1
|
Song JM. Experimental animal models for development of human enterovirus vaccine. Clin Exp Vaccine Res 2023; 12:291-297. [PMID: 38025911 PMCID: PMC10655152 DOI: 10.7774/cevr.2023.12.4.291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 08/26/2023] [Accepted: 08/26/2023] [Indexed: 12/01/2023] Open
Abstract
Enterovirus infections induce infectious diseases in young children, such as hand, foot, and mouth disease which is characterized by highly contagious rashes or blisters around the hands, feet, buttocks, and mouth. This predominantly arises from enterovirus A71 or coxsackievirus A16 infections and in severe cases, they can lead to encephalitis, paralysis, pulmonary edema, or even fatality, representing a global health threat. Due to the absence of effective therapeutic strategies for these infections, various experimental animal models are being investigated for the development of vaccines. During the early stages of research on enterovirus infections, non-human primate infections exhibited symptoms like those in humans, leading to their utilization as model animals. However, due to economic and ethical considerations, their current usage is limited. While enterovirus infections do not readily occur in mice, an infection model with mouse-adapted strain in neonatal mice has been employed. Cellular receptors have been identified in human cells, and genetically modified mice expressing these receptors have been used. Most recently, the utilization of Mongolian gerbil model is actively being considered and should be pursued for further animal model development. So, herein, we provide a summarized overview of the current portfolio of available enterovirus infection models, emphasizing their respective advantages and limitations.
Collapse
Affiliation(s)
- Jae Min Song
- School of Biopharmaceutical and Medical Sciences, Sungshin Women’s University, Seoul, Korea
| |
Collapse
|
2
|
Yi EJ, Kim YI, Song JH, Ko HJ, Ahn SH, Lee HJ, Suh B, Yu J, Park J, Lee YJ, Jung EJ, Chang SY. Potential of a bivalent vaccine for broad protection against enterovirus 71 and coxsackie virus 16 infections causing hand, foot, and mouth disease. Vaccine 2023; 41:6055-6063. [PMID: 37648607 DOI: 10.1016/j.vaccine.2023.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
Hand, foot, and mouth disease (HFMD) is a highly contagious viral infection that is mainly caused by enterovirus 71 (EV71) and coxsackievirus 16 (CVA16). As there are no specific therapeutics for HFMD, the development of a bivalent vaccine is required to cover a broad range of infections. In this study, the effectiveness of novel monovalent and bivalent vaccines targeting EV71 C4a and CVA16 was investigated for their ability to prevent viral infections in neonatal human scavenger receptor class B member 2 (hSCARB2) transgenic mice. As hSCARB2 serves as a key viral receptor for EV71, these transgenic mice are susceptible to EV71 strains and facilitate viral binding, internalization, and uncoating processes. Antisera prepared by vaccine immunization were transferred to 2-day-old hSCARB2 transgenic mice, which were then infected with EV71 C4a or CVA16 virus. The antisera generated by each monovalent or bivalent vaccine effectively protected against EV71 C4a and CVA16 infections. The examination of tissue damage and viral contents in various organs indicated that both monovalent and bivalent antisera reduced EV71 C4a viral load in the brainstem, and no significant tissue damage was observed. During CVA16 infection, the monovalent and bivalent antisera significantly reduced viral contents in both the brainstem and muscles. These results suggest that passive immunity by monovalent and bivalent antisera can effectively protect against EV71 C4a and CVA16 infections. Thus, the development of a bivalent vaccine that can provide broad protection against both CV and EV infections may be a promising strategy in preventing HFMD.
Collapse
Affiliation(s)
- Eun-Je Yi
- Laboratory of Microbiology, College of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Young-In Kim
- Laboratory of Microbiology, College of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Jae-Hyoung Song
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Sung Hyun Ahn
- HK inno.N BIO Research Institute, BIO-Pharmaceutical Research Center, 811 Deokpyeong-ro, Majang-myeon, Icheon-si, Gyeonggi-do 17389, Republic of Korea
| | - Hyoung Jin Lee
- HK inno.N BIO Research Institute, BIO-Pharmaceutical Research Center, 811 Deokpyeong-ro, Majang-myeon, Icheon-si, Gyeonggi-do 17389, Republic of Korea
| | - Bohyun Suh
- HK inno.N BIO Research Institute, BIO-Pharmaceutical Research Center, 811 Deokpyeong-ro, Majang-myeon, Icheon-si, Gyeonggi-do 17389, Republic of Korea
| | - Jaelim Yu
- HK inno.N BIO Research Institute, BIO-Pharmaceutical Research Center, 811 Deokpyeong-ro, Majang-myeon, Icheon-si, Gyeonggi-do 17389, Republic of Korea
| | - Jeehye Park
- HK inno.N BIO Research Institute, BIO-Pharmaceutical Research Center, 811 Deokpyeong-ro, Majang-myeon, Icheon-si, Gyeonggi-do 17389, Republic of Korea
| | - Yoon Jung Lee
- HK inno.N BIO Research Institute, BIO-Pharmaceutical Research Center, 811 Deokpyeong-ro, Majang-myeon, Icheon-si, Gyeonggi-do 17389, Republic of Korea
| | - Eun Ju Jung
- HK inno.N BIO Research Institute, BIO-Pharmaceutical Research Center, 811 Deokpyeong-ro, Majang-myeon, Icheon-si, Gyeonggi-do 17389, Republic of Korea
| | - Sun-Young Chang
- Laboratory of Microbiology, College of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi-do 16499, Republic of Korea.
