407-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/26/2022] [Indexed: 12/15/2022]
Abstract
The first-generation, live attenuated rotavirus (RV) vaccines, such as RotaTeq and Rotarix, were successful in reducing the number of RV-induced acute gastroenteritis (AGE) and child deaths globally. However, the low efficacy of these first-generation oral vaccines, coupled with safety concerns, required development of improved RV vaccines. The highly conserved structural protein VP6 is highly immunogenic, and it can generate self-assembled nano-sized structures, including tubes and spheres (virus-like particles; VLPs). Amongst the RV proteins, only VP6 shows these features. Interestingly, VP6-assembled structures, in addition to being highly immunogenic, have several other useful characteristics that could allow them to be used as adjuvants, immunological carriers, and drug-delivery vehicles as well as acting a scaffold for production of valuable nano-biomaterials. This review provides an overview of the self-assembled nano-sized structures of VP6-tubes/VLPs and their various functions.
Collapse
Affiliation(s)
- Zabihollah Shoja
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran.
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Latifi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
8
|
Afchangi A, Jalilvand S, Arashkia A, Latifi T, Farahmand M, Abolghasem Shirazi MM, Mousavi Nasab SD, Marashi SM, Roohvand F, Shoja Z. Co-administration of rotavirus nanospheres VP6 and NSP4 proteins enhanced the anti-NSP4 humoral responses in immunized mice. Microb Pathog 2022; 163:105405. [PMID: 35045328 DOI: 10.1016/j.micpath.2022.105405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/28/2021] [Accepted: 01/12/2022] [Indexed: 11/29/2022]
Abstract
Inconveniences associated with the efficacy and safety of the World Health Organization (WHO) approved/prequalified live attenuated rotavirus (RV) vaccines, sounded for finding alternative non-replicating modals and proper RV antigens (Ags). Herein, we report the development of a RV candidate vaccine based on the combination of RV VP6 nanospheres (S) and NSP4112-175 proteins (VP6S + NSP4). Self-assembled VP6S protein was produced in insect cells. Analyses by western blotting and transmission electron microscopy (TEM) indicated expression of VP6 trimer structures with sizes of ≥140 kDa and presence of VP6S. Four group of mice were immunized (2-dose formulation) intra-peritoneally (IP) by either¨VP6S + NSP4¨ or each protein alone (VP6S or NSP4112-175) emulsified in aluminium hydroxide or control. Results indicated that VP6S + NSP4 formulation induced significant anti-VP6 IgG (P < 0.001) and IgA (P < 0.05) as well as anti-NSP4 IgG (P < 0.001) and enhancement of protective immunity. Analyses of anti-VP6S and anti-NSP4 IgG subclass (IgG1 and IgG2a) showed IgG1/IgG2a ≥6 and IgG1/IgG2a ≥3 ratios, respectively indicating Th2 polarization of immune responses. The combination of VP6S + NSP4 proteins emulsified in aluminum hydroxide adjuvant might present a dual universal, efficient and cost-effective candidate vaccine against RV infection.
Collapse
Affiliation(s)
- Atefeh Afchangi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Arash Arashkia
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Tayebeh Latifi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Farahmand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Seyed Dawood Mousavi Nasab
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Sayed Mahdi Marashi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Zabihollah Shoja
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
9
|
Afchangi A, Latifi T, Jalilvand S, Marashi SM, Shoja Z. Combined use of lactic-acid-producing bacteria as probiotics and rotavirus vaccine candidates expressing virus-specific proteins. Arch Virol 2021; 166:995-1006. [PMID: 33533975 DOI: 10.1007/s00705-021-04964-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022]
Abstract
Due to the lower efficacy of currently approved live attenuated rotavirus (RV) vaccines in developing countries, a new approach to the development of safe mucosally administered live bacterial vectors is being considered, using probiotic bacteria as an efficient delivery platform for heterologous RV antigens. Lactic acid bacteria (LAB), which are considered food-grade bacteria and normal microbiota, have been utilized throughout history as probiotics and developed since the 1990s as a delivery system for recombinant heterologous proteins. Over the last decade, LAB have frequently been used as a platform for the delivery of various RV antigens to the mucosa. Given the appropriate safety profile for neonates and providing the benefits of probiotics, recombinant LAB-based vaccines could potentially address the need for a subunit RV vaccine. The present review focuses mainly on different recombinant LAB vaccine constructs for RV and their potential as an alternative recombinant vaccine against RV disease.
