1
|
Kumar CS, Singh B, Rizvi ZA, Parray HA, Verma JK, Ghosh S, Mukhopadhyay A, Awasthi A, Shrivastava T, Banerjee M. Virus-Like Particles of SARS-CoV-2 as Virus Surrogates: Morphology, Immunogenicity, and Internalization in Neuronal Cells. ACS Infect Dis 2022; 8:2119-2132. [PMID: 36129193 PMCID: PMC9514328 DOI: 10.1021/acsinfecdis.2c00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Indexed: 01/29/2023]
Abstract
The engineering of virus-like particles (VLPs) is a viable strategy for the development of vaccines and for the identification of therapeutic targets without using live viruses. Here, we report the generation and characterization of quadruple-antigen SARS-CoV-2 VLPs. VLPs were generated by transient transfection of two expression cassettes in adherent HEK293T cells─one cassette containing Mpro for processing of three structural proteins (M, E, and N), and the second cassette expressing the Spike protein. Further characterization revealed that the VLPs retain close morphological and antigenic similarity with the native virus and also bind strongly to the SARS-CoV-2 receptor hACE-2 in an in vitro binding assay. Interestingly, the VLPs were found to internalize into U87-MG cells through cholesterol-rich domains in a dynamin-dependent process. Finally, our results showed that mice immunized with VLPs induce robust humoral and cellular immune responses mediated by enhanced levels of IL-4, IL-17, and IFNγ. Taken together, our results demonstrate that VLPs mimic the native virus and induce a strong immune response, indicating the possible use of these particles as an alternative vaccine candidate against SARS-CoV-2. VLPs can also be effective in mapping the initial stages of virus entry and screening inhibitors.
Collapse
Affiliation(s)
- Chandra Shekhar Kumar
- Kusuma School of Biological Sciences,
Indian Institute of Technology Delhi, Hauz Khas, New
Delhi110016, India
| | - Balwant Singh
- Translational Health Science and
Technology Institute (THSTI), NCR Biotech Science Cluster 3rd Milestone,
Faridabad - Gurgaon Rd, Expressway, Faridabad, Haryana121001,
India
| | - Zaigham Abbas Rizvi
- Translational Health Science and
Technology Institute (THSTI), NCR Biotech Science Cluster 3rd Milestone,
Faridabad - Gurgaon Rd, Expressway, Faridabad, Haryana121001,
India
- Immunobiology/Immunology Core Laboratory,
Translational Health Science and Technology Institute
(THSTI), NCR Biotech Science Cluster 3rd Milestone, Faridabad - Gurgaon Rd,
Expressway, Faridabad, Haryana121001, India
| | - Hilal Ahmad Parray
- Translational Health Science and
Technology Institute (THSTI), NCR Biotech Science Cluster 3rd Milestone,
Faridabad - Gurgaon Rd, Expressway, Faridabad, Haryana121001,
India
| | - Jitender Kumar Verma
- Kusuma School of Biological Sciences,
Indian Institute of Technology Delhi, Hauz Khas, New
Delhi110016, India
| | - Sukanya Ghosh
- Kusuma School of Biological Sciences,
Indian Institute of Technology Delhi, Hauz Khas, New
Delhi110016, India
| | - Amitabha Mukhopadhyay
- Kusuma School of Biological Sciences,
Indian Institute of Technology Delhi, Hauz Khas, New
Delhi110016, India
| | - Amit Awasthi
- Translational Health Science and
Technology Institute (THSTI), NCR Biotech Science Cluster 3rd Milestone,
Faridabad - Gurgaon Rd, Expressway, Faridabad, Haryana121001,
India
- Immunobiology/Immunology Core Laboratory,
Translational Health Science and Technology Institute
(THSTI), NCR Biotech Science Cluster 3rd Milestone, Faridabad - Gurgaon Rd,
Expressway, Faridabad, Haryana121001, India
| | - Tripti Shrivastava
- Translational Health Science and
Technology Institute (THSTI), NCR Biotech Science Cluster 3rd Milestone,
Faridabad - Gurgaon Rd, Expressway, Faridabad, Haryana121001,
India
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences,
Indian Institute of Technology Delhi, Hauz Khas, New
Delhi110016, India
| |
Collapse
|
2
|
Rizvi ZA, Dalal R, Sadhu S, Binayke A, Dandotiya J, Kumar Y, Shrivastava T, Gupta SK, Aggarwal S, Tripathy MR, Rathore DK, Yadav AK, Medigeshi GR, Pandey AK, Samal S, Asthana S, Awasthi A. Golden Syrian hamster as a model to study cardiovascular complications associated with SARS-CoV-2 infection. eLife 2022; 11:73522. [PMID: 35014610 PMCID: PMC8794466 DOI: 10.7554/elife.73522] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 infection in the Golden Syrian hamster causes lung pathology that resembles human coronavirus disease (COVID-19). However, extra-pulmonary pathologies associated with SARS-CoV-2 infection and post COVID sequelae remain to be understood. Here we show, using a hamster model, that the early phase of SARS-CoV-2 infection leads to an acute inflammatory response and lung pathologies, while the late phase