1
|
Teixeira-Araujo R, Suarez MC, Correa-Netto C, da Cunha LER, Foguel D, Zingali RB. Bothrops jararacussu Venom Inactivated by High Hydrostatic Pressure Enhances the Immunogenicity Response in Horses and Triggers Unexpected Cross-Reactivity with Other Snake Venoms. Toxins (Basel) 2025; 17:88. [PMID: 39998105 PMCID: PMC11861346 DOI: 10.3390/toxins17020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/02/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
High hydrostatic pressure (HHP) has been used for viral inactivation to facilitate vaccine development when immunogenicity is maintained or even increased. In this work, we used HHP to inactivate Bothrops jararacussu venom. Our protocol promotes the loss of or decrease in many biological activities in venom. Horses were immunized with pressurized venom, and in contrast to native venom, this procedure does not induce any damage to animals. Furthermore, the serum obtained with pressurized venom efficiently neutralized all biological activities of B. jararacussu venom. Antibody titrations were higher in serum produced with pressurized venom compared to that produced by native venom, and this antivenom was not only effective against the venom of B. jararacussu but against the venom of other species and genera. In conclusion, our data show a new technique for producing hyperimmune serum using venom inactivated by HHP, and this method is associated with a reduction in toxic effects in immunized animals and higher potency.
Collapse
Affiliation(s)
- Ricardo Teixeira-Araujo
- Instituto de Bioquímica Médica Leopoldo de Meis (IBqM) Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, Brazil; (R.T.-A.); (C.C.-N.); (D.F.)
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (Inbeb), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, Brazil
- Instituto Vital Brazil, Niterói 24230-410, Brazil;
| | - Marisa Carvalho Suarez
- Campus Duque de Caxias Professor Geraldo Cidade, Universidade Federal do Rio de Janeiro, Duque de Caxias 25240-005, Brazil;
| | - Carlos Correa-Netto
- Instituto de Bioquímica Médica Leopoldo de Meis (IBqM) Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, Brazil; (R.T.-A.); (C.C.-N.); (D.F.)
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (Inbeb), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, Brazil
- Instituto Vital Brazil, Niterói 24230-410, Brazil;
| | | | - Debora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis (IBqM) Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, Brazil; (R.T.-A.); (C.C.-N.); (D.F.)
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (Inbeb), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, Brazil
| | - Russolina Benedeta Zingali
- Instituto de Bioquímica Médica Leopoldo de Meis (IBqM) Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, Brazil; (R.T.-A.); (C.C.-N.); (D.F.)
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (Inbeb), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, Brazil
| |
Collapse
|
2
|
Polylactide Nanoparticles as a Biodegradable Vaccine Adjuvant: A Study on Safety, Protective Immunity and Efficacy against Human Leishmaniasis Caused by Leishmania Major. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248677. [PMID: 36557812 PMCID: PMC9783570 DOI: 10.3390/molecules27248677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Leishmaniasis is the 3rd most challenging vector-borne disease after malaria and lymphatic filariasis. Currently, no vaccine candidate is approved or marketed against leishmaniasis due to difficulties in eliciting broad immune responses when using sub-unit vaccines. The aim of this work was the design of a particulate sub-unit vaccine for vaccination against leishmaniasis. The poly (D,L-lactide) nanoparticles (PLA-NPs) were developed in order to efficiently adsorb a recombinant L. major histone H2B (L. major H2B) and to boost its immunogenicity. Firstly, a study was focused on the production of well-formed nanoparticles by the nanoprecipitation method without using a surfactant and on the antigen adsorption process under mild conditions. The set-up preparation method permitted to obtain H2B-adsorbed nanoparticles H2B/PLA (adsorption capacity of about 2.8% (w/w)) with a narrow size distribution (287 nm) and a positive zeta potential (30.9 mV). Secondly, an in vitro release assay performed at 37 °C, pH 7.4, showed a continuous release of the adsorbed H2B for almost 21 days (30%) from day 7. The immune response of H2B/PLA was investigated and compared to H2B + CpG7909 as a standard adjuvant. The humoral response intensity (IgG) was substantially similar between both formulations. Interestingly, when challenged with the standard parasite strain (GLC94) isolated from a human lesion of cutaneous leishmaniasis, mice showed a significant reduction in footpad swelling compared to unvaccinated ones, and no deaths occurred until week 17th. Taken together, these results demonstrate that PLA-NPs represent a stable, cost-effective delivery system adjuvant for use in vaccination against leishmaniasis.
