1
|
Horsington J, Singanallur Balasubramanian N, Nfon CK, Bittner H, Vosloo W. Investigation into the protective ability of monovalent and bivalent A Malaysia 97 and A22 Iraq 64 vaccine strains against infection with an A/Asia/SEA-97 variant in pigs. Front Vet Sci 2022; 9:1027556. [PMID: 36387399 PMCID: PMC9649919 DOI: 10.3389/fvets.2022.1027556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/07/2022] [Indexed: 11/23/2022] Open
Abstract
Over the last 15 years, FMDV serotype A viruses in South-East Asia (A/ASIA/SEA-97 lineage) have diverged into several clusters. Variants from Thailand in 2011-2013 have caused vaccine failures and returned poor r1-values (<0.30) to A22 Iraq 64 (A22) and A Malaysia 97 (A May) vaccine strains. We investigated the protective ability of monovalent and bivalent A Malaysia 97 and A22 Iraq 64 vaccine strains against infection with an A/Asia/SEA-97 variant in pigs. Pigs were challenged with a variant of A/Asia/SEA-97 lineage either 21- or 7- days post-vaccination (V21 or V7) using the heal-bulb challenge. Only one in five pigs were protected in the V21 monovalent vaccine groups. Less severe clinical signs were observed in the A22 IRQ group compared to the A MAY 97 group. In the V21 combination group, 4 out of 5 pigs were protected and viraemia was significantly reduced compared to the monovalent V21 groups. V7 vaccine groups were not protected. The neutralising antibody response was below the detection limit in all groups on the challenge day, showing a poor correlation with protection. There was no evidence that the pigs protected from systemic disease had protective antibody responses sooner than other pigs in the study, implying other immune mechanisms might play a role in protecting these animals. FMDV was detected in the nasal and oral swab samples between 1 and 6 dpc. Viral loads were lower in the nasal swab samples from the V21 combination group than the other groups, but there was no difference in the oral swab samples. Since all unvaccinated controls were euthanised by 6-day post-challenge for ethical reasons, the ‘area under the curve (AUC)' method was used to compare the viraemia and virus excretion in different groups. We recommend that for the A/Asia/SEA97 variants, a combination vaccine with A Malaysia 97 and A22 Iraq 64 vaccine strains would be ideal compared to monovalent vaccines.
Collapse
Affiliation(s)
- Jacquelyn Horsington
- Australian Centre for Disease Preparedness, Transboundary Disease Mitigation, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health and Biosecurity, Geelong, VIC, Australia
| | - Nagendrakumar Singanallur Balasubramanian
- Australian Centre for Disease Preparedness, Transboundary Disease Mitigation, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health and Biosecurity, Geelong, VIC, Australia
| | - Charles K. Nfon
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB, Canada
| | - Hilary Bittner
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB, Canada
| | - Wilna Vosloo
- Australian Centre for Disease Preparedness, Transboundary Disease Mitigation, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health and Biosecurity, Geelong, VIC, Australia
- *Correspondence: Wilna Vosloo
| |
Collapse
|
2
|
BacMam Expressing Highly Glycosylated Porcine Interferon Alpha Induces Robust Antiviral and Adjuvant Effects against Foot-and-Mouth Disease Virus in Pigs. J Virol 2022; 96:e0052822. [PMID: 35604219 DOI: 10.1128/jvi.00528-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foot-and-mouth disease (FMD) is an acute contagious disease that affects cloven-hoofed animals and has severe global economic consequences. FMD is most commonly controlled by vaccination. Currently available commercial FMD vaccines contain chemically inactivated whole viruses, which are thought to be slow acting as they are effective only 4 to 7 days following vaccination. Hence, the development of a novel rapid vaccine or alternative measures, such as antiviral agents or the combination of vaccines and antiviral agents for prompt FMD virus (FMDV) outbreak containment, is desirable. Here, we constructed a recombinant baculovirus (BacMam) expressing consensus porcine interferon alpha (IFN-α) that has three additional N-glycosylation sites driven by a cytomegalovirus immediate early (CMV-IE) promoter (Bac-Con3N IFN-α) for protein expression in mammalian cells. Bac-Con3N IFN-α expressing highly glycosylated porcine IFN-α protein increased the duration of antiviral effects. We evaluated the antiviral effects of Bac-Con3N IFN-α in swine cells and mice and observed sustained antiviral effects in pig serum; additionally, Bac-Con3N IFN-α exhibited sustained antiviral effects in vivo as well as adjuvant effects in combination with an inactivated FMD vaccine. Pigs injected with a combination of Bac-Con3N IFN-α and the inactivated FMD vaccine were protected against FMDV at 1, 3, and 7 days postvaccination. Furthermore, we observed that in combination with the inactivated FMD vaccine, Bac-Con3N IFN-α increased neutralizing antibody levels in mice and pigs. Therefore, we suggest that Bac-Con3N IFN-α is a strong potential antiviral and adjuvant candidate for use in combination with inactivated FMD vaccines to protect pigs against FMDV. IMPORTANCE Early inhibition of foot-and-mouth disease (FMD) virus (FMDV) replication in pigs is highly desirable as FMDV transmission and shedding rates are higher in pigs than in cattle. However, commercial FMD vaccines require at least 4 to 7 days postvaccination (dpv) for protection, and animals are vulnerable to heterologous viruses before acquiring high antibody levels after the second vaccination. Therefore, the development of antiviral agents for use in combination with FMD vaccines is essential. We developed a novel antiviral and immunostimulant, Bac-Con3N IFN-α, which is a modified porcine IFN-α-expressing recombinant baculovirus, to improve IFN stability and allow its direct delivery to animals. We present a promising candidate for use in combination with inactivated FMD vaccines as pigs applied to the strategy had early protection against FMDV at 1 to 7 dpv, and their neutralizing antibody levels were higher than those in pigs administered the vaccine only.
