1
|
Pun J, Evans C, Chasekwa B, Church JA, Gough E, Mutasa K, Rukobo S, Govha M, Mushayanembwa P, Majo FD, Tavengwa NV, Humphrey JH, Kirkpatrick BD, Kosek M, Ntozini R, Prendergast AJ. Associations Between Histo-blood Group Antigen Status in Mother-Infant Dyads and Infant Oral Rotavirus Vaccine Immunogenicity in Rural Zimbabwe. J Infect Dis 2025; 231:e225-e233. [PMID: 39352457 PMCID: PMC11793023 DOI: 10.1093/infdis/jiae456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/28/2024] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Histo-blood group antigen (HBGA) phenotypes may contribute to poor oral rotavirus vaccine (RVV) immunogenicity, since rotavirus binds intestinal epithelial HBGA glycans, while maternal HBGA status shapes breastmilk composition, which influences the composition of the infant microbiome. We investigated associations between maternal/infant HBGA phenotypes and RVV immunogenicity in rural Zimbabwe. METHODS We undertook salivary FUT2/FUT3 phenotyping in mother-infant pairs. Serum anti-rotavirus immunoglobulin A was measured by enzyme-linked immunosorbent assay. We explored adjusted associations between FUT2/FUT3 status and RVV seroconversion (primary outcome, n = 322) and seropositivity and geometric mean titer (secondary outcomes, n = 776). RESULTS Infants of FUT2- or FUT3-positive women were less likely to seroconvert post-RVV than infants of FUT2- or FUT3-negative women (FUT2 positive [20.1%] vs FUT2 negative [27.5%]: adjusted relative risk [aRR], 0.47; 95% CI, .26-.82; P = .008; FUT3 positive [18.1%] vs FUT3 negative [30.0%]: aRR, 0.45; 95% CI, .25-.78; P = .005). When compared with FUT2-positive infants with FUT2-positive mothers, FUT2-positive infants with FUT2-negative mothers were twice as likely to seroconvert (36.8% vs 21.9%; aRR, 2.12; 95% CI, 1.23-3.63; P = .006). When compared with FUT3-positive infants with FUT3-positive mothers, FUT3-positive infants with FUT3-negative mothers were 3 times as likely to seroconvert (48.3% vs 18.2%; aRR, 2.99; 95% CI, 1.82-4.90; P < .001). CONCLUSIONS Maternal and infant FUT2 and FUT3 status influences infant RVV immunogenicity.
Collapse
Affiliation(s)
- Joshua Pun
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, United Kingdom
| | - Ceri Evans
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, United Kingdom
| | - Bernard Chasekwa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - James A Church
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, United Kingdom
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Ethan Gough
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Kuda Mutasa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Sandra Rukobo
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Margaret Govha
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | | | - Florence D Majo
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Naume V Tavengwa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Jean H Humphrey
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Beth D Kirkpatrick
- Vaccine Testing Center, Department of Microbiology and Molecular Genetics, College of Medicine, University of Vermont, Burlington
| | - Margaret Kosek
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville
| | - Robert Ntozini
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Andrew J Prendergast
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, United Kingdom
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| |
Collapse
|
2
|
Kyu HH, Vongpradith A, Dominguez RMV, Ma J, Albertson SB, Novotney A, Khalil IA, Troeger CE, Doxey MC, Ledesma JR, Sirota SB, Bender RG, Swetschinski LR, Cunningham M, Spearman S, Abate YH, Abd Al Magied AHA, Abd ElHafeez S, Abdoun M, Abera B, Abidi H, Aboagye RG, Abtew YD, Abualruz H, Abu-Gharbieh E, Abukhadijah HJ, Aburuz S, Addo IY, Adekanmbi V, Adetunji COO, Adeyeoluwa TE, Adhikary RK, Adnani QES, Adra S, Adzigbli LA, Afolabi AA, Afzal MS, Afzal S, Agampodi SB, Agide FD, Ahinkorah BO, Ahmad A, Ahmad S, Ahmed A, Ahmed A, Ahmed H, Ahmed S, Akinosoglou K, Akter E, Al Awaidy S, Alajlani MM, Alam K, Albakri A, Albashtawy M, Aldhaleei WA, Algammal AM, Al-Gheethi AAS, Ali A, Ali SS, Ali W, Alif SM, Aljunid SM, Al-Marwani S, Almazan JU, Al-Mekhlafi HM, Almustanyir S, Alqahatni SA, Alrawashdeh A, Al-Rifai RH, Alsabri MA, Altaf A, Altirkawi KA, Alvis-Guzman N, Alvis-Zakzuk NJ, Alyahya MSI, Al-Zyoud WA, Amugsi DA, Andrei CL, Antoni S, Anuoluwa BS, Anuoluwa IA, Anwar S, Anwari P, Apostol GLC, Arabloo J, Arafat M, Aravkin AY, Areda D, Aregawi BB, Aremu A, Arndt MB, Asgedom AA, Ashraf T, Athari SS, Atreya A, Ayele F, Azadi D, Azhar GS, Aziz S, Azzam AY, Babu GR, Bahrami Taghanaki P, Bahramian S, Balakrishnan S, Banik B, Bante SA, Bardhan M, Bärnighausen TW, Barqawi HJ, Barrow A, Basharat Z, Bassat Q, Bastan MM, Basu