Collapse
|
3
|
Lamrayah M, Phelip C, Coiffier C, Lacroix C, Willemin T, Trimaille T, Verrier B. A Polylactide-Based Micellar Adjuvant Improves the Intensity and Quality of Immune Response. Pharmaceutics 2022; 14:pharmaceutics14010107. [PMID: 35057003 PMCID: PMC8778782 DOI: 10.3390/pharmaceutics14010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/21/2022] Open
Abstract
Micelles from amphiphilic polylactide-block-poly(N-acryloxysuccinimide-co-N-vinylpyrrolidone) (PLA-b-P(NAS-co-NVP)) block copolymers of 105 nm in size were characterized and evaluated in a vaccine context. The micelles were non-toxic in vitro (both in dendritic cells and HeLa cells). In vitro fluorescence experiments combined with in vivo fluorescence tomography imaging, through micelle loading with the DiR near infrared probe, suggested an efficient uptake of the micelles by the immune cells. The antigenic protein p24 of the HIV-1 was successfully coupled on the micelles using the reactive N-succinimidyl ester groups on the micelle corona, as shown by SDS-PAGE analyses. The antigenicity of the coupled antigen was preserved and even improved, as assessed by the immuno-enzymatic (ELISA) test. Then, the performances of the micelles in immunization were investigated and compared to different p24-coated PLA nanoparticles, as well as Alum and MF59 gold standards, following a standardized HIV-1 immunization protocol in mice. The humoral response intensity (IgG titers) was substantially similar between the PLA micelles and all other adjuvants over an extended time range (one year). More interestingly, this immune response induced by PLA micelles was qualitatively higher than the gold standards and PLA nanoparticles analogs, expressed through an increasing avidity index over time (>60% at day 365). Taken together, these results demonstrate the potential of such small-sized micellar systems for vaccine delivery.
Collapse
Affiliation(s)
- Myriam Lamrayah
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), Institut de Biologie et Chimie des Protéines (IBCP), CNRS UMR 5305, Université Lyon 1, Université de Lyon, 69367 Lyon, France; (C.P.); (C.C.); (C.L.); (T.W.); (B.V.)
- Correspondence: (M.L.); (T.T.)
| | - Capucine Phelip
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), Institut de Biologie et Chimie des Protéines (IBCP), CNRS UMR 5305, Université Lyon 1, Université de Lyon, 69367 Lyon, France; (C.P.); (C.C.); (C.L.); (T.W.); (B.V.)
| | - Céline Coiffier
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), Institut de Biologie et Chimie des Protéines (IBCP), CNRS UMR 5305, Université Lyon 1, Université de Lyon, 69367 Lyon, France; (C.P.); (C.C.); (C.L.); (T.W.); (B.V.)
| | - Céline Lacroix
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), Institut de Biologie et Chimie des Protéines (IBCP), CNRS UMR 5305, Université Lyon 1, Université de Lyon, 69367 Lyon, France; (C.P.); (C.C.); (C.L.); (T.W.); (B.V.)
| | - Thibaut Willemin
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), Institut de Biologie et Chimie des Protéines (IBCP), CNRS UMR 5305, Université Lyon 1, Université de Lyon, 69367 Lyon, France; (C.P.); (C.C.); (C.L.); (T.W.); (B.V.)