Collapse
Affiliation(s)
- Atefeh Afchangi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Latifi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahdi Marashi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zabihollah Shoja
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
10
|
Li H, Li Z, Xiao N, Su X, Zhao S, Zhang Y, Cui K, Liu Q, Shi D. Site-specific integration of rotavirus VP6 gene in rabbit β-casein locus by CRISPR/Cas9 system. In Vitro Cell Dev Biol Anim 2019; 55:586-597. [PMID: 31367859 DOI: 10.1007/s11626-019-00382-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
Abstract
Rotavirus (RV) is the leading cause of viral gastroenteritis in neonates and VP6 protein has been discussed as a potential candidate vaccine. CRISPR/Cas9 was the latest generation of gene editing tools that can mediate the site-specific knock-in of exogenous genes, providing strong support for the expression of recombinant proteins. Here, seeking to design a rotavirus vaccine that would be suitable for both mammary-gland-based production and milk-based administration, rabbit β-casein (CSN2) locus was chosen as the target site to integrate the VP6 gene. The efficiency of inducing mutations in different target sites of rabbit CSN2 locus was analyzed and g4 site seems to be the best one to generate mutations (g4 72.76 ± 0.32% vs g1 30.14 ± 1.93%, g2 38.53 ± 0.75%, g3 52.26 ± 1.16%, P < 0.05). We further compared the knock-in efficiency through cytoplasmic injection of two group mixtures (containing 100 ng/μL Cas9 mRNA or Cas9 protein, 20 ng/μL sgRNA4, and 100 ng/μL donor vector) in rabbit zygotes, though the Cas9 mRNA group induced an HDR efficiency as high as 20.0% ± 2.6% than Cas9 protein group (10.3% ± 3.1%), 37.5% of the knock-in events were partial integration in the target site, when Cas9 protein used in the CRISPR/Cas9 system, all of the positive blastocysts showed completely integrated, results showed that the use of Cas9 protein is better than Cas9 mRNA to integrate the correct exogenous gene into the target site. Moreover, the transgenic rabbit that harbored correct integration of VP6 gene was obtained using Cas9 protein group and was used to produce an experimental milk-based rotavirus vaccine. Our research provides a novel strategy to produce rotavirus subunit vaccine and make a foundation for building broader milk-based vaccine protection against other pathogens.
Collapse
Affiliation(s)
- Hongli Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Ning Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Xiaoping Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Shanshan Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Yu Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Kuiqing Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China.
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China.
| |
Collapse
|
11
|
Li Z, Cui K, Wang H, Liu F, Huang K, Duan Z, Wang F, Shi D, Liu Q. A milk-based self-assemble rotavirus VP6-ferritin nanoparticle vaccine elicited protection against the viral infection. J Nanobiotechnology 2019; 17:13. [PMID: 30670042 PMCID: PMC6341625 DOI: 10.1186/s12951-019-0446-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/07/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Rotavirus is the leading cause of severe dehydrating diarrhea in young children and the inner capsid protein VP6 is a potential vaccine candidate that can induce cross-protective immune responses against different Rotavirus strains. The use of ferritin nanoparticles as the scaffold of the antigen can improve the immunogenicity of the subunit vaccines and provide broader protection. We here present a non-live and self-assemble recombinant rotavirus VP6-ferritin (rVP6-ferritin) nanoparticle vaccine. RESULTS The rVP6-ferritin nanoparticles were expressed in E. coli and self-assembled to uniform spherical structure which similar to ferritin, and oral administration of them induced efficient humoral and mucosal immunogenicity in mice. The nanoparticles were further transgenically expressed in the milk of mice, and pup mice breastfed by transgenic rVP6-ferritin mothers had strongly induced immunogenicity and-compared to pups breastfed by wild type mothers-the proportion of rotavirus challenged pups with diarrhea symptoms, the duration and intensity of the diarrhea, and the deleterious effects on overall growth resulting from the diarrhea were all significantly reduced. CONCLUSIONS These results suggest that this recombinant VP6-ferritin nanoparticle vaccine can efficiently prevent the death and malnutrition induced by the rotavirus infection in infants and is a promising candidate vaccine for rotavirus.