| |
Collapse
|
3
|
Yi EJ, Kim YI, Song JH, Ko HJ, Chang SY. Intranasal immunization with curdlan induce Th17 responses and enhance protection against enterovirus 71. Vaccine 2023; 41:2243-2252. [PMID: 36863926 DOI: 10.1016/j.vaccine.2023.01.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/28/2022] [Accepted: 01/31/2023] [Indexed: 03/04/2023]
Abstract
Mucosal surfaces are in contact with the external environment and protect the body from infection by various microbes. To prevent infectious diseases at the first line of defense, the establishment of pathogen-specific mucosal immunity by mucosal vaccine delivery is needed. Curdlan, a 1,3-β-glucan has a strong immunostimulatory effect when delivered as a vaccine adjuvant. Here, we investigated whether intranasal administration of curdlan and antigen (Ag) could induce sufficient mucosal immune responses and protect against viral infections. Intranasal co-administration of curdlan and OVA increased OVA-specific IgG and IgA Abs in both serum and mucosal secretions. In addition, intranasal co-administration of curdlan and OVA induced the differentiation of OVA-specific Th1/Th17 cells in the draining lymph nodes. To investigate the protective immunity of curdlan against viral infection, intranasal co-administration of curdlan with recombinant VP1 of EV71 C4a was administered and showed enhanced protection against enterovirus 71 in a passive serum transfer model using neonatal hSCARB2 mice, although intranasal administration of VP1 plus curdlan increased VP1-specific helper T cells responses but not mucosal IgA. Next, Mongolian gerbils were intranasally immunized with curdlan plus VP1, and they had effective protection against EV71 C4a infection, while decreasing viral infection and tissue damage by inducing Th17 responses. These results indicated that intranasal curdlan with Ag improved Ag-specific protective immunity by enhancing mucosal IgA and Th17 against viral infection. Our results suggest that curdlan is an advantageous candidate as a mucosal adjuvant and delivery vehicle for the development of mucosal vaccines.
Collapse
Affiliation(s)
- Eun-Je Yi
- Laboratory of Microbiology, College of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Young-In Kim
- Laboratory of Microbiology, College of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi-do 16499, Republic of Korea; AI-Superconvergence KIURI Translational Research Center, Ajou University School of Medicine, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Jae-Hyoung Song
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Sun-Young Chang
- Laboratory of Microbiology, College of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi-do 16499, Republic of Korea.
| |
Collapse
|
4
|
Bello AM, Roshorm YM. Recent progress and advances towards developing enterovirus 71 vaccines for effective protection against human hand, foot and mouth disease (HFMD). Biologicals 2022; 79:1-9. [PMID: 36089444 DOI: 10.1016/j.biologicals.2022.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/24/2022] [Accepted: 08/28/2022] [Indexed: 11/02/2022] Open
Abstract
The main pathogen causing severe and neurotrophic hand, foot and mouth disease (HFMD) is enterovirus A71 (EV71). EV71 infection is among the major cause of serious public health burden and economic loss especially in the Asia-pacific region. Yet, no specific anti-viral treatment against this life-threatening infection is currently available. Thus, the best way to control EV71 infection is by vaccination with an effective and safe vaccine. Several strategies are being employed to develop vaccines against EV71. These include conventional and modern recombinant vaccine strategies. Conventional vaccines such as inactivated EV71 vaccines are the most studied and advanced vaccines against HFMD. Recombinant HFMD vaccines developed based on the recombinant DNA technology have been employed but are mostly at early or late preclinical development stage. In this article, we discuss the recent progress and advances in modern recombinant strategies of EV71 vaccine development including subunit, VLP, epitope-based, DNA, and vector-based vaccines, as well as conventional approaches, focusing on their various prospects, advantages and disadvantages.