| | - Thomas Trimaille
- Laboratoire Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223, Université Lyon 1, Université de Lyon, 69622 Villeurbanne, France
- Correspondence: (M.L.); (T.T.)
| | - Bernard Verrier
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), Institut de Biologie et Chimie des Protéines (IBCP), CNRS UMR 5305, Université Lyon 1, Université de Lyon, 69367 Lyon, France; (C.P.); (C.C.); (C.L.); (T.W.); (B.V.)
| |
Collapse
|
4
|
Nait Mohamed FA, Laraba-Djebari F. Scorpion envenomation: a deadly illness requiring an effective therapy. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1800746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | - Fatima Laraba-Djebari
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, Algiers, Algeria
| |
Collapse
|
5
|
Rebbouh F, Martin-Eauclaire MF, Laraba-Djebari F. Chitosan nanoparticles as a delivery platform for neurotoxin II from Androctonus australis hector scorpion venom: Assessment of toxicity and immunogenicity. Acta Trop 2020; 205:105353. [PMID: 31982432 DOI: 10.1016/j.actatropica.2020.105353] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 10/25/2022]
Abstract
In recent years, biodegradable polymers based nanoparticles received high interest for the development of vaccine delivery vehicles. In this study, chitosan nanoparticles encapsulating Aah II toxin (AahII-CNPs) isolated from Androctonus australis hector venom, were investigated as vaccine delivery system. Particles obtained by ionotropic gelation were characterized for their size, surface charge, morphology and toxin release profile from Aah II-CNPs. Toxin-nanoparticles interactions were assessed by Fourier Transform Infrared Spectrometry and X-Ray Diffraction. An immunization protocol was designed in mice to investigate anti-toxin immunity and the protective status induced by different Aah II immune formulations. Unloaded chitosan nanoparticles presenting a spherical shape and smooth surface, were characterized by a size of 185 nm, a dispersion index (PDI) of 0.257 and a zeta potential of +34.6 mV. Aah II toxin was successfully entrapped into chitosan nanoparticles as revealed by FTIR and XRD data. Entrapment efficiency (EE) and Loading capacity (LC) were respectively of 96.66 and 33.5%. Aah II-CNPs had a diameter of 208 nm, a PDI of 0.23 and a zeta potential of +30 mV. Encapsulation of Aah II reduced its toxicity and protected mice until 10 LD50. Mice were immunized via a dual prime-boost scheme. Nanoentrapped Aah II immunogen elicited systemic innate and humoral immune responses as well as local spleen parenchyma hyperplasic alterations. Aah II-CNPs immunized mice withstood high lethal doses of native Aah II, one-month post-boost inoculation. This study provided encouraging and promising results for the development of preventive therapies against scorpion envenoming mainly for the populations at-risk.
Collapse
|
6
|
Trimaille T, Lacroix C, Verrier B. Self-assembled amphiphilic copolymers as dual delivery system for immunotherapy. Eur J Pharm Biopharm 2019; 142:232-239. [PMID: 31229673 DOI: 10.1016/j.ejpb.2019.06.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/03/2019] [Accepted: 06/19/2019] [Indexed: 01/07/2023]
Abstract
Subunit vaccines using recombinant antigens appear as the privileged vaccination technology for safety reasons but still require the development of carriers/adjuvants ensuring optimal immunogenicity and efficacy. Micelles from self-assembled amphiphilic copolymers have recently emerged as highly relevant and promising candidates owing to their ease of preparation, low size (entering in lymphatic capillaries for reaching lymph nodes), size/surface tunability and chemical versatility enabling introduction of stimuli (e.g. pH) responsive features and biofunctionalization with dedicated molecules. In particular, research efforts have increasingly focused on dendritic cells (DCs) targeting and activation by co-delivering (with antigen) ligands of pattern recognition receptors (PRRs, e.g. toll-like receptors). Such strategy has appeared as one of the most effective for eliciting CD 8+ T-cell response, which is crucial in the eradication of tumors and numerous infectious diseases. In this short review, we highlight the recent advances in such micelle-based carriers in subunit vaccination and how their precise engineering can be a strong asset for guiding and controlling immune responses.