Collapse
|
3
|
Emergency FMD Serotype O Vaccines Protect Cattle against Heterologous Challenge with a Variant Foot-and-Mouth Disease Virus from the O/ME-SA/Ind2001 Lineage. Vaccines (Basel) 2021; 9:vaccines9101110. [PMID: 34696216 PMCID: PMC8537456 DOI: 10.3390/vaccines9101110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
Vaccination is one of the best approaches to control and eradicate foot-and-mouth disease (FMD). To achieve this goal, vaccines with inactivated FMD virus antigen in suitable adjuvants are being used in addition to other control measures. However, only a limited number of vaccine strains are commercially available, which often have a restricted spectrum of activity against the different FMD virus strains in circulation. As a result, when new strains emerge, it is important to measure the efficacy of the current vaccine strains against these new variants. This is important for countries where FMD is endemic but also for countries that hold an FMD vaccine bank, to ensure they are prepared for emergency vaccination. The emergence and spread of the O/ME-SA/Ind-2001 lineage of viruses posed a serious threat to countries with OIE-endorsed FMD control plans who had not reported FMD for many years. In vitro vaccine-matching results showed a poor match (r1-value < 0.3) with the more widely used vaccine strain O1 Manisa and less protection in a challenge test. This paper describes the use of the O3039 vaccine strain as an alternative, either alone or in combination with the O1 Manisa vaccine strain with virulent challenge by a O/ME-SA/Ind-2001d sub-lineage virus from Algeria (O/ALG/3/2014). The experiment included challenge at 7 days post-vaccination (to study protection and emergency use) and 21 days post-vaccination (as in standard potency studies). The results indicated that the O3039 vaccine strain alone, as well as the combination with O1 Manisa, is effective against this strain of the O/ME-SA/Ind/2001d lineage, offering protection from clinical disease even after 7 days post-vaccination with a reduction in viraemia and virus excretion.
Collapse
|
4
|
Garner G, Vosloo W, Tapsuwan S, Bradhurst R, Seitzinger AH, Breed AC, Capon T. Comparing surveillance approaches to support regaining free status after a foot-and-mouth disease outbreak. Prev Vet Med 2021; 194:105441. [PMID: 34352519 DOI: 10.1016/j.prevetmed.2021.105441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/22/2021] [Accepted: 07/15/2021] [Indexed: 11/30/2022]
Abstract
Following an FMD eradication program, surveillance will be required to demonstrate that the program has been successful. The World Organization for Animal Health (OIE) provides guidelines including waiting periods and appropriate surveillance to support regaining FMD-free status. Serological surveillance is the recommended method for demonstrating freedom but is time consuming and expensive. New technologies such as real-time reverse transcription polymerase chain reaction (RT-qPCR) tests and sampling techniques such as bulk milk testing (BMT) of dairy cattle, oral swabs, and saliva collection with rope tethers in piggeries could enable surveillance to be done more efficiently. Epidemiological modelling was used to simulate FMD outbreaks, with and without emergency vaccination as part of the response, in Australia. Baseline post-outbreak surveillance approaches for unvaccinated and vaccinated animals based on the European FMD directive were compared with alternative approaches in which the sampling regime, sampling approaches and/or the diagnostic tests used were varied. The approaches were compared in terms of the resources required, time taken, cost, and effectiveness i.e., ability of the surveillance regime to correctly identify the infection status of herds. In the non-vaccination scenarios, the alternative approach took less time to complete and cost less, with the greatest benefits seen with larger outbreaks. In vaccinated populations, the alternative surveillance approaches significantly reduced the number of herds sampled, the total number of tests done and costs of the post-outbreak surveillance. There was no reduction in effectiveness using the alternative approaches, with one of the benefits being a reduction in the number of false positive herds. Alternative approaches to FMD surveillance based on non-invasive sampling methods and RT-qPCR tests have the potential to enable post outbreak surveillance substantiating FMD freedom to be done more quickly and less expensively than traditional approaches based on serological surveys.