Collapse
Affiliation(s)
- Aliyu Maje Bello
- Division of Biotechnology, School of Bioresource and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10140, Thailand; Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Bayero University Kano, 700241, Nigeria
| | - Yaowaluck Maprang Roshorm
- Division of Biotechnology, School of Bioresource and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10140, Thailand.
| |
Collapse
|
5
|
Tamura K, Kohnoe M, Takashino A, Kobayashi K, Koike S, Karwal L, Fukuda S, Vang F, Das SC, Dean HJ. TAK − 021, an inactivated Enterovirus 71 vaccine candidate, provides cross-protection against heterologous sub-genogroups in human scavenger receptor B2 transgenic mice. Vaccine 2022; 40:3330-3337. [DOI: 10.1016/j.vaccine.2022.04.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/25/2022] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
|
6
|
Lei L, Li Q, Xu S, Tian M, Zheng X, Bi Y, Huang B. Transplantation of Enterovirus 71 Virion Protein Particle Vaccine Protects Against Enterovirus 71 Infection in a Neonatal Mouse Model. Ann Transplant 2021; 26:e924461. [PMID: 33397838 PMCID: PMC7796071 DOI: 10.12659/aot.924461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background Enterovirus 71 (EV71) is the pathogen most likely to cause HFMD in young children (1–5 years old). A small number of virion protein (VP) vaccine candidates are considered as the protective molecules in EV71 models. This study aimed to observe comprehensive immunogenicity for a promising EV71 vaccine depending on VP1 in neonatal mouse EV71 models. Material/Methods VP1 was isolated from patients and associated peptides were synthesized. EV71 particles were inactivated and mixed with Freund’s complete adjuvant to prepare peptide vaccines. An EV71 vaccine was administered to establish the mouse model and the mice were infected with EV71. Hematoxylin and eosin staining was used to examine inflammatory response in EV71-infected neonatal mice. A semi-quantitative reverse transcription-polymerase chain reaction assay was performed to evaluate the levels of EV71 virus in skeletal muscle, small intestines, and brain tissues. Results Three peptides were selected from 20 VP1 peptides due to their exhibition of the highest immunogenicity. The peptide injection improved inflammation and decreased EV71 particle levels in muscle, small intestines, and brain tissues. The injection also decreased lesions in the small intestines of EV71-infected mice and protected brain tissues from the EV71 infection. Conclusions The present study confirmed the immuno-protective effects of VP1 vaccine transplantation in mice infected with EV71 virus. Our results provide valuable information that can be used in further studies investigating the specific mechanism of the anti-EV71 vaccine.
Collapse
Affiliation(s)
- Li Lei
- The Third Affiliated Hospital of Zunyi Medical University/The First People's Hospital of Zunyi, Zunyi, Guizhou, China (mainland).,Graduate School of Zunyi Medical University, Zunyi, Guizhou, China (mainland)
| | - Qing Li
- The Third Affiliated Hospital of Zunyi Medical University/The First People's Hospital of Zunyi, Zunyi, Guizhou, China (mainland)
| | - Shuhong Xu
- Graduate School of Zunyi Medical University, Zunyi, Guizhou, China (mainland)
| | - Mingyang Tian
- Graduate School of Zunyi Medical University, Zunyi, Guizhou, China (mainland)
| | - Xinghui Zheng
- The Third Affiliated Hospital of Zunyi Medical University/The First People's Hospital of Zunyi, Zunyi, Guizhou, China (mainland)
| | - Yunxia Bi
- The Third Affiliated Hospital of Zunyi Medical University/The First People's Hospital of Zunyi, Zunyi, Guizhou, China (mainland)
| | - Bo Huang
- The Third Affiliated Hospital of Zunyi Medical University/The First People's Hospital of Zunyi, Zunyi, Guizhou, China (mainland)
| |
Collapse
|
7
|
Kim YG, Lee Y, Kim JH, Chang SY, Jung JW, Chung WJ, Jin HE. Self-Assembled Multi-Epitope Peptide Amphiphiles Enhance the Immune Response against Enterovirus 71. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2342. [PMID: 33255791 PMCID: PMC7760352 DOI: 10.3390/nano10122342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 11/17/2022]
Abstract
Subunit vaccines consist of non-genetic material, such as peptides or proteins. They are considered safe because they have fewer side effects; however, they have low immunogenicity when used alone. We aimed to enhance the immune response of peptide-based vaccines by using self-assembled multimeric peptide amphiphiles (PAs). We designed two epitope PAs by conjugating epitope peptides from Enterovirus 71 (EV71) virus particle (VP) 1 and VP3 capsid proteins with different fatty acid chain lengths (VP1PA and VP3PA). These PAs self-assembled into supramolecular structures at a physiological pH, and the resulting structures were characterized using atomic force microscopy. Multi-epitope PAs (m-PAs) consisted of a 1:1 mixture of VP1PA and VP3PA solutions. To evaluate immunogenicity, m-PA constructs were injected with adjuvant subcutaneously into female Balb/c mice. Levels of antigen-specific immunoglobulin G (IgG) and IgG1 in m-PA-injected mice serum samples were analyzed using ELISA and Western blotting. Additionally, cytokine production stimulated by each antigen was measured in splenocytes cultured from immunized mice groups. We found that m-PA showed improved humoral and cellular immune responses compared to the control and peptide groups. The sera from m-PA immunized mice group could neutralize EV71 infection and protect host cells. Thus, self-assembled m-PAs can promote a protective immune response and can be developed as a potential platform technology to produce peptide vaccines against infectious viral diseases.