Collapse
Affiliation(s)
- Thomas Trimaille
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, Marseille, France.
| | - Céline Lacroix
- Université Lyon 1, CNRS, UMR 5305, Biologie Tissulaire et Ingénierie Thérapeutique, IBCP, 69367 Lyon, France
| | - Bernard Verrier
- Université Lyon 1, CNRS, UMR 5305, Biologie Tissulaire et Ingénierie Thérapeutique, IBCP, 69367 Lyon, France
| |
Collapse
|
7
|
Bermúdez-Méndez E, Fuglsang-Madsen A, Føns S, Lomonte B, Gutiérrez JM, Laustsen AH. Innovative Immunization Strategies for Antivenom Development. Toxins (Basel) 2018; 10:toxins10110452. [PMID: 30400220 PMCID: PMC6265855 DOI: 10.3390/toxins10110452] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022] Open
Abstract
Snakes, scorpions, and spiders are venomous animals that pose a threat to human health, and severe envenomings from the bites or stings of these animals must be treated with antivenom. Current antivenoms are based on plasma-derived immunoglobulins or immunoglobulin fragments from hyper-immunized animals. Although these medicines have been life-saving for more than 120 years, opportunities to improve envenoming therapy exist. In the later decades, new biotechnological tools have been applied with the aim of improving the efficacy, safety, and affordability of antivenoms. Within the avenues explored, novel immunization strategies using synthetic peptide epitopes, recombinant toxins (or toxoids), or DNA strings as immunogens have demonstrated potential for generating antivenoms with high therapeutic antibody titers and broad neutralizing capacity. Furthermore, these approaches circumvent the need for venom in the production process of antivenoms, thereby limiting some of the complications associated with animal captivity and venom collection. Finally, an important benefit of innovative immunization approaches is that they are often compatible with existing antivenom manufacturing setups. In this review, we compile all reported studies examining venom-independent innovative immunization strategies for antivenom development. In addition, a brief description of toxin families of medical relevance found in snake, scorpion, and spider venoms is presented, as well as how biochemical, bioinformatic, and omics tools could aid the development of next-generation antivenoms.
Collapse
Affiliation(s)
| | - Albert Fuglsang-Madsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
- Department of Biology, University of Copenhagen, DK-2200 København N, Denmark.
| | - Sofie Føns
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Andreas Hougaard Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
8
|
Gláucia-Silva F, Torres-Rêgo M, Rocha Soares KS, Damasceno IZ, Tambourgi DV, Silva-Júnior AAD, Fernandes-Pedrosa MDF. A biotechnological approach to immunotherapy: Antivenom against Crotalus durissus cascavella snake venom produced from biodegradable nanoparticles. Int J Biol Macromol 2018; 120:1917-1924. [PMID: 30287370 DOI: 10.1016/j.ijbiomac.2018.09.203] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/20/2018] [Accepted: 09/28/2018] [Indexed: 12/22/2022]
Abstract
Snakebite envenoming is a tropical disease neglected worldwide. In Brazil, the Crotalus durissus cascavella (CDC) snake belongs to a genus with venom of highest lethality. A search for new immunoadjuvants aimed to expand the therapeutic alternatives to improve vaccines and antivenom. This approach proposed to produce small and narrow-sized cationic CDC venom-loaded chitosan nanoparticles (CHNP) able to induce antibody response against the CDC venom. The ionic gelation method induced the formation of stable and slightly smooth spherical nanoparticles (<160 nm) with protein loading efficiency superior to 90%. The interactions between venom proteins and CHNP assessed using FT-IR spectroscopy corroborated with the in vitro release behavior of proteins from nanoparticles. Finally, the immunization animal model using BALB/c mice demonstrated the higher effectiveness of CDC venom-loaded CHNP compared to aluminum hydroxide, a conventional immunoadjuvant. Thus, CHNPs loaded with CDC venom exhibited a promising biotechnological approach to immunotherapy.