of infection causes cardiovascular complications (CVC) characterized by ventricular wall thickening associated with increased ventricular mass/ body mass ratio and interstitial coronary fibrosis. Molecular profiling further substantiated our findings of CVC, as SARS-CoV-2-infected hamsters showed elevated levels of serum cardiac Troponin-I (cTnI), cholesterol, low-density lipoprotein and long-chain fatty acid triglycerides. Serum metabolomics profiling of SARS-CoV-2-infected hamsters identified N-acetylneuraminate, a functional metabolite found to be associated with CVC, as a metabolic marker was found to be common between SARS-CoV-2-infected hamsters and COVID-19 patients. Together, we propose hamsters as a suitable animal model to study post-COVID sequelae associated with CVC which could be extended to therapeutic interventions.
Collapse
Affiliation(s)
- Zaigham Abbas Rizvi
- Immuno-biology Lab, Infection and Immunology centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Rajdeep Dalal
- Immuno-biology Lab, Infection and Immunology centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Srikanth Sadhu
- Immuno-biology Lab, Infection and Immunology centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Akshay Binayke
- Immuno-biology Lab, Infection and Immunology centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Jyotsna Dandotiya
- Immuno-biology Lab, Infection and Immunology centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Yashwant Kumar
- Non-communicable disease centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Tripti Shrivastava
- Infection and Immunology centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Sonu Kumar Gupta
- Non-communicable disease centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Suruchi Aggarwal
- Non-communicable disease centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Manas Ranjan Tripathy
- Immuno-biology Lab, Infection and Immunology centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Deepak Kumar Rathore
- Infection and Immunology Center, Translational Health Science and Technology Institute, Faridabad, India
| | - Amit Kumar Yadav
- Non-communicable disease center, Translational Health Science and Technology Institute, Faridabad, India
| | - Guruprasad R Medigeshi
- Infection and Immunology Center, Translational Health Science and Technology Institute, Gurgaon, India
| | - Amit Kumar Pandey
- Infection and Immunology Center, Translational Health Science and Technology Institute, Faridabad, India
| | - Sweety Samal
- Infection and Immunology Center, Translational Health Science and Technology Institute, Faridabad, India
| | - Shailendra Asthana
- Non-communicable disease centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Amit Awasthi
- Immuno-biology Lab, Infection and Immunology centre, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
3
|
Perween R, PraveenKumar M, Shrivastava T, Parray HA, Singh V, Singh S, Chiranjivi A, Jakhar K, Sonar S, Tiwari M, Reema, Panchal AK, Sharma C, Rathore DK, Ahamed S, Samal S, Mani S, Bhattacharyya S, Das S, Luthra K, Kumar R. The SARS CoV-2 spike directed non-neutralizing polyclonal antibodies cross-react with Human immunodeficiency virus (HIV-1) gp41. Int Immunopharmacol 2021; 101:108187. [PMID: 34649114 PMCID: PMC8479463 DOI: 10.1016/j.intimp.2021.108187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022]
Abstract
Cross-reactivity among the two diverse viruses is believed to originate from the concept of antibodies recognizing similar epitopes on the two viral surfaces. Cross-reactive antibody responses have been seen in previous variants of SARS and SARS-CoV-2, but little is known about the cross reactivity with other similar RNA viruses like HIV-1. In the present study, we examined the reactivity the SARS-CoV-2 directed antibodies, via spike, immunized mice sera and demonstrated whether they conferred any cross-reactive neutralization against HIV-1. Our findings show that SARS-CoV-2 spike immunized mice antibodies cross-react with the HIV-1 Env protein. Cross-neutralization among the two viruses is uncommon, suggesting the presence of a non-neutralizing antibody response to conserved epitopes amongst the two viruses. Our results indicate, that SARS-CoV-2 spike antibody cross reactivity is targeted towards the gp41 region of the HIV-1 Env (gp160) protein. Overall, our investigation not only answers a crucial question about the understanding of cross-reactive epitopes of antibodies generated in different viral infections, but also provides critical evidence for developing vaccine immunogens and novel treatment strategies with enhanced efficacy capable of recognising diverse pathogens with similar antigenic features.