Collapse
Affiliation(s)
- Yu-Gyeong Kim
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.-G.K.); (Y.L.); (J.H.K.); (S.-Y.C.)
| | - Yunsu Lee
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.-G.K.); (Y.L.); (J.H.K.); (S.-Y.C.)
| | - Joo Hee Kim
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.-G.K.); (Y.L.); (J.H.K.); (S.-Y.C.)
| | - Sun-Young Chang
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.-G.K.); (Y.L.); (J.H.K.); (S.-Y.C.)
| | - Jong-Wha Jung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea;
| | - Woo-Jae Chung
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
| | - Hyo-Eon Jin
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.-G.K.); (Y.L.); (J.H.K.); (S.-Y.C.)
- Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Korea
| |
Collapse
|
8
|
Imura A, Sudaka Y, Takashino A, Tamura K, Kobayashi K, Nagata N, Nishimura H, Mizuta K, Koike S. Development of an Enterovirus 71 Vaccine Efficacy Test Using Human Scavenger Receptor B2 Transgenic Mice. J Virol 2020; 94:e01921-19. [PMID: 31896594 PMCID: PMC7158731 DOI: 10.1128/jvi.01921-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Enterovirus 71 (EV71) is a causative agent of hand-foot-mouth disease, and it sometimes causes severe neurological disease. Development of effective vaccines and animal models to evaluate vaccine candidates are needed. However, the animal models currently used for vaccine efficacy testing, monkeys and neonatal mice, have economic, ethical, and practical drawbacks. In addition, EV71 strains prepared for lethal challenge often develop decreased virulence during propagation in cell culture. To overcome these problems, we used a mouse model expressing human scavenger receptor B2 (hSCARB2) that showed lifelong susceptibility to EV71. We selected virulent EV71 strains belonging to the subgenogroups B4, B5, C1, C2, and C4 and propagated them using a culture method for EV71 without an apparent reduction in virulence. Here, we describe a novel EV71 vaccine efficacy test based on these hSCARB2 transgenic (Tg) mice and these virulent viruses. Adult Tg mice were immunized subcutaneously with formalin-inactivated EV71. The vaccine elicited sufficient levels of neutralizing antibodies in the immunized mice. The mice were subjected to lethal challenge with virulent viruses via intravenous injection. Survival, clinical signs, and body weight changes were observed for 2 weeks. Most immunized mice survived without clinical signs or histopathological lesions. The viral replication in immunized mice was much lower than that in nonimmunized mice. Mice immunized with the EV71 vaccine were only partially protected against lethal challenge with coxsackievirus A16. These results indicate that this new model is useful for in vivo EV71 vaccine efficacy testing.IMPORTANCE The development of new vaccines for EV71 relies on the availability of small animal models suitable for in vivo efficacy testing. Monkeys and neonatal mice have been used, but the use of these animals has several drawbacks, including high costs, limited susceptibility, and poor experimental reproducibility. In addition, the related ethical issues are considerable. The new efficacy test based on hSCARB2 Tg mice and virulent EV71 strains propagated in genetically modified cell lines presented here can overcome these disadvantages and is expected to accelerate the development of new EV71 vaccines.