S, Bathini PP, Behzadi P, Beiranvand M, Bello MB, Bello OO, Beloukas A, Beran A, Bhandari D, Bhardwaj P, Bhutta ZA, Borhany H, Bouaoud S, Brauer M, Buonsenso D, Butt ZA, Çakmak Barsbay M, Cámera LA, Capodici A, Castañeda-Orjuela CA, Cenderadewi M, Chakraborty C, Chakraborty S, Chattu VK, Chaudhary AA, Chichagi F, Ching PR, Chirinos-Caceres JL, Chopra H, Choudhari SG, Chowdhury EK, Chu DT, Chukwu IS, Chutiyami M, Cruz-Martins N, Dadras O, Dai X, Dandona L, Dandona R, Darcho SD, Das JK, Dash NR, Delgado-Enciso I, Desye B, Devanbu VGC, Dhama K, Dhimal M, Diaz MJ, Do TC, Dohare S, Dorostkar F, Doshi OP, Doshmangir L, Dsouza HL, Duraisamy S, Durojaiye OC, E'mar AR, Ed-Dra A, Edinur HA, Efendi D, Efendi F, Eghbali F, Ekundayo TC, El Sayed I, Elhadi M, El-Metwally AA, Elshaer M, Elsohaby I, Eltaha C, Eshrati B, Eslami M, Fahim A, Fakhradiyev IR, Fakhri-Demeshghieh A, Farahmand M, Fasina FO, Fasina MM, Feizkhah A, Fekadu G, Ferreira N, Fetensa G, Fischer F, Fukumoto T, Fux B, Gadanya MA, Gaihre S, Gajdács M, Galali Y, Gandhi AP, Gautam RK, Gebregergis MW, Gebrehiwot M, Gebremeskel TG, Getachew ME, Getahun GK, Getie M, Ghasemzadeh A, Ghazy RM, Ghozy S, Gil AU, Girmay AA, Gizaw ATT, Golechha M, Goleij P, Gona PN, Grada A, Guarducci G, Gudeta MD, Gupta VK, Habteyohannes AD, Hadi NR, Hamidi S, Hamilton EB, Harapan H, Hasan MK, Hasan SM, Hasani H, Hasnain MS, Hassan II, He J, Hemmati M, Hezam K, Hosseinzadeh M, Huang J, Huynh HH, Ibitoye SE, Ikuta KS, Ilesanmi OS, Ilic IM, Ilic MD, Inamdar S, Isa MA, Islam MR, Islam SMS, Ismail NE, Iwu CD, Jacobsen KH, Jahrami H, Jain A, Jain N, Jairoun AA, Jakovljevic M, Jalilzadeh Yengejeh R, Javidnia J, Jayaram S, Jokar M, Jonas JB, Joseph A, Joseph N, Jozwiak JJ, Kabir H, Kadir DHH, Kamal MM, Kamal VK, Kamireddy A, Kanchan T, Kanmodi KK, Kannan S S, Kantar RS, Karami J, Karki P, Kasraei H, Kaur H, Keykhaei M, Khader YS, Khalilian A, Khamesipour F, Khan G, Khan MJ, Khan ZA, Khanal V, Khatab K, Khatatbeh MM, Khater AM, Kheirallah KA, Khidri FF, Khosla AA, Kim K, Kim YJ, Kisa A, Kissoon N, Klu D, Kochhar S, Kolahi AA, Kompani F, Kosen S, Krishan K, Kuate Defo B, Kuddus MA, Kuddus M, Kulimbet M, Kumar GA, Kumar R, Kyei-Arthur F, Lahariya C, Lal DK, Le NHH, Lee SW, Lee WC, Lee YY, Li MC, Ligade VS, Liu G, Liu S, Liu X, Liu X, Lo CH, Lucchetti G, Lv L, Malhotra K, Malik AA, Marasini BP, Martorell M, Marzo RR, Masoumi-Asl H, Mathur M, Mathur N, Mediratta RP, Meftah E, Mekene Meto T, Meles HN, Melese EB, Mendoza W, Merati M, Meretoja TJ, Mestrovic T, Mettananda S, Minh LHN, Mishra V, Mithra P, Mohamadkhani A, Mohamed AI, Mohamed MFH, Mohamed NS, Mohammed M, Mohammed S, Monasta L, Moni MA, Motappa R, Mougin V, Mubarik S, Mulita F, Munjal K, Munkhsaikhan Y, Naghavi P, Naik G, Nair TS, Najmuldeen HHR, Nargus S, Narimani Davani D, Nashwan AJ, Natto ZS, Nazri-Panjaki A, Nchanji GT, Ndishimye P, Ngunjiri JW, Nguyen DH, Nguyen NNY, Nguyen VT, Nigatu YT, Nikoobar A, Niranjan V, Nnaji CA, Noman EA, Noor NM, Noor STA, Nouri M, Nozari M, Nri-Ezedi CA, Nugen F, Odetokun IA, Ogunfowokan AA, Ojo-Akosile TR, Okeke IN, Okekunle AP, Olorukooba AA, Olufadewa II, Oluwatunase GO, Orish VN, Ortega-Altamirano DV, Ortiz-Prado E, Osuagwu UL, Osuolale O, Ouyahia A, Padubidri JR, Pandey A, Pandey A, Pando-Robles V, Pardhan S, Parikh RR, Patel J, Patil S, Pawar S, Peprah P, Perianayagam A, Perna S, Petcu IR, Philip AK, Polibin RV, Postma MJ, Pourtaheri N, Pradhan J, Prates EJS, Pribadi DRA, Qasim NH, Qazi AS, R D, Radhakrishnan V, Rahim F, Rahman M, Rahman MA, Rahmani S, Rahmanian M, Rahmanian N, Ramadan MM, Ramasamy SK, Ramazanu S, Rameto MAA, Ramteke PW, Rana K, Ranabhat CL, Rasella D, Rashidi MM, Rasouli-Saravani A, Rathish D, Rauniyar SK, Rawaf S, Redwan EMM, Regmi AR, Rengasamy KRR, Rezaei N, Rezaei N, Rezaeian M, Riad A, Rodrigues M, Rodriguez JAB, Roever L, Rohilla R, Ronfani L, Rony MKK, Ross AG, Roudashti S, Roy B, Runghien T, Sachdeva Dhingra M, Saddik BA, Sadeghi E, Safari M, Sahoo SS, Sajadi SM, Salami AA, Saleh MA, Samadi Kafil H, Samodra YL, Sanabria J, Sanjeev RK, Sarkar T, Sartorius B, Sathian B, Satpathy M, Sawhney M, Schumacher AE, Sebsibe MA, Serban D, Shafie M, Shahid S, Shahid W, Shaikh MA, Sham S, Shamim MA, Shams-Beyranvand M, Shamshirgaran MA, Shanawaz M, Shannawaz M, Sharifan A, Sharma M, Sharma V, Shenoy SM, Sherchan SP, Shetty M, Shetty PH, Shiferaw D, Shittu A, Shorofi SA, Siddig EE, Silva LMLR, Singh B, Singh JA, Sinto R, Socea B, Soeters HM, Sokhan A, Sood P, Soraneh S, Sreeramareddy CT, Srinivasamurthy SK, Srivastava VK, Stanikzai MH, Subedi N, Subramaniyan V, Sulaiman SK, Suleman M, Swain CK, Szarpak L, T Y SS, Tabatabaei SM, Tabche C, Taha ZMA, Talukder A, Tamuzi JL, Tan KK, Tandukar S, Temsah MH, Thakali O, Thakur R, Thirunavukkarasu S, Thomas J, Thomas NK, Ticoalu JHV, Tiwari K, Tovani-Palone MR, Tram KH, Tran