Collapse
Affiliation(s)
- Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China
| | - Kuiqing Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China
| | - Hong Wang
- National Institute for Viral Disease Control and Prevention, CDC China, Beijing, 102206, China
| | - Fuhang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China
| | - Kongwei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China
| | - Zhaojun Duan
- National Institute for Viral Disease Control and Prevention, CDC China, Beijing, 102206, China
| | - Fengchao Wang
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
12
|
Kim JS, Lee SK, Ko DH, Hyun J, Kim HS. Performance Evaluation of the Automated Fluorescent Immunoassay System Rotavirus Assay in Clinical Samples. Ann Lab Med 2018; 39:50-57. [PMID: 30215230 PMCID: PMC6143470 DOI: 10.3343/alm.2019.39.1.50] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/05/2018] [Accepted: 08/16/2018] [Indexed: 11/19/2022] Open
Abstract
Background The Automated Fluorescent Immunoassay System (AFIAS) rotavirus assay (Boditech Med Inc., Chuncheon, Korea) is a new rapid antigen test for rotavirus detection. We evaluated the performance of this assay for detecting rotaviruses and their specific genotypes in clinical stool samples. Methods AFIAS rotavirus assay was performed in 103 rotavirus-positive and 103 rotavirus-negative stool samples (confirmed by both PCR and ELISA), and its results were compared with those of PCR, ELISA, and immunochromatographic assay (ICA). We evaluated diagnostic sensitivity/specificity, the detectability of rotavirus subtypes, lower limit of detection (LLOD), reproducibility, cross-reactivity, and interference of AFIAS rotavirus assay. Results Based on PCR and ELISA results, diagnostic sensitivity and specificity of the AFIAS rotavirus assay were both 99.0%. LLOD results showed that the AFIAS assay had sensitivity similar to or greater than ICA and ELISA. High reproducibility was confirmed, and no cross-reactivity or interference was detected. This assay could detect genotypes G1P[8], G2P[4], G3P[8], G4P[6], G4P[8], G8P[4], G8P[8], G9P[4], and G9P[8]. Conclusions The AFIAS rotavirus assay showed high reproducibility, sensitivity, and specificity as well as excellent agreement with ELISA, PCR, and ICA. It detected the most common as well as unusual genotypes of rotavirus prevalent in Korea. It could be a useful on-site assay for rapid, convenient, and cost-effective detection of rotavirus infection.
Collapse
Affiliation(s)
- Jae Seok Kim
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Su Kyung Lee
- Department of Laboratory Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Dae Hyun Ko
- Department of Laboratory Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Jungwon Hyun
- Department of Laboratory Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Hyun Soo Kim
- Department of Laboratory Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea.
| |
Collapse
|
13
|
Temprana CF, Argüelles MH, Gutierrez NM, Barril PA, Esteban LE, Silvestre D, Mandile MG, Glikmann G, Castello AA. Rotavirus VP6 protein mucosally delivered by cell wall-derived particles from Lactococcus lactis induces protection against infection in a murine model. PLoS One 2018; 13:e0203700. [PMID: 30192869 PMCID: PMC6128627 DOI: 10.1371/journal.pone.0203700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/24/2018] [Indexed: 01/21/2023] Open
Abstract
Rotaviruses are the primary cause of acute gastroenteritis in children worldwide. Although the implementation of live attenuated vaccines has reduced the number of rotavirus-associated deaths, variance in their effectiveness has been reported in different countries. This fact, among other concerns, leads to continuous efforts for the development of new generation of vaccines against rotavirus.In this work, we describe the obtention of cell wall-derived particles from a recombinant Lactococcus lactis expressing a cell wall-anchored version of the rotavirus VP6 protein. After confirming by SDS-PAGE, Western blot, flow cytometry and electronic immunomicroscopy that these particles were carrying the VP6 protein, their immunogenic potential was evaluated in adult BALB/c mice. For that, mucosal immunizations (oral or intranasal), with or without the dmLT [(double mutant Escherichia coli heat labile toxin LT(R192G/L211A)] adjuvant were performed. The results showed that these cell wall-derived particles were able to generate anti-rotavirus IgG and IgA antibodies only when administered intranasally, whether the adjuvant was present or not. However, the presence of dmLT was necessary to confer protection against rotavirus infection, which was evidenced by a 79.5 percent viral shedding reduction.In summary, this work describes the production of cell wall-derived particles which were able to induce a protective immune response after intranasal immunization. Further studies are needed to characterize the immune response elicited by these particles as well as to determine their potential as an alternative to the use of live L. lactis for mucosal antigen delivery.