Collapse
Affiliation(s)
- Fiamma Gláucia-Silva
- Graduate Program on Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Rua General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal 59012-570, Brazil.
| | - Manoela Torres-Rêgo
- Graduate Program on Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Rua General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal 59012-570, Brazil.
| | - Karla Samara Rocha Soares
- Graduate Program on Biochemistry, Bioscience Center, University Campus, Federal University of Rio Grande do Norte, Avenida Senador Salgado Filho, 3000, Lagoa Nova, 59072-970 Natal, Brazil.
| | - Igor Zumba Damasceno
- Department of Materials Engineering, Technology Center, University Campus, Federal University of Rio Grande do Norte, Avenida Senador Salgado Filho, 3000, Lagoa Nova, 59078-970 Natal, Brazil.
| | - Denise Vilarinho Tambourgi
- Laboratory of Immunochemistry, Instituto Butantan, Avenida Vital Brasil, 1500, Instituto Butantan, São Paulo 05503-000, Brazil.
| | - Arnóbio Antônio da Silva-Júnior
- Graduate Program on Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Rua General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal 59012-570, Brazil.
| | - Matheus de Freitas Fernandes-Pedrosa
- Graduate Program on Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Rua General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal 59012-570, Brazil; Graduate Program on Biochemistry, Bioscience Center, University Campus, Federal University of Rio Grande do Norte, Avenida Senador Salgado Filho, 3000, Lagoa Nova, 59072-970 Natal, Brazil.
| |
Collapse
|
9
|
Chitosan-based hydrogels: Preparation, properties and applications. Int J Biol Macromol 2018; 115:194-220. [DOI: 10.1016/j.ijbiomac.2018.04.034] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/18/2018] [Accepted: 04/08/2018] [Indexed: 12/18/2022]
|
10
|
Chen M, Ou B, Guo Y, Guo Y, Kang Y, Liu H, Yan J, Tian L. Preparation of an environmentally friendly antifouling degradable polyurethane coating material based on medium-length fluorinated diols. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2018. [DOI: 10.1080/10601325.2018.1470466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Meilong Chen
- School of Materials Science and Engineering, Hunan University of Science and Technology, Hunan Provincial Key Defense Laboratory of High Temperature Wear-resisting Materials and Preparation Technology, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Key Laboratory of Theoretical Organic Chemistry and Function Molecule Ministry of Education, Xiangtan, China
| | - Baoli Ou
- School of Materials Science and Engineering, Hunan University of Science and Technology, Hunan Provincial Key Defense Laboratory of High Temperature Wear-resisting Materials and Preparation Technology, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Key Laboratory of Theoretical Organic Chemistry and Function Molecule Ministry of Education, Xiangtan, China
- State Key Laboratory of Tribology, Tsinghua University, Tsinghua University, Beijing, China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China
| | - Yuanjun Guo
- School of Materials Science and Engineering, Hunan University of Science and Technology, Hunan Provincial Key Defense Laboratory of High Temperature Wear-resisting Materials and Preparation Technology, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Key Laboratory of Theoretical Organic Chemistry and Function Molecule Ministry of Education, Xiangtan, China
| | - Yan Guo
- School of Materials Science and Engineering, Hunan University of Science and Technology, Hunan Provincial Key Defense Laboratory of High Temperature Wear-resisting Materials and Preparation Technology, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Key Laboratory of Theoretical Organic Chemistry and Function Molecule Ministry of Education, Xiangtan, China
| | - Yonghai Kang
- School of Materials Science and Engineering, Hunan University of Science and Technology, Hunan Provincial Key Defense Laboratory of High Temperature Wear-resisting Materials and Preparation Technology, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Key Laboratory of Theoretical Organic Chemistry and Function Molecule Ministry of Education, Xiangtan, China
| | - Huiyang Liu