Collapse
MESH Headings
- Animals
- Cell Line
- Disease Models, Animal
- Drug Evaluation
- Enterovirus A, Human/genetics
- Enterovirus A, Human/immunology
- Enterovirus A, Human/pathogenicity
- Hand, Foot and Mouth Disease/genetics
- Hand, Foot and Mouth Disease/immunology
- Hand, Foot and Mouth Disease/pathology
- Hand, Foot and Mouth Disease/prevention & control
- Humans
- Lysosomal Membrane Proteins/genetics
- Lysosomal Membrane Proteins/immunology
- Mice
- Mice, Transgenic
- Receptors, Scavenger/genetics
- Receptors, Scavenger/immunology
- Vaccines, Inactivated/genetics
- Vaccines, Inactivated/immunology
- Vaccines, Inactivated/pharmacology
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Viral Vaccines/pharmacology
Collapse
Affiliation(s)
- Ayumi Imura
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yui Sudaka
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Ayako Takashino
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kanami Tamura
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyousuke Kobayashi
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai, Japan
| | - Katsumi Mizuta
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata, Japan
| | - Satoshi Koike
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
9
|
Liu ZW, Zhuang ZC, Chen R, Wang XR, Zhang HL, Li SH, Wang ZY, Wen HL. Enterovirus 71 VP1 Protein Regulates Viral Replication in SH-SY5Y Cells via the mTOR Autophagy Signaling Pathway. Viruses 2019; 12:v12010011. [PMID: 31861844 PMCID: PMC7019657 DOI: 10.3390/v12010011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 12/23/2022] Open
Abstract
Background: Enterovirus 71 (EV71) is the main pathogen that causes severe hand, foot, and mouth disease with fatal neurological complications. However, its neurovirulence mechanism is still unclear. Candidate virulence sites were screened out at structural protein VP1, but the function of these candidate virulence sites remains unclear. Several studies have shown that autophagy is associated with viral replication. However, the relationship between VP1 and autophagy in human neurons has not been studied. Methods: A recombinant virus—SDLY107-VP1, obtained by replacing the VP1 full-length gene of the SDLY107 strain with the VP1 full-length gene of the attenuated strain SDJN2015-01—was constructed and tested for replication and virulence. We then tested the effect of the recombinant virus on autophagy in nerve cells. The effect of autophagy on virus replication was detected by western blot and plaque test. Finally, the changes of mTOR signaling molecules during EV71 infection and the effect of mTOR on virus replication at the RNA level were detected. Results: Viral recombination triggered virulence attenuation. The replication ability of recombinant virus SDLY107-VP1 was significantly weaker than that of the parent strain SDLY107. The SDLY107 strain could inhibit autophagic flux and led to accumulation of autophagosomes, while the SDLY107-VP1 strain could not cause autophagosome accumulation. The synthesis of EV71 RNA was inhibited by inhibiting mTOR. Conclusions: Replacement of VP1 weakened the replication ability of virulent strains and reduced the level of autophagy in nerve cells. This autophagy facilitates the replication of virulent strains in nerve cells. VP1 is an important neurovirulence determinant of EV71, which affects virus replication by regulating cell autophagy. mTOR is a key molecule in this type of autophagy.
Collapse
Affiliation(s)
- Zi-Wei Liu
- Key Laboratory for Infectious Disease Control and Prevention, Department of Microbiological Laboratory Technology, School of Public Health, Shandong University, Jinan 250012, China
| | - Zhi-Chao Zhuang
- Department of pathogenic microbiology, Tianjin Center for Disease Control and Prevention, Tianjin 300000, China;
| | - Rui Chen
- Key Laboratory for Infectious Disease Control and Prevention, Department of Microbiological Laboratory Technology, School of Public Health, Shandong University, Jinan 250012, China
| | - Xiao-Rui Wang
- Key Laboratory for Infectious Disease Control and Prevention, Department of Microbiological Laboratory Technology, School of Public Health, Shandong University, Jinan 250012, China
| | - Hai-Lu Zhang
- Key Laboratory for Infectious Disease Control and Prevention, Department of Microbiological Laboratory Technology, School of Public Health, Shandong University, Jinan 250012, China
| | - Shu-Han Li
- Key Laboratory for Infectious Disease Control and Prevention, Department of Microbiological Laboratory Technology, School of Public Health, Shandong University, Jinan 250012, China
| | - Zhi-Yu Wang
- Key Laboratory for Infectious Disease Control and Prevention, Department of Microbiological Laboratory Technology, School of Public Health, Shandong University, Jinan 250012, China
| | - Hong-Ling Wen
- Key Laboratory for Infectious Disease Control and Prevention, Department of Microbiological Laboratory Technology, School of Public Health, Shandong University, Jinan 250012, China
- Correspondence:
| |
Collapse
|
10
|
Lim HX, Poh CL. Insights into innate and adaptive immune responses in vaccine development against EV-A71. Ther Adv Vaccines Immunother 2019; 7:2515135519888998. [PMID: 31799495 PMCID: PMC6873268 DOI: 10.1177/2515135519888998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/21/2019] [Indexed: 01/01/2023] Open
Abstract
Enterovirus A71 (EV-A71) is one of the major causative agents of hand, foot and mouth disease (HFMD) in the world, infecting mostly infants and young children (<5 years of age) in Asia. Approximately 2 million cases of HFMD were reported in China each year, of which approximately 45-50% were due to EV-A71. Most of the HFMD infections caused by EV-A71 usually result in mild symptoms with rashes and ulcers in the mouth. However, virulent strains of EV-A71 can infect the central nervous system and cause severe neurologic diseases, leading to reduced cognitive ability, acute flaccid paralysis and death. The lack of understanding of cellular immunity for long-term protection from the HFMD disease represents a major obstacle for vaccine development. In particular, the role of innate and T cell immunity during HFMD infection remains unclear and there is evidence suggesting the importance of CD4+ and CD8+ T cells for protective immunity. Currently, no US FDA-approved vaccine is available for EV-A71. Although the inactivated vaccines produced in China are highly effective (vaccine efficacy >95%), they lack the cellular immunity required for long-term protection. In this review, we discuss the findings that support the protective roles of innate and T cell immunity against EV-A71 infection, which will provide the knowledge needed for the urgent development of efficacious vaccines that will confer long-term protection.