Collapse
Affiliation(s)
- C. Facundo Temprana
- Laboratorio de Inmunología y Virología (LIV), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires, Argentina
- * E-mail: (AAC); (CFT)
| | - Marcelo H. Argüelles
- Laboratorio de Inmunología y Virología (LIV), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | - Nicolás M. Gutierrez
- Laboratorio de Inmunología y Virología (LIV), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | - Patricia A. Barril
- Laboratorio de Microbiología de los Alimentos, Centro de Investigación y Asistencia Técnica a la Industria (CIATI A.C.)–CONICET, Centenario, Neuquén, Argentina
| | - Laura E. Esteban
- Laboratorio de Inmunología y Virología (LIV), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | - Dalila Silvestre
- Laboratorio de Inmunología y Virología (LIV), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires, Argentina
| | - Marcelo G. Mandile
- Laboratorio de Inmunología y Virología (LIV), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires, Argentina
| | - Graciela Glikmann
- Laboratorio de Inmunología y Virología (LIV), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | - Alejandro A. Castello
- Laboratorio de Inmunología y Virología (LIV), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Instituto de Ciencias de la Salud, Universidad Nacional Arturo Jauretche, Florencio Varela, Buenos Aires, Argentina
- * E-mail: (AAC); (CFT)
| |
Collapse
|
14
|
Highly sensitive ELISA for the serological detection of murine rotavirus EDIM based on its major immunogen VP6. J Virol Methods 2018; 262:72-78. [PMID: 30144945 DOI: 10.1016/j.jviromet.2018.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/27/2018] [Accepted: 07/29/2018] [Indexed: 11/23/2022]
Abstract
Precise health monitoring of laboratory animals is a critical factor for surveillance and accuracy of animal experiments. Rotavirus epizootic diarrhea of infant mice (EDIM) leads to infections in mice that can influence animal studies, e.g., by altering the intestinal physiology. Thus, the aim of this study was establishing a highly sensitive and specific ELISA for the serological detection of EDIM infections in rodents. First, virus proteins were separated by SDS-PAGE and immunogenic proteins were visualized by immunoblotting and identified after in-gel digestion by tandem mass spectrometry. Subsequently, the major immunogen VP6 (virus protein 6) was expressed in Escherichia coli in high yields, purified by affinity chromatography, and used to establish an indirect ELISA. The diagnostic sensitivity and specificity were both above 99 % and the selectivity better than 98.7 % for animals infected by other pathogens listed by the Federation of Laboratory Animal Science Associations. Importantly, the Strep-rVP6-His-ELISA was more sensitive than a commercial virus-based ELISA and is a time- and cost-efficient complement to EDIM-specific immune-fluorescence assays. In conclusion, the assay can improve health monitoring by reducing the risk of missed EDIM infections in animal housing facilities, thereby improving animal welfare, reliability of animal studies, and protection of precious mice breeds.