AT, Tran NM, Tran TH, Tromans SJ, Truyen TTTT, Tumurkhuu M, Udoakang AJ, Udoh A, Ullah S, Umair M, Umar M, Unim B, Unnikrishnan B, Vahdati S, Vaithinathan AG, Valizadeh R, Verma M, Verras GI, Vinayak M, Waheed Y, Walde MT, Wang Y, Waqas M, Weerakoon KG, Wickramasinghe ND, Wolde AA, Wu F, Yaghoubi S, Yaya S, Yezli S, Yiğit V, Yin D, Yon DK, Yonemoto N, Yusuf H, Zahid MH, Zakham F, Zaki L, Zare I, Zastrozhin M, Zeariya MGM, Zhang H, Zhang ZJ, Zhumagaliuly A, Zia H, Zoladl M, Mokdad AH, Lim SS, Vos T, Platts-Mills JA, Mosser JF, Reiner RC, Hay SI, Naghavi M, Murray CJL. Global, regional, and national age-sex-specific burden of diarrhoeal diseases, their risk factors, and aetiologies, 1990-2021, for 204 countries and territories: a systematic analysis for the Global Burden of Disease Study 2021. THE LANCET. INFECTIOUS DISEASES 2024:S1473-3099(24)00691-1. [PMID: 39708822 DOI: 10.1016/s1473-3099(24)00691-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/09/2024] [Accepted: 10/14/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Diarrhoeal diseases claim more than 1 million lives annually and are a leading cause of death in children younger than 5 years. Comprehensive global estimates of the diarrhoeal disease burden for specific age groups of children younger than 5 years are scarce, and the burden in children older than 5 years and in adults is also understudied. We used results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2021 to assess the burden of, and trends in, diarrhoeal diseases overall and attributable to 13 pathogens, as well as the contributions of associated risk factors, in children and adults in 204 countries and territories from 1990 to 2021. METHODS We used the Cause of Death Ensemble modelling strategy to analyse vital registration data, verbal autopsy data, mortality surveillance data, and minimally invasive tissue sampling data. We used DisMod-MR (version 2.1), a Bayesian meta-regression tool, to analyse incidence and prevalence data identified via systematic reviews, population-based surveys, and claims and inpatient data. We calculated diarrhoeal disability-adjusted life-years (DALYs) as the sum of years of life lost (YLLs) and years lived with disability (YLDs) for each location, year, and age-sex group. For aetiology estimation, we used a counterfactual approach to quantify population-attributable fractions (PAFs). Additionally, we estimated the diarrhoeal disease burden attributable to the independent effects of risk factors using the comparative risk assessment framework. FINDINGS In 2021, diarrhoeal diseases caused an estimated 1·17 million (95% uncertainty interval 0·793-1·62) deaths globally, representing a 60·3% (50·6-69·0) decrease since 1990 (2·93 million [2·31-3·73] deaths). The most pronounced decline was in children younger than 5 years, with a 79·2% (72·4-84·6) decrease in diarrhoeal deaths. Global YLLs also decreased substantially, from 186 million (147-221) in 1990 to 51·4 million (39·9-65·9) in 2021. In 2021, an estimated 59·0 million (47·2-73·2) DALYs were attributable to diarrhoeal diseases globally, with 30·9 million (23·1-42·0) of these affecting children younger than 5 years. Leading risk factors for diarrhoeal DALYs included low birthweight and short gestation in the neonatal age groups, child growth failure in children aged between 1-5 months and 2-4 years, and unsafe water and poor sanitation in older children and adults. We estimated that the removal of all evaluated diarrhoeal risk factors would reduce global DALYs from 59·0 million (47·2-73·2) to 4·99 million (1·99-10·0) among all ages combined. Globally in 2021, rotavirus was the predominant cause of diarrhoeal deaths across all ages, with a PAF of 15·2% (11·4-20·1), followed by norovirus at 10·6% (2·3-17·0) and Cryptosporidium spp at 10·2% (7·03-14·3). In children younger than 5 years, the fatal PAF of rotavirus was 35·2% (28·7-43·0), followed by Shigella spp at 24·0% (15·2-37·9) and adenovirus at 23·8% (14·8-36·3). Other pathogens with a fatal PAF greater than 10% in children younger than 5 years included Cryptosporidium spp, typical enteropathogenicEscherichia coli, and enterotoxigenic E coli producing heat-stable toxin. INTERPRETATION The substantial decline in the global burden of diarrhoeal diseases since 1990, particularly in children younger than 5 years, supports the effectiveness of health interventions such as oral rehydration therapy, enhanced water, sanitation, and hygiene (WASH) infrastructure, and the introduction and scale-up of rotavirus vaccination. Targeted interventions and preventive measures against key risk factors and pathogens could further reduce this burden. Continued investment in the development and distribution of vaccines for leading pathogens remains crucial. FUNDING Bill & Melinda Gates Foundation.
