1
|
Virnik K, Zhou W, Medvedev A, Walsh G, Perry-Anderson J, Majam V, Felber BK, Kumar S, Berkower I. Live attenuated rubella vectors expressing Plasmodium falciparum circumsporozoite protein (Pf-CSP) provide a novel malaria vaccine platform in the rhesus macaque. Biochem Biophys Res Commun 2021; 577:58-63. [PMID: 34507066 PMCID: PMC10167915 DOI: 10.1016/j.bbrc.2021.08.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022]
Abstract
There is an urgent need for a malaria vaccine that can prevent severe disease in young children and adults. Despite earlier work showing an immunological mechanism for preventing infection and reducing disease severity, there is currently no reliable vaccine that can provide durable protection. In part, this may reflect a limited number of ways that the host can respond to the NANP repeat sequences of circumsporozoite protein (CSP) in the parasite. In addition, it may reflect antigenic escape by the parasite from protective antibodies. To be successful, a vaccine must protect against repeated exposure to infected mosquitoes in endemic areas. We have created a series of live viral vectors based on the rubella vaccine strain that express multiple tandem repeats of NANP, and we demonstrate immunogenicity in a rhesus macaque model. We tested the vectors in a sequential immunization strategy. In the first step, the animals were primed with CSP-DNA vaccine and boosted with rubella/CSP vectors. In the second step, we gave rubella/CSP vectors again, followed by recombinant CSP protein. Following the second step, antibody titers were comparable to adult exposure to malaria in an endemic area. The antibodies were specific for native CSP protein on sporozoites, and they persisted for at least 1½ years in two out of three macaques. Given the safety profile of rubella vaccine in children, these vectors could be most useful in protecting young children, who are at greatest risk of severe malarial disease.
Collapse
Affiliation(s)
- Konstantin Virnik
- Lab of Immunoregulation, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics, FDA, 10903 New Hampshire Ave., Silver Spring, MD, 20993, USA
| | - Wenshuo Zhou
- Lab of Immunoregulation, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics, FDA, 10903 New Hampshire Ave., Silver Spring, MD, 20993, USA
| | - Alexei Medvedev
- Lab of Immunoregulation, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics, FDA, 10903 New Hampshire Ave., Silver Spring, MD, 20993, USA
| | - Gabrielle Walsh
- Lab of Immunoregulation, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics, FDA, 10903 New Hampshire Ave., Silver Spring, MD, 20993, USA
| | - Jasper Perry-Anderson
- Lab of Immunoregulation, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics, FDA, 10903 New Hampshire Ave., Silver Spring, MD, 20993, USA
| | - Victoria Majam
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, CBER, FDA, 10903 New Hampshire Ave., Silver Spring, MD, 20993, USA
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Sanjai Kumar
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, CBER, FDA, 10903 New Hampshire Ave., Silver Spring, MD, 20993, USA
| | - Ira Berkower
- Lab of Immunoregulation, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics, FDA, 10903 New Hampshire Ave., Silver Spring, MD, 20993, USA.
| |
Collapse
|
2
|
Virnik K, Rosati M, Medvedev A, Scanlan A, Walsh G, Dayton F, Broderick KE, Lewis M, Bryson Y, Lifson JD, Ruprecht RM, Felber BK, Berkower I. Immunotherapy with DNA vaccine and live attenuated rubella/SIV gag vectors plus early ART can prevent SIVmac251 viral rebound in acutely infected rhesus macaques. PLoS One 2020; 15:e0228163. [PMID: 32130229 PMCID: PMC7055890 DOI: 10.1371/journal.pone.0228163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/08/2020] [Indexed: 01/29/2023] Open
Abstract
Anti-retroviral therapy (ART) has been highly successful in controlling HIV replication, reducing viral burden, and preventing both progression to AIDS and viral transmission. Yet, ART alone cannot cure the infection. Even after years of successful therapy, ART withdrawal leads inevitably to viral rebound within a few weeks or months. Our hypothesis: effective therapy must control both the replicating virus pool and the reactivatable latent viral reservoir. To do this, we have combined ART and immunotherapy to attack both viral pools simultaneously. The vaccine regimen consisted of DNA vaccine expressing SIV Gag, followed by a boost with live attenuated rubella/gag vectors. The vectors grow well in rhesus macaques, and they are potent immunogens when used in a prime and boost strategy. We infected rhesus macaques by high dose mucosal challenge with virulent SIVmac251 and waited three days to allow viral dissemination and establishment of a reactivatable viral reservoir before starting ART. While on ART, the control group received control DNA and empty rubella vaccine, while the immunotherapy group received DNA/gag prime, followed by boosts with rubella vectors expressing SIV gag over 27 weeks. Both groups had a vaccine "take" to rubella, and the vaccine group developed antibodies and T cells specific for Gag. Five weeks after the last immunization, we stopped ART and monitored virus rebound. All four control animals eventually had a viral rebound, and two were euthanized for AIDS. One control macaque did not rebound until 2 years after ART release. In contrast, there was only one viral rebound in the vaccine group. Three out of four vaccinees had no viral rebound, even after CD8 depletion, and they remain in drug-free viral remission more than 2.5 years later. The strategy of early ART combined with immunotherapy can produce a sustained SIV remission in macaques and may be relevant for immunotherapy of HIV in humans.