Collapse
|
15
|
Rota RP, Palacios CA, Temprana CF, Argüelles MH, Mandile MG, Mattion N, Laimbacher AS, Fraefel C, Castello AA, Glikmann G. Evaluation of the immunogenicity of a recombinant HSV-1 vector expressing human group C rotavirus VP6 protein. J Virol Methods 2018; 256:24-31. [PMID: 29496429 DOI: 10.1016/j.jviromet.2018.02.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/21/2018] [Accepted: 02/25/2018] [Indexed: 12/01/2022]
Abstract
Group C Rotavirus (RVC) has been associated globally with sporadic outbreaks of gastroenteritis in children and adults. RVC also infects animals, and interspecies transmission has been reported as well as its zoonotic potential. Considering its genetic diversity and the absence of effective vaccines, it is important and necessary to develop new generation vaccines against RVC for both humans and animals. The aim of the present study was to develop and characterize an HSV-1-based amplicon vector expressing a human RVC-VP6 protein and evaluate the humoral immune response induced after immunizing BALB/c mice. Local fecal samples positive for RVC were used for isolation and sequencing of the vp6 gene, which phylogenetically belongs to the I2 genotype. We show here that cells infected with the HSV[VP6C] amplicon vector efficiently express the VP6 protein, and induced specific anti-RVC antibodies in mice immunized with HSV[VP6C], in a prime-boost schedule. This work highlights that amplicon vectors are an attractive platform for the generation of safe genetic immunogens against RVC, without the addition of external adjuvants.
Collapse
Affiliation(s)
- Rosana P Rota
- Laboratorio de Inmunología y Virología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD, Bernal, Buenos Aires, Argentina
| | - Carlos A Palacios
- Centro de Virología Animal (CEVAN), Instituto de Ciencia y Tecnología Dr. César Milstein, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo 2468, C1440FFX, Ciudad de Buenos Aires, Argentina
| | - C Facundo Temprana
- Laboratorio de Inmunología y Virología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD, Bernal, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marcelo H Argüelles
- Laboratorio de Inmunología y Virología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD, Bernal, Buenos Aires, Argentina
| | - Marcelo G Mandile
- Laboratorio de Inmunología y Virología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD, Bernal, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Nora Mattion
- Centro de Virología Animal (CEVAN), Instituto de Ciencia y Tecnología Dr. César Milstein, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo 2468, C1440FFX, Ciudad de Buenos Aires, Argentina
| | - Andrea S Laimbacher
- Institute of Virology, University of Zurich, Winterthurerstrasse 266a, CH-8057, Zurich, Switzerland
| | - Cornell Fraefel
- Institute of Virology, University of Zurich, Winterthurerstrasse 266a, CH-8057, Zurich, Switzerland
| | - Alejandro A Castello
- Laboratorio de Inmunología y Virología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD, Bernal, Buenos Aires, Argentina
| | - Graciela Glikmann
- Laboratorio de Inmunología y Virología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD, Bernal, Buenos Aires, Argentina.
| |
Collapse
|
16
|
Afchangi A, Arashkia A, Shahosseini Z, Jalilvand S, Marashi SM, Roohvand F, Mohajel N, Shoja Z. Immunization of Mice by Rotavirus NSP4-VP6 Fusion Protein Elicited Stronger Responses Compared to VP6 Alone. Viral Immunol 2017; 31:233-241. [PMID: 29185875 DOI: 10.1089/vim.2017.0075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Due to the limitations and safety issues of the two currently approved live attenuated rotavirus (RV) vaccines "RotaTeq and Rotarix," studies on nonreplicating sources of RV vaccines and search for proper RV antigens are actively carried out. The adjuvant activity of NSP4 and highly immunogenic properties of RV VP6 protein prompted us to consider the construction of a NSP4112-175-VP6 fusion protein and to assess the anti-VP6 IgG, IgA, and IgG subclass responses induced by Escherichia coli-derived NSP4-VP6 fusion protein compared to that of VP6 protein with/without formulation in Montanide ISA 50V2 (M50) in BALB/c mice. Results indicated to the proper expression of the fused NSP4-VP6 and VP6 proteins in E. coli. Intraperitoneal immunization by M50 formulated NSP4-VP6 fusion protein (M5+NSP4-VP6) induced the highest titration of VP6-specific IgG and IgA responses compared to the other groups. Indeed, the presence of NSP4 resulted to the induction of stronger humoral immune responses against the fused protein compared to that elicited by administration of VP6 protein alone (with/without M50 formulation), implying the adjuvant properties of NSP4 for the fused protein. Moreover, the "M50+NSP4-VP6" formulation induced higher serum IgG2a titers than IgG1 and increased Interferon-γ levels, despite unchanged interleukin-4 amounts compared to other groups, indicating Th1-oriented responses with a possible role of NSP4. In conclusion, this study further highlights the potentiality of NSP4-VP6 fusion protein as an efficient and cost-effective immunogen in the field of RV vaccine development.