Collapse
Affiliation(s)
- Graeme Garner
- CSIRO-Land and Water, North Road, Acton, 2601, ACT, Australia
| | - Wilna Vosloo
- CSIRO-Australian Centre for Disease Preparedness, 5 Portarlington Road, 3220, Geelong, Australia
| | - Sorada Tapsuwan
- CSIRO-Land and Water, North Road, Acton, 2601, ACT, Australia
| | - Richard Bradhurst
- Centre of Excellence for Biosecurity Risk Analysis, School of BioSciences, University of Melbourne, Parkville, 3010, VIC, Australia
| | | | - Andrew C Breed
- Epidemiology and One Health Section, Department of Agriculture, Water and the Environment, Canberra, 2601, ACT, Australia; School of Veterinary Science, University of Queensland, Brisbane, Australia
| | - Tim Capon
- CSIRO-Land and Water, North Road, Acton, 2601, ACT, Australia
| |
Collapse
|
5
|
Wolf TE, Lazarus DD, Opperman P, Heath L, Ganswindt A, Fosgate GT. Impact of foot-and-mouth-disease on goat behaviour after experimental infection with serotype SAT1 virus. Prev Vet Med 2020; 176:104912. [PMID: 32066026 DOI: 10.1016/j.prevetmed.2020.104912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 01/24/2023]
Abstract
Infectious diseases and parasitic infestations can cause a set of non-specific clinical signs, such as increased body temperature and resting, and a decrease in food intake. These physiological and behavioural changes have an adaptive function facilitating defences against the pathogen and to support immune functions. These so-called' sickness behaviours' can also be used as an early detection tool for disease. Foot-and-mouth disease (FMD) still causes great economic losses in endemic countries, especially to smallholder farmers. The aim of this study was to determine if behavioural changes in goats can be used as an early indicator of FMD virus (FMDV) infection. The efficacy of a Southern African Territories (SAT) FMD vaccine was studied on forty South African indigenous goats. Changes in daily activities (resting, feeding, walking), as well as social behaviours (social resting, social feeding, dominance behaviours) were recorded and then compared over time and between clinically affected and unaffected goats. Pedometers were used to estimate average daily steps and to compare between groups of study animals. Eleven goats developed clinical signs of FMD, as well as non-FMD related sicknesses during the course of the study. Overall walking and resting behaviours were not significantly affected by the presence of FMD related clinical signs (p > 0.05). However, during the time of FMDV infection, social resting increased significantly (p < 0.001). Although goats developed FMD lesions on lips and tongues, percentage of time feeding was not affected (p = 0.762), suggesting that the study goats did not perceive the oral lesions as an important disturbance. Similarly, the number of steps did not consistently decrease in the presence of FMD-associated foot lesions. When affected by non-FMD related sicknesses, animals did not have an overall reduction in the time spent feeding (p = 0.867). However, goats affected with non-FMD conditions reduced the amount of social feeding (p = 0.002), potentially avoiding energetically costly competition at the feeding points. Overall, goats affected with FMD did not show more sickness behaviour, suggesting that FMDV infection in goats might not lead to obvious and therefore, easily detectable behavioural changes. This might have implications for farmers and animal health personnel, as individual goats infected with FMDV might be undetected within a flock due to the absence of obvious sickness behaviours, and the virus can therefore be spread more easily between herds through animal movements.
Collapse
Affiliation(s)
- Tanja E Wolf
- University of Pretoria, Faculty of Natural and Agricultural Sciences, Mammal Research Institute, Pretoria, South Africa.