Collapse
|
3
|
de Oliveira Matos A, Vilela Rodrigues TC, Tiwari S, Dos Santos Dantas PH, Sartori GR, de Carvalho Azevedo VA, Martins Da Silva JH, de Castro Soares S, Silva-Sales M, Sales-Campos H. Immunoinformatics-guided design of a multi-valent vaccine against Rotavirus and Norovirus (ChRNV22). Comput Biol Med 2023; 159:106941. [PMID: 37105111 DOI: 10.1016/j.compbiomed.2023.106941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/17/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Rotavirus (RV) and Norovirus (NV) are the main viral etiologic agents of acute gastroenteritis (AG), a serious pediatric condition associated with significant death rates and long-term complications. Anti-RV vaccination has been proved efficient in the reduction of severe AG worldwide, however, the available vaccines are all attenuated and have suboptimal efficiencies in developing countries, where AG leads to substantial disease burden. On the other hand, no NV vaccine has been licensed so far. Therefore, we used immunoinformatics tools to develop a multi-epitope vaccine (ChRNV22) to prevent severe AG by RV and NV. Epitopes were predicted against 17 prevalent genotypes of four structural proteins (NV's VP1, RV's VP4, VP6 and VP7), and then assembled in a chimeric protein, with two small adjuvant sequences (tetanus toxin P2 epitope and a conserved sequence of RV's enterotoxin, NSP4). Simulations of the immune response and interactions with immune receptors indicated the immunogenic properties of ChRNV22, including a Th1-biased response. In silico search for putative host-homologous, allergenic and toxic regions also indicated the vaccine safety. In summary, we developed a multi-epitope vaccine against different NV and RV genotypes that seems promising for the prevention of severe AG, which will be further assessed by in vivo tests.
Collapse
Affiliation(s)
- Amanda de Oliveira Matos
- Laboratory of Mucosal Immunology and Immunoinformatics (LIM), Institute of Tropical Pathology and Public Health, Federal University of Goiás (UFG), Goiânia, 746050-050, Brazil
| | - Thaís Cristina Vilela Rodrigues
- Laboratory of Cellular and Molecular Genetics (LGCM), Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, 31270-901, Brazil
| | - Sandeep Tiwari
- Institute of Biology, Federal University of Bahia (UFBA), Salvador, 40170-115, Brazil; Institute of Health Sciences, Federal University of Bahia (UFBA), Salvador, 40231-300, Brazil
| | - Pedro Henrique Dos Santos Dantas
- Laboratory of Mucosal Immunology and Immunoinformatics (LIM), Institute of Tropical Pathology and Public Health, Federal University of Goiás (UFG), Goiânia, 746050-050, Brazil
| | | | - Vasco Ariston de Carvalho Azevedo
- Laboratory of Cellular and Molecular Genetics (LGCM), Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, 31270-901, Brazil
| | | | - Siomar de Castro Soares
- Department of Immunology, Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, 38025-180, Brazil
| | - Marcelle Silva-Sales
- Laboratory of Virology and Cellular Culture (LABVICC), Institute of Tropical Pathology and Public Health, Federal University of Goiás (UFG), Goiânia, 746050-050, Brazil
| | - Helioswilton Sales-Campos
- Laboratory of Mucosal Immunology and Immunoinformatics (LIM), Institute of Tropical Pathology and Public Health, Federal University of Goiás (UFG), Goiânia, 746050-050, Brazil.