Collapse
Affiliation(s)
- Reshma Perween
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Murugavelu PraveenKumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Tripti Shrivastava
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Hilal Ahmed Parray
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Vanshika Singh
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Swarandeep Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Adarsh Chiranjivi
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Kamini Jakhar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Sudipta Sonar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Mahima Tiwari
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Reema
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Anil Kumar Panchal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Chandresh Sharma
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Deepak Kumar Rathore
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Shubbir Ahamed
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Sweety Samal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Shailendra Mani
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Sankar Bhattacharyya
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Supratik Das
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India.
| |
Collapse
|
4
|
Murugavelu P, Perween R, Shrivastava T, Singh V, Ahmad Parray H, Singh S, Chiranjivi AK, Thiruvengadam R, Singh S, Yadav N, Jakhar K, Sonar S, Mani S, Bhattacharyya S, Sharma C, Vishwakarma P, Khatri R, Kumar Panchal A, Das S, Ahmed S, Samal S, Kshetrapal P, Bhatnagar S, Luthra K, Kumar R. Non-neutralizing SARS CoV-2 directed polyclonal antibodies demonstrate cross-reactivity with the HA glycans of influenza virus. Int Immunopharmacol 2021; 99:108020. [PMID: 34426117 PMCID: PMC8318684 DOI: 10.1016/j.intimp.2021.108020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 11/29/2022]
Abstract
The spike protein of the SARS-CoV-2 virus is the foremost target for the designing of vaccines and therapeutic antibodies and also acts as a crucial antigen in the assessment of COVID-19 immune responses. The enveloped viruses; such as SARS-CoV-2, Human Immunodeficiency Virus-1 (HIV-1) and influenza, often hijack host-cell glycosylation pathways and influence pathobiology and immune selection. These glycan motifs can lead to either immune evasion or viral neutralization by the production of cross-reactive antibodies that can lead to antibody-dependent enhancement (ADE) of infection. Potential cross-protection from influenza vaccine has also been reported in COVID-19 infected individuals in several epidemiological studies recently; however, the scientific basis for these observations remains elusive. Herein, we show that the anti-SARS-CoV2 antibodies cross-reacts with the Hemagglutinin (HA) protein. This phenomenon is common to both the sera from convalescent SARS-CoV-2 donors and spike immunized mice, although these antibodies were unable to cross-neutralize, suggesting the presence of a non-neutralizing antibody response. Epitope mapping suggests that the cross-reactive antibodies are targeted towards glycan epitopes of the SARS-CoV-2 spike and HA. Overall, our findings address the cross-reactive responses, although non-neutralizing, elicited against RNA viruses and warrant further studies to investigate whether such non-neutralizing antibody responses can contribute to effector functions such as antibody-dependent cellular cytotoxicity (ADCC) or ADE.