| | - David D Lazarus
- University of Pretoria, Faculty of Veterinary Science, Department of Production Animal Studies, Onderstepoort, South Africa; National Veterinary Research Institute, Foot-and-Mouth Disease Virus Laboratory, Vom, Nigeria
| | - Pamela Opperman
- University of Pretoria, Faculty of Veterinary Science, Department of Production Animal Studies, Onderstepoort, South Africa; Agricultural Research Council, Onderstepoort Veterinary Research, Transboundary Animal Diseases, Onderstepoort, South Africa
| | - Livio Heath
- Agricultural Research Council, Onderstepoort Veterinary Research, Transboundary Animal Diseases, Onderstepoort, South Africa
| | - Andre Ganswindt
- University of Pretoria, Faculty of Natural and Agricultural Sciences, Mammal Research Institute, Pretoria, South Africa
| | - Geoffrey T Fosgate
- University of Pretoria, Faculty of Veterinary Science, Department of Production Animal Studies, Onderstepoort, South Africa
| |
Collapse
|
6
|
Singanallur NB, Anderson DE, Sessions OM, Kamaraj US, Bowden TR, Horsington J, Cowled C, Wang LF, Vosloo W. Probe capture enrichment next-generation sequencing of complete foot-and-mouth disease virus genomes in clinical samples. J Virol Methods 2019; 272:113703. [PMID: 31336142 DOI: 10.1016/j.jviromet.2019.113703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/04/2019] [Accepted: 07/17/2019] [Indexed: 01/02/2023]
Abstract
Next-generation sequencing (NGS) techniques offer an unprecedented "step-change" increase in the quantity and quality of sequence data rapidly generated from a sample and can be applied to obtain ultra-deep coverage of viral genomes. This is not possible with the routinely used Sanger sequencing method that gives the consensus reads, or by cloning approaches. In this study, a targeted-enrichment methodology for the simultaneous acquisition of complete foot-and-mouth disease virus (FMDV) genomes directly from clinical samples is presented. Biotinylated oligonucleotide probes (120 nt) were used to capture and enrich viral RNA following library preparation. To create a virus capture panel targeting serotype O and A simultaneously, 18 baits targeting the highly conserved regions of the 8.3 kb FMDV genome were synthesised, with 14 common to both serotypes, 2 specific to serotype O and 2 specific to serotype A. These baits were used to capture and enrich FMDV RNA (as cDNA) from samples collected during one pathogenesis and two vaccine efficacy trials, where pigs were infected with serotype O or A viruses. After enrichment, FMDV-specific sequencing reads increased by almost 3000-fold. The sequence data were used in variant call analysis to identify single nucleotide polymorphisms (SNPs). This methodology was robust in its ability to capture diverse sequences, was shown to be highly sensitive, and can be easily scaled for large-scale epidemiological studies.
Collapse
Affiliation(s)
| | - Danielle E Anderson
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - October M Sessions
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore; Department of Pharmacy, National University of Singapore, Singapore
| | - Uma S Kamaraj
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Timothy R Bowden
- Australian Animal Health Laboratory, CSIRO Health and Biosecurity, Geelong, Australia
| | - Jacquelyn Horsington
- Australian Animal Health Laboratory, CSIRO Health and Biosecurity, Geelong, Australia
| | - Christopher Cowled
- Australian Animal Health Laboratory, CSIRO Health and Biosecurity, Geelong, Australia
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Wilna Vosloo
- Australian Animal Health Laboratory, CSIRO Health and Biosecurity, Geelong, Australia
| |
Collapse
|
7
|
Horsington J, Perez CB, Maradei E, Novo SG, Gonzales JL, Singanallur NB, Bonastre P, Vosloo W. Protective effects of high-potency FMDV O 1 Manisa monovalent vaccine in cattle challenged with FMDV O/SKR/2010 at 7 or 4 days post vaccination. Vaccine 2017; 35:5179-5185. [DOI: 10.1016/j.vaccine.2017.07.102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/16/2017] [Accepted: 07/27/2017] [Indexed: 10/19/2022]
|
8
|
Lyons NA, Lyoo YS, King DP, Paton DJ. Challenges of Generating and Maintaining Protective Vaccine-Induced Immune Responses for Foot-and-Mouth Disease Virus in Pigs. Front Vet Sci 2016; 3:102. [PMID: 27965966 PMCID: PMC5127833 DOI: 10.3389/fvets.2016.00102] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/01/2016] [Indexed: 12/31/2022] Open
Abstract
Vaccination can play a central role in the control of outbreaks of foot-and-mouth disease (FMD) by reducing both the impact of clinical disease and the extent of virus transmission between susceptible animals. Recent incursions of exotic FMD virus lineages into several East Asian countries have highlighted the difficulties of generating and maintaining an adequate immune response in vaccinated pigs. Factors that impact vaccine performance include (i) the potency, antigenic payload, and formulation of a vaccine; (ii) the antigenic match between the vaccine and the heterologous circulating field strain; and (iii) the regime (timing, frequency, and herd-level coverage) used to administer the vaccine. This review collates data from studies that have evaluated the performance of foot-and-mouth disease virus vaccines at the individual and population level in pigs and identifies research priorities that could provide new insights to improve vaccination in the future.
Collapse
Affiliation(s)
- Nicholas A. Lyons
- The Pirbright Institute, Pirbright, UK
- European Commission for the Control of Foot-and-Mouth Disease, Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Young S. Lyoo
- College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | | | | |
Collapse
|