Collapse
Affiliation(s)
- Hui Xuan Lim
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Bandar Sunway, Kuala Lumpur, Selangor, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Bandar Sunway, Kuala Lumpur, Selangor 47500, Malaysia
| |
Collapse
|
11
|
Immunogenicity and Efficacy Evaluation of Subunit Astrovirus Vaccines. Vaccines (Basel) 2019; 7:vaccines7030079. [PMID: 31382451 PMCID: PMC6789684 DOI: 10.3390/vaccines7030079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 12/19/2022] Open
Abstract
A full understanding of the immune response to astrovirus (AstV) infection is required to treat and control AstV-induced gastroenteritis. Relative contributions of each arm of the immune system in restricting AstV infection remain unknown. In this study, two novel subunit AstV vaccines derived from capsid protein (CP) of mink AstV (MAstV) such as CPΔN (spanning amino acids 161–775) and CPΔC (spanning amino acids 1–621) were evaluated. Their immunogenicity and cytokine production in mice, as well as protective efficacy in mink litters via maternal immunization, were studied. Truncated CPs induced higher levels of serum anti-CP antibodies than CP, with the highest level for CPΔN. No seronegativity was detected after booster immunization with either AstV CP truncates in both mice and mink. All mink moms stayed seropositive during the entire 104-day study. Furthermore, lymphoproliferation responses and Th1/Th2 cytokine induction of mice splenocytes ex vivo re-stimulated by truncated CPs were significantly higher than those by CP, with the highest level for CPΔN. Immunization of mink moms with truncated CPs could suppress virus shedding and clinical signs in their litters during a 51-day study after challenge with a heterogeneous MAstV strain. Collectively, AstV truncated CPs exhibit better parameters for protection than full-length CP.
Collapse
|
12
|
Enterovirus A71 Containing Codon-Deoptimized VP1 and High-Fidelity Polymerase as Next-Generation Vaccine Candidate. J Virol 2019; 93:JVI.02308-18. [PMID: 30996087 DOI: 10.1128/jvi.02308-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/31/2019] [Indexed: 12/18/2022] Open
Abstract
Enterovirus A71 (EV-A71) is a major pathogen that causes hand-foot-and-mouth disease (HFMD), which occasionally results in severe neurological complications. In this study, we developed four EV-A71 (rgEV-A71) strains by reverse genetics procedures as possible vaccine candidates. The four rgEV-A71 viruses contained various codon-deoptimized VP1 capsid proteins (VP1-CD) and showed replication rates and antigenicity similar to that of the wild-type virus, while a fifth virus, rg4643C4VP-CD, was unable to form plaques but was still able to be examined by median tissue culture infectious dose (TCID50) titers, which were similar to those of the others, indicating the effect of CD on plaque formation. However, the genome stability showed that there were some mutations which appeared during just one passage of the VP1-CD viruses. Thus, we further constructed VP1-CD rgEV-A71 containing high-fidelity determinants in 3D polymerase (CD-HF), and the number of mutations in CD-HF rgEV-A71 was shown to have decreased. The CD-HF viruses showed less virulence than the parental strain in a mouse infection model. After 14 days postimmunization, antibody titers had increased in mice infected with CD-HF viruses. The mouse antisera showed similar neutralizing antibody titers against various CD-HF viruses and different genotypes of EV-A71. The study demonstrates the proof of concept that VP1 codon deoptimization combined with high-fidelity 3D polymerase decreased EV-A71 mutations and virulence in mice but retained their antigenicity, indicating it is a good candidate for next-generation EV-A71 vaccine development.IMPORTANCE EV-A71 can cause severe neurological diseases with fatality in infants and young children, but there are still no effective drugs to date. Here, we developed a novel vaccine strategy with the combination of CD and HF substitutions to generate the genetically stable reverse genetics virus. We found that CD combined with HF polymerase decreased the virulence but maintained the antigenicity of the virus. This work demonstrated the simultaneous introduction of CD genome sequences and HF substitutions as a potential new strategy to develop attenuated vaccine seed virus. Our work provides insight into the development of a low-virulence candidate vaccine virus through a series of genetic editing of virus sequences while maintaining its antigenicity and genome stability, which will provide an additional strategy for next-generation vaccine development of EV-A71.