Collapse
Affiliation(s)
- Atefeh Afchangi
- 1 Virology Department, School of Public Health (SPH), Tehran University of Medical Sciences (TUMS) , Tehran, Iran .,2 Virology Department, Pasteur Institute of Iran , Tehran, Iran
| | - Arash Arashkia
- 2 Virology Department, Pasteur Institute of Iran , Tehran, Iran
| | | | - Somayeh Jalilvand
- 1 Virology Department, School of Public Health (SPH), Tehran University of Medical Sciences (TUMS) , Tehran, Iran
| | - Sayed Mahdi Marashi
- 1 Virology Department, School of Public Health (SPH), Tehran University of Medical Sciences (TUMS) , Tehran, Iran
| | - Farzin Roohvand
- 2 Virology Department, Pasteur Institute of Iran , Tehran, Iran
| | - Nasir Mohajel
- 2 Virology Department, Pasteur Institute of Iran , Tehran, Iran
| | | |
Collapse
|
17
|
Feng H, Li X, Song W, Duan M, Chen H, Wang T, Dong J. Oral Administration of a Seed-based Bivalent Rotavirus Vaccine Containing VP6 and NSP4 Induces Specific Immune Responses in Mice. FRONTIERS IN PLANT SCIENCE 2017; 8:910. [PMID: 28620404 PMCID: PMC5449476 DOI: 10.3389/fpls.2017.00910] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
Rotavirus is the leading cause of severe diarrheal disease among newborns. Plant-based rotavirus vaccines have been developed in recent years and have been proven to be effective in animal models. In the present study, we report a bivalent vaccine candidate expressing rotavirus subunits VP6 and NSP4 fused with the adjuvant subunit B of E. coli heat-labile enterotoxin (LTB) in maize seeds. The RT-PCR and Western blot results showed that VP6 and LTB-NSP4 antigens were expressed and accumulated in maize seeds. The expression levels were as high as 0.35 and 0.20% of the total soluble protein for VP6 and LTB-NSP4, respectively. Oral administration of transgenic maize seeds successfully stimulated systemic and mucosal responses, with high titers of serum IgG and mucosal IgA antibodies, even after long-term storage. This study is the first to use maize seeds as efficient generators for the development of a bivalent vaccine against rotavirus.
Collapse
Affiliation(s)
- Hao Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Xin Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Weibin Song
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center of China, Department of Plant Genetics and Breeding, China Agricultural UniversityBeijing, China
| | - Mei Duan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Hong Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| |
Collapse
|
18
|
Zhao B, Pan X, Teng Y, Xia W, Wang J, Wen Y, Chen Y. Rotavirus VP7 epitope chimeric proteins elicit cross-immunoreactivity in guinea pigs. Virol Sin 2015; 30:363-70. [PMID: 26459269 PMCID: PMC8200902 DOI: 10.1007/s12250-015-3620-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/28/2015] [Indexed: 10/23/2022] Open
Abstract
VP7 of group A rotavirus (RVA) contains major neutralizing epitopes. Using the antigenic protein VP6 as the vector, chimeric proteins carrying foreign epitopes have been shown to possess good immunoreactivity and immunogenicity. In the present study, using modified VP6 as the vector, three chimeric proteins carrying epitopes derived from VP7 of RVA were constructed. The results showed that the chimeric proteins reacted with anti-VP6 and with SA11 and Wa virus strains. Antibodies from guinea pigs inoculated with the chimeric proteins recognized VP6 and VP7 of RVA and protected mammalian cells from SA11 and Wa infection in vitro. The neutralizing activities of the antibodies against the chimeric proteins were significantly higher than those against the vector protein VP6F. Thus, development of chimeric vaccines carrying VP7 epitopes using VP6 as a vector could be a promising alternative to enhance immunization against RVAs.
Collapse
Affiliation(s)
- Bingxin Zhao
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Xiaoxia Pan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming, 650500, China
| | - Yumei Teng
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Wenyue Xia
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Jing Wang
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Yuling Wen
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Yuanding Chen
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China.
| |
Collapse
|