Collapse
Affiliation(s)
- Praveenkumar Murugavelu
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Reshma Perween
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Tripti Shrivastava
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Vanshika Singh
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Hilal Ahmad Parray
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Swarandeep Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Adarsh Kumar Chiranjivi
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Ramachandran Thiruvengadam
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Savita Singh
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Naveen Yadav
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Kamini Jakhar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Sudipta Sonar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Shailendra Mani
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Sankar Bhattacharyya
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Chandresh Sharma
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Preeti Vishwakarma
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Ritika Khatri
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Anil Kumar Panchal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Supratik Das
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Shubbir Ahmed
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Sweety Samal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Pallavi Kshetrapal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Shinjini Bhatnagar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India.
| |
Collapse
|
5
|
Shrivastava T, Singh B, Rizvi ZA, Verma R, Goswami S, Vishwakarma P, Jakhar K, Sonar S, Mani S, Bhattacharyya S, Awasthi A, Surjit M. Comparative Immunomodulatory Evaluation of the Receptor Binding Domain of the SARS-CoV-2 Spike Protein; a Potential Vaccine Candidate Which Imparts Potent Humoral and Th1 Type Immune Response in a Mouse Model. Front Immunol 2021; 12:641447. [PMID: 34108961 PMCID: PMC8182375 DOI: 10.3389/fimmu.2021.641447] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/12/2021] [Indexed: 12/18/2022] Open
Abstract
The newly emerged novel coronavirus, SARS-CoV-2, the causative agent of COVID-19 has proven to be a threat to the human race globally, thus, vaccine development against SARS-CoV-2 is an unmet need driving mass vaccination efforts. The receptor binding domain of the spike protein of this coronavirus has multiple neutralizing epitopes and is associated with viral entry. Here we have designed and characterized the SARS-CoV-2 spike protein fragment 330-526 as receptor binding domain 330-526 (RBD330-526) with two native glycosylation sites (N331 and N343); as a potential subunit vaccine candidate. We initially characterized RBD330-526 biochemically and investigated its thermal stability, humoral and T cell immune response of various RBD protein formulations (with or without adjuvant) to evaluate the inherent immunogenicity and immunomodulatory effect. Our result showed that the purified RBD immunogen is stable up to 72 h, without any apparent loss in affinity or specificity of interaction with the ACE2 receptor. Upon immunization in mice, RBD generates a high titer humoral response, elevated IFN-γ producing CD4+ cells, cytotoxic T cells, and robust neutralizing antibodies against live SARS-CoV-2 virus. Our results collectively support the potential of RBD330-526 as a promising vaccine candidate against SARS-CoV-2.
Collapse
Affiliation(s)
- Tripti Shrivastava
- Infection and Immunology, Translational Health Science & Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
The Versatile Manipulations of Self-Assembled Proteins in Vaccine Design. Int J Mol Sci 2021; 22:ijms22041934. [PMID: 33669238 PMCID: PMC7919822 DOI: 10.3390/ijms22041934] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/06/2021] [Accepted: 02/11/2021] [Indexed: 12/16/2022] Open
Abstract
Protein assemblies provide unique structural features which make them useful as carrier molecules in biomedical and chemical science. Protein assemblies can accommodate a variety of organic, inorganic and biological molecules such as small proteins and peptides and have been used in development of subunit vaccines via display parts of viral pathogens or antigens. Such subunit vaccines are much safer than traditional vaccines based on inactivated pathogens which are more likely to produce side-effects. Therefore, to tackle a pandemic and rapidly produce safer and more effective subunit vaccines based on protein assemblies, it is necessary to understand the basic structural features which drive protein self-assembly and functionalization of portions of pathogens. This review highlights recent developments and future perspectives in production of non-viral protein assemblies with essential structural features of subunit vaccines.
