1
|
Prevalence, Genetics, and Evolutionary Properties of Eurasian Avian-Like H1N1 Swine Influenza Viruses in Liaoning. Viruses 2022; 14:v14030643. [PMID: 35337050 PMCID: PMC8953428 DOI: 10.3390/v14030643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
Swine influenza virus (SIV) is an important zoonosis pathogen. The 2009 pandemic of H1N1 influenza A virus (2009/H1N1) highlighted the importance of the role of pigs as intermediate hosts. Liaoning province, located in northeastern China, has become one of the largest pig-farming areas since 2016. However, the epidemiology and evolutionary properties of SIVs in Liaoning are largely unknown. We performed systematic epidemiological and genetic dynamics surveillance of SIVs in Liaoning province during 2020. In total, 33,195 pig nasal swabs were collected, with an SIV detection rate of 2%. Our analysis revealed that multiple subtypes of SIVs are co-circulating in the pig population in Liaoning, including H1N1, H1N2 and H3N2 SIVs. Furthermore, 24 H1N1 SIVs were confirmed to belong to the EA H1N1 lineage and divided into two genotypes. The two genotypes were both triple reassortant, and the predominant one with polymerase, nucleoprotein (NP), and matrix protein (M) genes originating from 2009/H1N1; hemagglutinin (HA) and neuraminidase (NA) genes originating from EA H1N1; and the nonstructural protein (NS) gene originating from triple reassortant H1N2 (TR H1N2) was detected in Liaoning for the first time. According to our evolutionary analysis, the EA H1N1 virus in Liaoning will undergo further genome variation.
Collapse
|
2
|
Ruan BY, Yao Y, Wang SY, Gong XQ, Liu XM, Wang Q, Yu LX, Zhu SQ, Wang J, Shan TL, Zhou YJ, Tong W, Zheng H, Li GX, Gao F, Kong N, Yu H, Tong GZ. Protective efficacy of a bivalent inactivated reassortant H1N1 influenza virus vaccine against European avian-like and classical swine influenza H1N1 viruses in mice. Vet Microbiol 2020; 246:108724. [PMID: 32605742 DOI: 10.1016/j.vetmic.2020.108724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 11/29/2022]
Abstract
The classical swine (CS) H1N1 swine influenza virus (SIVs) emerged in humans as a reassortant virus that caused the H1N1 influenza virus pandemic in 2009, and the European avian-like (EA) H1N1 SIVs has caused several human infections in European and Asian countries. Development of the influenza vaccines that could provide effective protective efficacy against SIVs remains a challenge. In this study, the bivalent reassortant inactivated vaccine comprised of SH1/PR8 and G11/PR8 arboring the hemagglutinin (HA) and neuraminidase (NA) genes from prevalent CS and EA H1N1 SIVs and six internal genes from the A/Puerto Rico/8/34(PR8) virus was developed. The protective efficacy of this bivalent vaccine was evaluated in mice challenged with the lethal doses of CS and EA H1N1 SIVs. The result showed that univalent inactivated vaccine elicited high-level antibody against homologous H1N1 viruses while cross-reactive antibody responses to heterologous H1N1 viruses were not fully effective. In a mouse model, the bivalent inactivated vaccine conferred complete protection against lethal challenge doses of EA SH1 virus or CS G11 virus, whereas the univalent inactivated vaccine only produced insufficient protection against heterologous SIVs. In conclusion, our data demonstrated that the reassortant bivalent inactivated vaccine comprised of SH1/PR8 and G11/PR8 could provide effective protection against the prevalent EA and CS H1N1 subtype SIVs in mice.
Collapse
Affiliation(s)
- Bao-Yang Ruan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yun Yao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Shuai-Yong Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xiao-Qian Gong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xiao-Min Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Qi Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Ling-Xue Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Shi-Qiang Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Juan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Tong-Ling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yan-Jun Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Hao Zheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Guo-Xin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Fei Gao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Ning Kong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Hai Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Guang-Zhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
3
|
Wu Y, Yang D, Xu B, Liang W, Sui J, Chen Y, Yang H, Chen H, Wei P, Qiao C. Immune efficacy of an adenoviral vector-based swine influenza vaccine against antigenically distinct H1N1 strains in mice. Antiviral Res 2017; 147:29-36. [PMID: 28941982 DOI: 10.1016/j.antiviral.2017.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 01/24/2023]
Abstract
Avian-like H1N1 swine influenza viruses are prevalent in pigs and have occasionally crossed the species barrier and infected humans, which highlights the importance of preventing swine influenza. Human adenovirus serotype 5 (Ad5) has been tested in human influenza vaccine clinical trials and has exhibited a reliable safety profile. Here, we generated a replication-defective, recombinant adenovirus (designated as rAd5-avH1HA) expressing the hemagglutinin gene of an avian-like H1N1 virus (A/swine/Zhejiang/199/2013, ZJ/199/13). Using a BALB/c mouse model, we showed that a two-dose intramuscular administration of recombinant rAd5-avH1HA induced high levels of hemagglutination inhibition antibodies and prevented homologous and heterologous H1N1 virus-induced weight loss, as well as viral replication in the nasal turbinates and lungs of mice. Furthermore, a prime-boost immunization strategy trial with a recombinant plasmid (designated as pCAGGS-HA) followed by rAd5-avH1HA vaccine provided effective protection against homologous and heterologous H1N1 virus infection in mice. These results indicate that rAd5-avH1HA is an efficacious genetically engineered vaccine candidate against H1N1 swine influenza. Future studies should examine its immune efficacy in pigs.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Antibodies, Viral/blood
- Antigens, Viral/immunology
- Cross Protection
- Hemagglutination Inhibition Tests
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza Vaccines/standards
- Lung/virology
- Mice
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/prevention & control
- Swine
- Swine Diseases/prevention & control
- Turbinates/virology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Virus Shedding
Collapse
Affiliation(s)
- Yunpu Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Dawei Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Bangfeng Xu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Wenhua Liang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jinyu Sui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Huanliang Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Ping Wei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Chuanling Qiao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
4
|
Characterization of Monoclonal Antibodies against HA Protein of H1N1 Swine Influenza Virus and Protective Efficacy against H1 Viruses in Mice. Viruses 2017; 9:v9080209. [PMID: 28786930 PMCID: PMC5580466 DOI: 10.3390/v9080209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/30/2017] [Accepted: 08/03/2017] [Indexed: 02/07/2023] Open
Abstract
H1N1 swine influenza viruses (SIV) are prevalent in pigs globally, and occasionally emerge in humans, which raises concern about their pandemic threats. To stimulate hemagglutination (HA) of A/Swine/Guangdong/LM/2004 (H1N1) (SW/GD/04) antibody response, eukaryotic expression plasmid pCI-neo-HA was constructed and used as an immunogen to prepare monoclonal antibodies (mAbs). Five mAbs (designed 8C4, 8C6, 9D6, 8A4, and 8B1) against HA protein were obtained and characterized. Western blot showed that the 70 kDa HA protein could be detected by all mAbs in MDCK cells infected with SW/GD/04. Three mAbs—8C4, 8C6, and 9D6—have hemagglutination inhibition (HI) and neutralization test (NT) activities, and 8C6 induces the highest HI and NT titers. The protection efficacy of 8C6 was investigated in BALB/c mice challenged with homologous or heterologous strains of the H1 subtype SIV. The results indicate that mAb 8C6 protected the mice from viral infections, especially the homologous strain, which was clearly demonstrated by the body weight changes and reduction of viral load. Thus, our findings document for the first time that mAb 8C6 might be of potential therapeutic value for H1 subtype SIV infection.
Collapse
|