| |
Collapse
|
4
|
Velasquez-Portocarrero DE, Wang X, Cortese MM, Snider CJ, Anand A, Costantini VP, Yunus M, Aziz AB, Haque W, Parashar U, Sisay Z, Soeters HM, Hyde TB, Jiang B, Zaman K. Head-to-head comparison of the immunogenicity of RotaTeq and Rotarix rotavirus vaccines and factors associated with seroresponse in infants in Bangladesh: a randomised, controlled, open-label, parallel, phase 4 trial. THE LANCET. INFECTIOUS DISEASES 2022; 22:1606-1616. [PMID: 35961362 PMCID: PMC11542682 DOI: 10.1016/s1473-3099(22)00368-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/03/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND A head-to-head comparison of the most widely used oral rotavirus vaccines has not previously been done, particularly in a high child mortality setting. We therefore aimed to compare the immunogenicity of RotaTeq (Merck, Kenilworth, NJ, USA) and Rotarix (GlaxoSmithKline, Rixensart, Belgium) rotavirus vaccines in the same population and examined risk factors for low seroresponse. METHODS We did a randomised, controlled, open-label, parallel, phase 4 trial in urban slums within Mirpur and Mohakahli (Dhaka, Bangladesh). We enrolled eligible participants who were healthy infants aged 6 weeks and full-term (ie, >37 weeks' gestation). We randomly assigned participants (1:1), using block randomisation via a computer-generated electronic allocation with block sizes of 8, 16, 24, and 32, to receive either three RotaTeq vaccine doses at ages 6, 10, and 14 weeks or two Rotarix doses at ages 6 and 10 weeks without oral poliovirus vaccine. Coprimary outcomes were the rotavirus-specific IgA seroconversion in both vaccines, and the comparison of the rotavirus IgA seroconversion by salivary secretor phenotype in each vaccine arm. Seroconversion at age 18 weeks in the RotaTeq arm and age of 14 weeks in the Rotarix arm was used to compare the complete series of each vaccine. Seroconversion at age 14 weeks was used to compare two RotaTeq doses versus two Rotarix doses. Seroconversion at age 22 weeks was used to compare the immunogenicity at the same age after receiving the full vaccine series. Safety was assessed for the duration of study participation. This study is registered with ClinicalTrials.gov, NCT02847026. FINDINGS Between Sept 1 and Dec 8, 2016, a total of 1144 infants were randomly assigned to either the RotaTeq arm (n=571) or Rotarix arm (n=573); 1080 infants (531 in the RotaTeq arm and 549 in the Rotarix arm) completed the study. Rotavirus IgA seroconversion 4 weeks after the full series occurred in 390 (73%) of 531 infants age 18 weeks in the RotaTeq arm and 354 (64%) of 549 infants age 14 weeks in the Rotarix arm (p=0·01). At age 14 weeks, 4 weeks after two doses, RotaTeq recipients had lower seroconversion than Rotarix recipients (268 [50%] of 531 vs 354 [64%] of 549; p<0·0001). However, at age 22 weeks, RotaTeq recipients had higher seroconversion than Rotarix recipients (394 [74%] of 531 vs 278 [51%] of 549; p<0·0001). Among RotaTeq recipients, seroconversion 4 weeks after the third dose was higher than after the second dose (390 [73%] of 531 vs 268 [50%] of 531; p<0·0001]. In the RotaTeq arm, rotavirus IgA seroconversion was lower in non-secretors than in secretors at ages 14 weeks (p=0·08), 18 weeks (p=0·01), and 22 weeks (p=0·02). Similarly, in the Rotarix arm, rotavirus IgA seroconversion was lower in non-secretors than in secretors at ages 14 weeks (p=0·02) and 22 weeks (p=0·01). 65 (11%) of 571 infants had adverse events in the RotaTeq arm compared with 63 (11%) of 573 infants in the Rotarix arm; no adverse events were attributed to the use of either vaccine. One death due to aspiration occurred in the RotaTeq arm, which was not related to the vaccine. INTERPRETATION RotaTeq induced a higher magnitude and longer duration of rotavirus IgA response than Rotarix in this high child mortality setting. Additional vaccination strategies should be evaluated to overcome the suboptimal performance of current oral rotavirus vaccines in these settings. FUNDING US Centers for Disease Control and Prevention.
Collapse
Affiliation(s)
| | - Xiaoqian Wang
- US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | - Abhijeet Anand
- US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Md Yunus
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Asma B Aziz
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Warda Haque
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Umesh Parashar
- US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Zufan Sisay
- US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Heidi M Soeters
- US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Terri B Hyde
- US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Baoming Jiang
- US Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Khalequ Zaman
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
5
|
Wang SJ, Chen LN, Wang SM, Zhou HL, Qiu C, Jiang B, Qiu TY, Chen SL, von Seidlein L, Wang XY. Genetic characterization of two G8P[8] rotavirus strains isolated in Guangzhou, China, in 2020/21: evidence of genome reassortment. BMC Infect Dis 2022; 22:579. [PMID: 35764948 PMCID: PMC9238253 DOI: 10.1186/s12879-022-07542-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Background The G8 rotavirus genotype has been detected frequently in children in many countries and even became the predominant strain in sub-Saharan African countries, while there are currently no reports from China. In this study we described the genetic characteristics and evolutionary relationship between rotavirus strains from Guangzhou in China and the epidemic rotavirus strains derived from GenBank, 2020–2021. Methods Virus isolation and subsequent next-generation sequencing were performed for confirmed G8P[8] specimens. The genetic characteristics and evolutionary relationship were analyzed in comparison with epidemic rotavirus sequences obtained from GenBank. Results The two Guangzhou G8 strains were DS-1-like with the closest genetic distance to strains circulating in Southeast Asia. The VP7 genes of the two strains were derived from a human, not an animal G8 rotavirus. Large genetic distances in several genes suggested that the Guangzhou strains may not have been transmitted directly from Southeast Asian countries, but have emerged following reassortment events. Conclusions We report the whole genome sequence information of G8P[8] rotaviruses recently detected in China; their clinical and epidemiological significance remains to be explored further. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07542-9.