Collapse
|
7
|
Das S, Kumar R, Ahmed S, Parray HA, Samal S. Efficiently cleaved HIV-1 envelopes: can they be important for vaccine immunogen development? Ther Adv Vaccines Immunother 2020; 8:2515135520957763. [PMID: 33103053 PMCID: PMC7549152 DOI: 10.1177/2515135520957763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 08/17/2020] [Indexed: 12/31/2022] Open
Abstract
The enormous diversity of HIV-1 is a significant impediment in selecting envelopes (Envs) that can be suitable for designing vaccine immunogens. While tremendous progress has been made in developing soluble, trimeric, native-like Env proteins, those that have elicited neutralizing antibodies (Abs) in animal models are relatively few. A strategy of selecting naturally occurring Envs suitable for immunogen design by studying the correlation between efficient cleavage on the cell surface and their selective binding to broadly neutralizing Abs (bNAbs) and not to non-neutralizing Abs (non-NAbs), properties essential in immunogens, may be useful. Here we discuss some of the challenges of developing an efficacious HIV-1 vaccine and the work done in generating soluble immunogens. We also discuss the study of naturally occurring, membrane-bound, efficiently cleaved (naturally more sensitive to furin) Envs and how they may positively add to the repertoire of HIV-1 Envs that can be used for vaccine immunogen design. However, even with such Envs, the challenges of developing well-folded, native-like trimers as soluble proteins or using other immunogen strategies such as virus-like particles with desirable antigenic properties remain, and are formidable. In spite of the progress that has been made in the HIV-1 vaccine field, an immunogen that elicits neutralizing Abs with significant breadth and potency in vaccines has still not been developed. Efficiently cleaved Envs may increase the number of available Envs suitable for immunogen design and should be studied further.
Collapse
Affiliation(s)
- Supratik Das
- THSTI-IAVI HIV Vaccine Design Program,
Translational Health Science and Technology Institute, NCR Biotech Science
Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, PO Box #04, Faridabad,
Haryana 121001, India
| | - Rajesh Kumar
- Translational Health Science and Technology
Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Shubbir Ahmed
- Translational Health Science and Technology
Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Hilal Ahmad Parray
- Translational Health Science and Technology
Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sweety Samal
- Translational Health Science and Technology
Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
8
|
Ahmed S, Shrivastava T, Kumar R, Kumar M, Banerjee M, Kumar N, Bansal M, Das S, Samal S. Design and characterization of a germ-line targeting soluble, native-like, trimeric HIV-1 Env lacking key glycans from the V1V2-loop. Biochim Biophys Acta Gen Subj 2020; 1865:129733. [PMID: 32949621 DOI: 10.1016/j.bbagen.2020.129733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The HIV-1 envelope glycoprotein (Env) is the primary target for broadly neutralizing antibodies (bNAbs) which can block infection. The current design strategy of soluble forms of Env in native-like trimeric conformation induces neutralizing antibodies with minimal breadth and potency. Extensive shielding by N-glycans on the surface of the HIV-1 Env acts as an immune evasion mechanism by restricting B cell recognition of conserved neutralizing determinants. An alternate approach is to design Env protein with glycan deletion to expose the protein surface. METHODS A stable native-like trimeric Env with glycan holes at potentially immunogenic locations is expected to elicit better induction of germ-line B-cells due to exposure of the immunogenic regions. However, the extent and consequences of glycan removal from the trimer apex that form an important epitope is not explored. In this work, we have designed a construct with glycans deleted from the trimer apex of an Indian clade C origin Env that has previously been characterized for immunogenicity, to understand the impact of deglycosylation on the structural and functional integrity as well as on the antibody binding properties. RESULTS The V1V2 glycan-deleted protein maintains native-like trimeric conformation with improved accessibility of the V1V2-directed germ-line antibodies. Furthermore, we showed that the protein binds specifically to quaternary conformation-dependent bnAbs but minimally to non-neutralizing antibodies. CONCLUSIONS This study provide an important design aspect of HIV-1 Env-based immunogens with glycan holes in the apex region that could be useful in eliciting apex directed antibodies in immunization studies.
Collapse
Affiliation(s)
- Shubbir Ahmed
- Infection and Immunity, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India.