Collapse
|
13
|
Lutterberg K, Kleinwort KJH, Hobmaier BF, Hauck SM, Nüske S, Scholz AM, Deeg CA. A Functionally Different Immune Phenotype in Cattle Is Associated With Higher Mastitis Incidence. Front Immunol 2018; 9:2884. [PMID: 30574152 PMCID: PMC6291514 DOI: 10.3389/fimmu.2018.02884] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 11/23/2018] [Indexed: 01/10/2023] Open
Abstract
A novel vaccine against bovine viral diarrhea (BVD) induced pathogenic antibody production in 5-10% of BVD-vaccinated cows. Transfer of these antibodies via colostrum caused Bovine neonatal pancytopenia (BNP) in calves, with a lethality rate of 90%. The exact immunological mechanisms behind the onset of BNP are not fully understood to date. To gain further insight into these mechanisms, we analyzed the immune proteome from alloreactive antibody producers (BNP cows) and non-responders. After in vitro stimulation of peripheral blood derived lymphocytes (PBL), we detected distinctly deviant expression levels of several master regulators of immune responses in BNP cells, pointing to a changed immune phenotype with severe dysregulation of immune response in BNP cows. Interestingly, we also found this response pattern in 22% of non-BVD-vaccinated cows, indicating a genetic predisposition of this immune deviant (ID) phenotype in cattle. We additionally analyzed the functional correlation of the ID phenotype with 10 health parameters and 6 diseases in a retrospective study over 38 months. The significantly increased prevalence of mastitis among ID cows emphasizes the clinical relevance of this deviant immune response and its potential impact on the ability to fight infections.
Collapse
Affiliation(s)
- Karina Lutterberg
- Chair of Animal Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | | | - Bernhard F. Hobmaier
- Chair of Animal Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Stefanie M. Hauck
- Research Unit for Protein Science, Helmholtz Zentrum Munich, German Research Center for Environmental Health GmbH, Munich, Germany
| | - Stefan Nüske
- Livestock Center of the Faculty of Veterinary Medicine, LMU Munich, Oberschleißheim, Germany
| | - Armin M. Scholz
- Livestock Center of the Faculty of Veterinary Medicine, LMU Munich, Oberschleißheim, Germany
| | - Cornelia A. Deeg
- Chair of Animal Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| |
Collapse
|
14
|
Wang X, Dong K, Long M, Lin F, Gao Z, Wang L, Zhang Z, Chen X, Dai Y, Wang H, Zhang H. Induction of a high-titered antibody response using HIV gag-EV71 VP1-based virus-like particles with the capacity to protect newborn mice challenged with a lethal dose of enterovirus 71. Arch Virol 2018; 163:1851-1861. [PMID: 29582164 PMCID: PMC5999152 DOI: 10.1007/s00705-018-3797-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 02/24/2018] [Indexed: 11/26/2022]
Abstract
Enterovirus 71 (EV71) is the most frequently detected causative agent in hand, foot, and mouth disease (HFMD) and is a serious threat to public health in the Asia-Pacific region. Many EV71 vaccines are under development worldwide, and although both inactivated virus vaccines and virus-like particles (VLPs) are considered to be effective, the main focus has been on inactivated EV71vaccines. There have been very few studies on EV71 VLPs. In this study, using a strategy based on HIV gag VLPs, we constructed a gag-VP1 fusion gene to generate a recombinant baculovirus expressing the EV71 structural protein VP1 together with gag, which was then used to infect TN5 cells to form VLPs. The VLPs were characterized using transmission electron microscopy, electrophoresis and staining with Coomassie blue, and Western blotting. Mice immunized with gag-VP1 VLPs showed strong humoral and cellular immune responses. Finally, immunization of female mice with gag-VP1 VLPs provided effective protection of their newborn offspring against challenge with a lethal dose EV71. These results demonstrate a successful approach for producing EV71 VP1 VLPs based on the ability of HIV gag to self-assemble, thus providing a good foundation for producing high-titered anti-EV71 antibody by immunization with VLP-based gag EV71 VP1 protein.