- School of Materials Science and Engineering, Hunan University of Science and Technology, Hunan Provincial Key Defense Laboratory of High Temperature Wear-resisting Materials and Preparation Technology, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Key Laboratory of Theoretical Organic Chemistry and Function Molecule Ministry of Education, Xiangtan, China
| | - Jianhui Yan
- School of Materials Science and Engineering, Hunan University of Science and Technology, Hunan Provincial Key Defense Laboratory of High Temperature Wear-resisting Materials and Preparation Technology, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Key Laboratory of Theoretical Organic Chemistry and Function Molecule Ministry of Education, Xiangtan, China
| | - Li Tian
- School of Materials Science and Engineering, Hunan University of Science and Technology, Hunan Provincial Key Defense Laboratory of High Temperature Wear-resisting Materials and Preparation Technology, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Key Laboratory of Theoretical Organic Chemistry and Function Molecule Ministry of Education, Xiangtan, China
| |
Collapse
|
11
|
Self-assembled scorpion venom proteins cross-linked chitosan nanoparticles for use in the immunotherapy. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.06.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Nanoparticles for immune system targeting. Drug Discov Today 2017; 22:1295-1301. [PMID: 28390214 DOI: 10.1016/j.drudis.2017.03.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/18/2017] [Accepted: 03/29/2017] [Indexed: 02/02/2023]
Abstract
Nanoparticles (NPs) are found in numerous applications used to modulate the immune system. They serve as drug delivery carriers or vaccine adjuvants and are utilized as therapeutics against a variety of diseases. NPs can be engineered to target distinct cellular components representing multiple pathways of immunity. The combination of NPs with immune system-targeting moieties has paved the way for improved targeted immune therapies. Here we provide an update of recent progress in this field.
Collapse
|
13
|
Utkin YN. Modern trends in animal venom research - omics and nanomaterials. World J Biol Chem 2017; 8:4-12. [PMID: 28289514 PMCID: PMC5329713 DOI: 10.4331/wjbc.v8.i1.4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/14/2016] [Accepted: 12/28/2016] [Indexed: 02/05/2023] Open
Abstract
Animal venom research is a specialized investigation field, in which a number of different methods are used and this array is constantly expanding. Thus, recently emerged omics and nanotechnologies have already been successfully applied to venom research. Animal venoms have been studied for quite a long time. The traditional reductionist approach has been to isolate individual toxins and then study their structure and function. Unfortunately, the characterization of the venom as a whole system and its multiple effects on an entire organism were not possible until recent times. The development of new methods in mass spectrometry and sequencing have allowed such characterizations of venom, encompassing the identification of new toxins present in venoms at extremely low concentrations to changes in metabolism of prey organisms after envenomation. In particular, this type of comprehensive research has become possible due to the development of the various omics technologies: Proteomics, peptidomics, transcriptomics, genomics and metabolomics. As in other research fields, these omics technologies ushered in a revolution for venom studies, which is now entering the era of big data. Nanotechnology is a very new branch of technology and developing at an extremely rapid pace. It has found application in many spheres and has not bypassed the venom studies. Nanomaterials are quite promising in medicine, and most studies combining venoms and nanomaterials are dedicated to medical applications. Conjugates of nanoparticles with venom components have been proposed for use as drugs or diagnostics. For example, nanoparticles conjugated with chlorotoxin - a toxin in scorpion venom, which has been shown to bind specifically to glioma cells - are considered as potential glioma-targeted drugs, and conjugates of neurotoxins with fluorescent semiconductor nanoparticles or quantum dots may be used to detect endogenous targets expressed in live cells. The data on application of omics and nanotechnologies in venom research are systematized concisely in this paper.
Collapse
|