| | - Tripti Shrivastava
- Infection and Immunity, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Rajesh Kumar
- Infection and Immunity, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Mohit Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, India
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, India
| | - Naresh Kumar
- Infection and Immunity, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Manish Bansal
- Infection and Immunity, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Supratik Das
- Infection and Immunity, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sweety Samal
- Infection and Immunity, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
9
|
Samal S, Shrivastava T, Sonkusre P, Rizvi ZA, Kumar R, Ahmed S, Vishwakarma P, Yadav N, Bansal M, Chauhan K, Pokhrel S, Das S, Tambare P, Awasthi A. Tetramerizing tGCN4 domain facilitates production of Influenza A H1N1 M2e higher order soluble oligomers that show enhanced immunogenicity in vivo. J Biol Chem 2020; 295:14352-14366. [PMID: 32817314 DOI: 10.1074/jbc.ra120.013233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 08/11/2020] [Indexed: 12/25/2022] Open
Abstract
One strategy for the development of a next generation influenza vaccine centers upon using conserved domains of the virus to induce broader and long-lasting immune responses. The production of artificial proteins by mimicking native-like structures has shown to be a promising approach for vaccine design against diverse enveloped viruses. The amino terminus of influenza A virus matrix 2 ectodomain (M2e) is highly conserved among influenza subtypes, and previous studies have shown M2e-based vaccines are strongly immunogenic, making it an attractive target for further exploration. We hypothesized that stabilizing M2e protein in the mammalian system might influence the immunogenicity of M2e with the added advantage to robustly produce the large scale of proteins with native-like fold and hence can act as an efficient vaccine candidate. In this study, we created an engineered construct in which the amino terminus of M2e is linked to the tetramerizing domain tGCN4, expressed the construct in a mammalian system, and tested for immunogenicity in BALB/c mice. We have also constructed a stand-alone M2e construct (without tGCN4) and compared the protein expressed in mammalian cells and in Escherichia coli using in vitro and in vivo methods. The mammalian-expressed protein was found to be more stable, more antigenic than the E. coli protein, and form higher-order oligomers. In an intramuscular protein priming and boosting regimen in mice, these proteins induced high titers of antibodies and elicited a mixed Th1/Th2 response. These results highlight the mammalian-expressed M2e soluble proteins as a promising vaccine development platform.
Collapse
Affiliation(s)
- Sweety Samal
- Infection and Immunology, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, Faridabad, India
| | - Tripti Shrivastava
- Infection and Immunology, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, Faridabad, India
| | - Praveen Sonkusre
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Zaigham Abbas Rizvi
- Infection and Immunology, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, Faridabad, India
| | - Rajesh Kumar
- Infection and Immunology, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, Faridabad, India
| | - Shubbir Ahmed
- Infection and Immunology, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, Faridabad, India
| | - Preeti Vishwakarma
- Infection and Immunology, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, Faridabad, India
| | - Naveen Yadav
- Infection and Immunology, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, Faridabad, India
| | - Manish Bansal
- Infection and Immunology, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, Faridabad, India
| | - Kanchana Chauhan
- Infection and Immunology, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, Faridabad, India
| | - Sebanta Pokhrel
- Infection and Immunology, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, Faridabad, India
| | - Supratik Das
- Infection and Immunology, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, Faridabad, India
| | - Padmakar Tambare
- Infection and Immunology, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, Faridabad, India
| | - Amit Awasthi
- Infection and Immunology, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, Faridabad, India
| |
Collapse
|
10
|
Das S, Bansal M, Bhattacharya J. Characterization of the membrane-bound form of the chimeric, B/C recombinant HIV-1 Env, LT5.J4b12C. J Gen Virol 2018; 99:1438-1443. [PMID: 30129918 DOI: 10.1099/jgv.0.001141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) diversity is a significant challenge in developing a vaccine against the virus. B/C recombinants have been found in India and other places but are the predominant clade prevalent in China. HIV-1 envelopes (Envs) are the target of broadly neutralizing antibodies (bNAbs) which develop spontaneously in some HIV-1 infected patients. It has been previously reported with efficiently cleaved clade A, B and C Envs that preferential binding of Envs to bNAbs as opposed to non-NAbs, a desirable property for immunogens, is correlated with efficient cleavage of the Env precursor polypeptide into constituent subunits. These Envs are suitable for designing immunogens as soluble proteins, virus-like particles or for delivery by viral vectors/plasmid DNA. However, a B/C recombinant Env with similar properties has not been reported. Here we show that the chimeric, recombinant B/C clade Env LT5.J4b12C is efficiently cleaved on the plasma membrane and selectively binds to bNAbs.
Collapse
Affiliation(s)
- Supratik Das
- 1THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, Faridabad-121001, Haryana, India
| | - Manish Bansal
- 1THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, Faridabad-121001, Haryana, India
| | - Jayanta Bhattacharya
- 1THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, Faridabad-121001, Haryana, India.,2International AIDS Vaccine Initiative, New York, USA
| |
Collapse
|