Collapse
Affiliation(s)
- Xi Wang
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xinsi Road No 569, 710038, Xi'an, Shaanxi, China
| | - Ke Dong
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xinsi Road No 569, 710038, Xi'an, Shaanxi, China.
| | - Min Long
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xinsi Road No 569, 710038, Xi'an, Shaanxi, China
| | - Fang Lin
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xinsi Road No 569, 710038, Xi'an, Shaanxi, China
| | - Zhaowei Gao
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xinsi Road No 569, 710038, Xi'an, Shaanxi, China
| | - Lin Wang
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xinsi Road No 569, 710038, Xi'an, Shaanxi, China
| | - Zhe Zhang
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xinsi Road No 569, 710038, Xi'an, Shaanxi, China
| | - Xi Chen
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xinsi Road No 569, 710038, Xi'an, Shaanxi, China
| | - Ying Dai
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xinsi Road No 569, 710038, Xi'an, Shaanxi, China
| | - Huiping Wang
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xinsi Road No 569, 710038, Xi'an, Shaanxi, China
| | - Huizhong Zhang
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xinsi Road No 569, 710038, Xi'an, Shaanxi, China.
| |
Collapse
|
15
|
Effective in vivo therapeutic IgG antibody against VP3 of enterovirus 71 with receptor-competing activity. Sci Rep 2017; 7:46402. [PMID: 28422137 PMCID: PMC5395816 DOI: 10.1038/srep46402] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/17/2017] [Indexed: 11/23/2022] Open
Abstract
Passive immunization is an effective option for treatment against hand, foot and mouth disease caused by EV71, especially with cross-neutralizing IgG monoclonal antibodies. In this study, an EV71-specific IgG2a antibody designated 5H7 was identified and characterized. 5H7 efficiently neutralizes the major EV71 genogroups (A, B4, C2, C4). The conformational epitope of 5H7 was mapped to the highly conserved amino acid position 74 on VP3 capsid protein using escape mutants. Neutralization with 5H7 is mediated by the inhibition of viral attachment, as revealed by virus-binding and post-attachment assays. In a competitive pull-down assay with SCARB2, 5H7 blocks the receptor-binding site on EV71 for virus neutralization. Passive immunization of chimeric 5H7 protected 100% of two-week-old AG129 mice from lethal challenge with an EV71 B4 strain for both prophylactic and therapeutic treatments. In contrast, 10D3, a previously reported neutralizing antibody that takes effect after virus attachment, could only confer prophylactic protection. These results indicate that efficient interruption of viral attachment is critical for effective therapeutic activity with 5H7. This report documents a novel universal neutralizing IgG antibody for EV71 therapeutics and reveals the underlying mechanism.
Collapse
|
16
|
Yi EJ, Shin YJ, Kim JH, Kim TG, Chang SY. Enterovirus 71 infection and vaccines. Clin Exp Vaccine Res 2017; 6:4-14. [PMID: 28168168 PMCID: PMC5292356 DOI: 10.7774/cevr.2017.6.1.4] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/02/2016] [Accepted: 10/30/2016] [Indexed: 01/15/2023] Open
Abstract
Hand, foot and mouth disease (HFMD) is a highly contagious viral infection affecting young children during the spring to fall seasons. Recently, serious outbreaks of HFMD were reported frequently in the Asia-Pacific region, including China and Korea. The symptoms of HFMD are usually mild, comprising fever, loss of appetite, and a rash with blisters, which do not need specific treatment. However, there are uncommon neurological or cardiac complications such as meningitis and acute flaccid paralysis that can be fatal. HFMD is most commonly caused by infection with coxsackievirus A16, and secondly by enterovirus 71 (EV71). Many other strains of coxsackievirus and enterovirus can also cause HFMD. Importantly, HFMD caused by EV71 tends to be associated with fatal complications. Therefore, there is an urgent need to protect against EV71 infection. Development of vaccines against EV71 would be the most effective approach to prevent EV71 outbreaks. Here, we summarize EV71 infection and development of vaccines, focusing on current scientific and clinical progress.
Collapse
Affiliation(s)
- Eun-Je Yi
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon, Korea
| | - Yun-Ju Shin
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon, Korea
| | - Jeong-Hwan Kim
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon, Korea
| | - Tae-Gyun Kim
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon, Korea
| | - Sun-Young Chang
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon, Korea.; Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Korea
| |
Collapse
|