Collapse
Affiliation(s)
- Konstantin Virnik
- Laboratory of Immunoregulation, Division of Viral Products, Office of Vaccines, Center for Biologics, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Alexei Medvedev
- Laboratory of Immunoregulation, Division of Viral Products, Office of Vaccines, Center for Biologics, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Aaron Scanlan
- Laboratory of Immunoregulation, Division of Viral Products, Office of Vaccines, Center for Biologics, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Gabrielle Walsh
- Laboratory of Immunoregulation, Division of Viral Products, Office of Vaccines, Center for Biologics, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Frances Dayton
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Kate E. Broderick
- Inovio Pharmaceuticals, Inc., Plymouth Meeting, Pennsylvania, United States of America
| | - Mark Lewis
- BioQual, Inc., Rockville, Maryland, United States of America
| | - Yvonne Bryson
- Department of Pediatrics, Division of Infectious Disease, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Ruth M. Ruprecht
- University of Louisiana at Lafayette, New Iberia Research Center, New Iberia, Louisiana, United States of America
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Ira Berkower
- Laboratory of Immunoregulation, Division of Viral Products, Office of Vaccines, Center for Biologics, Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
3
|
Lessons for general vaccinology research from attempts to develop an HIV vaccine. Vaccine 2019; 37:3400-3408. [PMID: 30979571 DOI: 10.1016/j.vaccine.2019.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 01/12/2023]
Abstract
In the past when large investments have been made in tackling narrow scientific challenges, the enormous expansion in our knowledge in one small area has had a spill-over effect on research and treatment of other diseases. The large investment in HIV vaccine development in recent years has the potential for such an effect on vaccine development for other diseases. HIV vaccine developers have experienced repeated failure using the standard approaches to vaccine development. This has forced them to consider immune responses in greater depth and detail. It has led to a recognition of the importance of epitopic specificity in both antibody and T cell responses. Also, it has led to an understanding of the importance of affinity maturation in antibody responses and the quality of T cell responses in T cell-mediated immunity. It has advanced the development of many novel vaccine vectors and vehicles that are now available for use in other vaccines. Further, it has focused attention on the impact of research funding mechanisms and community engagement on vaccine development. These developments and considerations have implications for vaccinology more generally. Some suggestions are made for investigators working on other "hard-to-develop" vaccines.
Collapse
|
4
|
Virnik K, Nesti E, Dail C, Scanlan A, Medvedev A, Vassell R, McGuire AT, Stamatatos L, Berkower I. Live rubella vectors can express native HIV envelope glycoproteins targeted by broadly neutralizing antibodies and prime the immune response to an envelope protein boost. Vaccine 2018; 36:5166-5172. [PMID: 30037665 DOI: 10.1016/j.vaccine.2018.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/18/2022]
Abstract
Following HIV infection, most people make antibodies to gp120 and gp41, yet only a few make broadly neutralizing antibodies that target key antigenic sites on the envelope glycoproteins. The induction of broadly neutralizing antibodies by immunization remains a major challenge of HIV vaccine research. Difficulties include: variable protein sequence, epitopes that depend on the native conformation, glycosylation that conceals key antigenic determinants, and the assembly of Env trimers that mimic viral spikes. In addition, more potent immunogens may be needed to initiate the response of germline antibody precursors and drive B cell maturation toward antibodies with broad neutralizing activity. We have expressed HIV Env glycoproteins by incorporation into live attenuated rubella viral vectors. The rubella vaccine strain RA27/3 has demonstrated its safety and potency in millions of children. As a vector, it has elicited potent and durable immune responses in macaques to SIV Gag vaccine inserts. We now find that rubella/env vectors can stably express Env core derived glycoproteins ranging in size up to 363 amino acids from HIV clade C strain 426c. The expressed Env glycoproteins bind broadly neutralizing antibodies that target the native CD4 binding site. The vectors grew well in rhesus macaques, and they elicited a vaccine "take" in all animals, as measured by anti-rubella antibodies. By themselves, the vectors elicited modest antibody titers to the Env insert. But the combination of rubella/env prime followed by a homologous protein boost gave a strong response. Neutralizing antibodies appeared gradually after multiple vaccine doses. The vectors will be useful for testing new vaccine inserts and immunization strategies under optimized conditions of vector growth and protein expression.
Collapse
Affiliation(s)
- Konstantin Virnik
- Lab of Immunoregulation, DVP, Office of Vaccines, Center for Biologics, FDA, Bldg 72, Room 1212, White Oak Campus, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA
| | - Edmund Nesti
- Lab of Immunoregulation, DVP, Office of Vaccines, Center for Biologics, FDA, Bldg 72, Room 1212, White Oak Campus, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA
| | - Cody Dail
- Lab of Immunoregulation, DVP, Office of Vaccines, Center for Biologics, FDA, Bldg 72, Room 1212, White Oak Campus, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA
| | - Aaron Scanlan
- Lab of Immunoregulation, DVP, Office of Vaccines, Center for Biologics, FDA, Bldg 72, Room 1212, White Oak Campus, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA
| | - Alexei Medvedev
- Lab of Immunoregulation, DVP, Office of Vaccines, Center for Biologics, FDA, Bldg 72, Room 1212, White Oak Campus, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA
| | - Russell Vassell
- Lab of Immunoregulation, DVP, Office of Vaccines, Center for Biologics, FDA, Bldg 72, Room 1212, White Oak Campus, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA
| | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Ira Berkower
- Lab of Immunoregulation, DVP, Office of Vaccines, Center for Biologics, FDA, Bldg 72, Room 1212, White Oak Campus, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA.
| |
Collapse
|
5
|
Expression and characterization of a recombinant porcinized antibody against the E2 protein of classical swine fever virus. Appl Microbiol Biotechnol 2017; 102:961-970. [DOI: 10.1007/s00253-017-8647-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
|