Collapse
Affiliation(s)
- Si-Jie Wang
- Shanghai Institute of Infectious Disease and Biosecurity, and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Medical Molecular Virology of MoE & MoH, Fudan University, Shanghai, People's Republic of China
| | - Li-Na Chen
- Key Laboratory of Medical Molecular Virology of MoE & MoH, Fudan University, Shanghai, People's Republic of China
| | - Song-Mei Wang
- Laboratory of Molecular Biology, Training Center of Medical Experiments, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Hong-Lu Zhou
- Shanghai Institute of Infectious Disease and Biosecurity, and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Chao Qiu
- Shanghai Institute of Infectious Disease and Biosecurity, and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Baoming Jiang
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Tian-Yi Qiu
- Zhongshan Hospital, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China.
| | - Sheng-Li Chen
- Pediatric Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue Central, Guangzhou, People's Republic of China.
| | - Lorenz von Seidlein
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Xuan-Yi Wang
- Shanghai Institute of Infectious Disease and Biosecurity, and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China. .,Key Laboratory of Medical Molecular Virology of MoE & MoH, Fudan University, Shanghai, People's Republic of China. .,Children's Hospital, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
6
|
Microneedle patch as a new platform to effectively deliver inactivated polio vaccine and inactivated rotavirus vaccine. NPJ Vaccines 2022; 7:26. [PMID: 35228554 PMCID: PMC8885742 DOI: 10.1038/s41541-022-00443-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 01/20/2022] [Indexed: 11/22/2022] Open
Abstract
We recently reported a lack of interference between inactivated rotavirus vaccine (IRV) and inactivated poliovirus vaccine (IPV) and their potential dose sparing when the two vaccines were administered intramuscularly either in combination or standalone in rats and guinea pigs. In the present study, we optimized the formulations of both vaccines and investigated the feasibility of manufacturing a combined IRV-IPV dissolving microneedle patch (dMNP), assessing its compatibility and immunogenicity in rats. Our results showed that IRV delivered by dMNP alone or in combination with IPV induced similar levels of RV-specific IgG and neutralizing antibody. Likewise, IPV delivered by dMNP alone or in combination with IRV induced comparable levels of neutralizing antibody of poliovirus types 1, 2, and 3. We further demonstrated high stability of IRV-dMNP at 5, 25, and 40 °C and IPV-dMNP at 5 and 25 °C, and found that three doses of IRV or IPV when co-administered at a quarter dose was as potent as a full target dose in inducing neutralizing antibodies against corresponding rotavirus or poliovirus. We conclude that IRV-IPV dMNP did not interfere with each other in triggering an immunologic response and were highly immunogenic in rats. Our findings support the further development of this innovative approach to deliver a novel combination vaccine against rotavirus and poliovirus in children throughout the world.
Collapse
|
7
|
Price J, Mooney J, Bain C, Bawa JT, Gurley N, Kumar A, Liyanage G, Mkisi RE, Odero C, Seck K, Simpson E, Hausdorff WP. National stakeholder preferences for next-generation rotavirus vaccines: Results from a six-country study. Vaccine 2022; 40:370-379. [PMID: 34863614 PMCID: PMC8767494 DOI: 10.1016/j.vaccine.2021.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Currently available live, oral rotavirus vaccines (LORVs) have significantly reduced severe rotavirus hospitalizations and deaths worldwide. However, LORVs are not as effective in low- and middle-income countries (LMIC) where rotavirus disease burden is highest. Next-generation rotavirus vaccine (NGRV) candidates in development may have a greater public health impact where they are needed most. The feasibility and acceptability of possible new rotavirus vaccines were explored as part of a larger public health value proposition for injectable NGRVs in LMICs. OBJECTIVE To assess national stakeholder preferences for currently available LORVs and hypothetical NGRVs and understand rationales and drivers for stated preferences. METHODS Interviews were conducted with 71 national stakeholders who influence vaccine policy and national programming. Stakeholders from Ghana, Kenya, Malawi, Peru, Senegal, and Sri Lanka were interviewed using a mixed-method guide. Vaccine preferences were elicited on seven vaccine comparisons involving LORVs and hypothetical NGRVs based on information presented comparing the vaccines' attributes. Reasons for vaccine preference were elicited in open-ended questions, and the qualitative data were analyzed on key preference drivers. RESULTS Nearly half of the national stakeholders interviewed preferred a highly effective standalone, injectable NGRV over current LORVs. When presented as having similar efficacy to the LORV, however, very few stakeholders preferred the injectable NGRV, even at substantially lower cost. Similarly, a highly effective standalone injectable NGRV was generally not favored over an equally effective oral NGRV following a neonatal-infant schedule, despite higher cost of the neonatal option. An NGRV-DTP-containing combination vaccine was strongly preferred over all other options, whether delivered alone with efficacy similar to current LORVs or co-administered alongside an LORV (LORV + NGRV-DTP) to increase efficacy. CONCLUSION Results from these national stakeholder interviews provide valuable insights to inform ongoing and future NGRV research and development.
Collapse
Affiliation(s)
- Jessica Price
- PATH, Seattle, 2201 Westlake Ave, Seattle, WA 98121, USA.
| | - Jessica Mooney
- PATH, Seattle, 2201 Westlake Ave, Seattle, WA 98121, USA
| | - Carolyn Bain
- PATH, Seattle, 2201 Westlake Ave, Seattle, WA 98121, USA
| | | | - Nikki Gurley
- PATH, Seattle, 2201 Westlake Ave, Seattle, WA 98121, USA
| | - Amresh Kumar
- PATH, India, 15th Floor, Dr. Gopal Das Bhawan 28, Barakhamba Road, Connaught Place, New Delhi 110001, India
| | - Guwani Liyanage
- Department of Pediatrics, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
| | | | - Chris Odero
- PATH, Kenya, ACS Plaza, 4th Floor Lenana and Galana Road, P.O. Box 76634-00508, Nairobi, Kenya
| | - Karim Seck
- PATH Senegal Consultant, Fann Résidence Rue Saint John Perse X F Dakar, Senegal
| | - Evan Simpson
- PATH, Seattle, 2201 Westlake Ave, Seattle, WA 98121, USA
| | - William P Hausdorff
- PATH, Washington, DC, 455 Massachusetts Ave. NW, Suite 1000, Washington, DC 20001, USA; Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
8
|
Sadiq A, Bostan N, Aziz A. Effect of rotavirus genetic diversity on vaccine impact. Rev Med Virol 2022; 32:e2259. [PMID: 34997676 DOI: 10.1002/rmv.2259] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/05/2021] [Indexed: 11/07/2022]
Abstract
Group A rotaviruses (RVAs) are the leading cause of gastroenteritis, causing 0.2 million deaths and several million hospitalisations globally each year. Four rotavirus vaccines (RotarixTM , RotaTeqTM , Rotavac® and ROTASIIL® ) have been pre-qualified by the World Health Organization (WHO), but the two newly pre-qualified vaccines (Rotavac® and ROTASIIL® ) are currently only in use in Palestine and India, respectively. In 2009, WHO strongly proposed that rotavirus vaccines be included in the routine vaccination schedule of all countries around the world. By the end of 2019, a total of 108 countries had administered rotavirus vaccines, and 10 countries have currently been approved by Gavi for the introduction of rotavirus vaccine in the near future. With 39% of global coverage, rotavirus vaccines have had a substantial effect on diarrhoeal morbidity and mortality in different geographical areas, although efficacy appears to be higher in high income settings. Due to the segmented RNA genome, the pattern of RVA genotypes in the human population is evolving through interspecies transmission and/or reassortment events for which the vaccine might be less effective in the future. However, despite the relative increase in some particular genotypes after rotavirus vaccine use, the overall efficacy of rotavirus mass vaccination worldwide has not been affected. Some of the challenges to improve the effect of current rotavirus vaccines can be solved in the future by new rotavirus vaccines and by vaccines currently in progress.
Collapse
Affiliation(s)
- Asma Sadiq
- Department of Biosciences, Molecular Virology Laboratory, COMSATS University, Islamabad, Pakistan
| | - Nazish Bostan
- Department of Biosciences, Molecular Virology Laboratory, COMSATS University, Islamabad, Pakistan
| | - Aamir Aziz
- Sarhad University of Science and Information Technology, Institute of Biological Sciences, Sarhad University, Peshawar, Pakistan
| |
Collapse
|
9
|
Glass RI, Tate JE, Jiang B, Parashar U. The Rotavirus Vaccine Story: From Discovery to the Eventual Control of Rotavirus Disease. J Infect Dis 2021; 224:S331-S342. [PMID: 34590142 PMCID: PMC8482027 DOI: 10.1093/infdis/jiaa598] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Worldwide, rotavirus is the leading pathogen causing severe diarrhea in children and a major cause of under 5 years mortality. In 1998, the first rotavirus vaccine, RotaShield, was licensed in the United States but a rare adverse event, intussusception, led to its withdrawal. Seven years passed before the next generation of vaccines became available, Rotarix (GSK) and Rotateq (Merck), and 11 years later, 2 additional vaccines from India, Rotavac (Bharat) and Rotasiil (Serum Institute), were recommended by World Health Organization for all children. Today, these vaccines are used in more than 100 countries and have contributed to marked decreases in hospitalizations and deaths from diarrhea. However, these live oral vaccines are less effective in low-income countries with high under 5 years mortality for reasons that are not understood. Efforts to develop new vaccines that avoid the oral route are in progress and will likely be needed to ultimately control rotavirus disease.
Collapse
Affiliation(s)
- Roger I Glass
- Viral Gastroenteritis Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.,Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Jacqueline E Tate
- Viral Gastroenteritis Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Baoming Jiang
- Viral Gastroenteritis Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Umesh Parashar
- Viral Gastroenteritis Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Kurokawa N, Robinson MK, Bernard C, Kawaguchi Y, Koujin Y, Koen A, Madhi S, Polasek TM, McNeal M, Dargis M, Couture MMJ, Trépanier S, Forrest BD, Tsutsui N. Safety and immunogenicity of a plant-derived rotavirus-like particle vaccine in adults, toddlers and infants. Vaccine 2021; 39:5513-5523. [PMID: 34454786 DOI: 10.1016/j.vaccine.2021.08.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND This study is the first clinical trial for a parenteral non-replicating rotavirus vaccine developed using virus-like particle (VLP) technology. METHODS This open-labeled, randomized, placebo-controlled trial was conducted in two parts: Part A (a first-in-human study in Australian adults) and Part B (ascending dose and descending age in South African adults, toddlers and infants). In Part A, two cohorts of 10 adults were assigned to receive a single intramuscular injection of 1 of 2 escalating dose levels of the rotavirus VLP (Ro-VLP) vaccine (7 μg or 21 μg) or placebo. In Part B, one cohort of 10 adults was assigned to receive a single injection of the Ro-VLP vaccine (21 μg) or placebo, two cohorts of 10 toddlers were assigned to receive 2 injections of 1 of 2 escalating dose levels of the Ro-VLP vaccine (7 μg or 21 μg) or placebo 28 days apart, and three cohorts of 20 infants were assigned to receive 3 injections of 1 of 3 escalating dose levels of the Ro-VLP vaccine (2.5 μg, 7 μg or 21 μg) or placebo or 2 doses of oral Rotarix 28 days apart. Safety, reactogenicity and immunogenicity were assessed. RESULTS There were no safety or tolerability concerns after administration of the Ro-VLP vaccine. The Ro-VLP vaccine induced an anti-G1P[8] IgG response in infants 4 weeks after the second and third doses. Neutralizing antibody responses against homologous G1P[8] rotavirus were higher in all Ro-VLP infant groups than in the placebo group 4 weeks after the third dose. No heterotypic immunity was elicited by the Ro-VLP vaccine. CONCLUSIONS The Ro-VLP vaccine was well tolerated and induced a homotypic immune response in infants, suggesting that this technology platform is a favorable approach for a parenteral non-replicating rotavirus vaccine. CLINICAL TRIAL REGISTRATION NCT03507738.
Collapse
Affiliation(s)
- Natsuki Kurokawa
- Mitsubishi Tanabe Pharma Corporation, 17-10, Nihonbashi-Koamicho, Chuo-ku, Tokyo 103-8405, Japan.
| | | | - Catherine Bernard
- International Regulatory Affairs Services, Inc., 10626 Wagon Box Way, Highlands Ranch, CO 80130, USA
| | - Yutaka Kawaguchi
- Mitsubishi Tanabe Pharma Corporation, 17-10, Nihonbashi-Koamicho, Chuo-ku, Tokyo 103-8405, Japan
| | - Yoshito Koujin
- Mitsubishi Tanabe Pharma Corporation, 17-10, Nihonbashi-Koamicho, Chuo-ku, Tokyo 103-8405, Japan
| | - Anthonet Koen
- Respiratory and Meningeal Pathogens Research Unit, Chris Hani Baragwanath Hospital, Berstham Chris Hani Road, Soweto 2013, South Africa
| | - Shabir Madhi
- Respiratory and Meningeal Pathogens Research Unit, Chris Hani Baragwanath Hospital, Berstham Chris Hani Road, Soweto 2013, South Africa
| | - Thomas M Polasek
- Department of Clinical Pharmacology, Royal Adelaide Hospital, Port Road, Adelaide, SA 5000, Australia
| | - Monica McNeal
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| | - Michèle Dargis
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC, Canada
| | - Manon M-J Couture
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC, Canada
| | - Sonia Trépanier
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC, Canada
| | - Bruce D Forrest
- Cognoscenti Bioscience, LLC., PO Box 444, Nyack, NY 10960, USA
| | - Naohisa Tsutsui
- Mitsubishi Tanabe Pharma Corporation, 17-10, Nihonbashi-Koamicho, Chuo-ku, Tokyo 103-8405, Japan
| |
Collapse
|
11
|
Cárcamo-Calvo R, Muñoz C, Buesa J, Rodríguez-Díaz J, Gozalbo-Rovira R. The Rotavirus Vaccine Landscape, an Update. Pathogens 2021; 10:520. [PMID: 33925924 PMCID: PMC8145439 DOI: 10.3390/pathogens10050520] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022] Open
Abstract
Rotavirus is the leading cause of severe acute childhood gastroenteritis, responsible for more than 128,500 deaths per year, mainly in low-income countries. Although the mortality rate has dropped significantly since the introduction of the first vaccines around 2006, an estimated 83,158 deaths are still preventable. The two main vaccines currently deployed, Rotarix and RotaTeq, both live oral vaccines, have been shown to be less effective in developing countries. In addition, they have been associated with a slight risk of intussusception, and the need for cold chain maintenance limits the accessibility of these vaccines to certain areas, leaving 65% of children worldwide unvaccinated and therefore unprotected. Against this backdrop, here we review the main vaccines under development and the state of the art on potential alternatives.
Collapse
Affiliation(s)
- Roberto Cárcamo-Calvo
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibañez 17, 46010 Valencia, Spain; (R.C.-C.); (C.M.); (J.B.)
| | - Carlos Muñoz
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibañez 17, 46010 Valencia, Spain; (R.C.-C.); (C.M.); (J.B.)
| | - Javier Buesa
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibañez 17, 46010 Valencia, Spain; (R.C.-C.); (C.M.); (J.B.)
- Instituto de Investigación INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Jesús Rodríguez-Díaz
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibañez 17, 46010 Valencia, Spain; (R.C.-C.); (C.M.); (J.B.)
- Instituto de Investigación INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Roberto Gozalbo-Rovira
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibañez 17, 46010 Valencia, Spain; (R.C.-C.); (C.M.); (J.B.)
- Instituto de Investigación INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| |
Collapse
|
12
|
Groome MJ, Glass RI. Winning the Battle Against Rotavirus Diarrhea…One Step at a Time. J Infect Dis 2020; 222:1587-1588. [PMID: 32123895 DOI: 10.1093/infdis/jiaa086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/02/2020] [Indexed: 11/14/2022] Open
Affiliation(s)
- Michelle J Groome
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Roger I Glass
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
13
|
Pitzer VE, Bennett A, Bar-Zeev N, Jere KC, Lopman BA, Lewnard JA, Parashar UD, Cunliffe NA. Evaluating strategies to improve rotavirus vaccine impact during the second year of life in Malawi. Sci Transl Med 2020; 11:11/505/eaav6419. [PMID: 31413144 DOI: 10.1126/scitranslmed.aav6419] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/08/2019] [Accepted: 07/25/2019] [Indexed: 01/08/2023]
Abstract
Rotavirus vaccination has substantially reduced the incidence of rotavirus-associated gastroenteritis (RVGE) in high-income countries, but vaccine impact and estimated effectiveness are lower in low-income countries for reasons that are poorly understood. We used mathematical modeling to quantify rotavirus vaccine impact and investigate reduced vaccine effectiveness, particularly during the second year of life, in Malawi, where vaccination was introduced in October 2012 with doses at 6 and 10 weeks. We fitted models to 12 years of prevaccination data and validated the models against postvaccination data to evaluate the magnitude and duration of vaccine protection. The observed rollout of vaccination in Malawi was predicted to lead to a 26 to 77% decrease in the overall incidence of moderate-to-severe RVGE in 2016, depending on assumptions about waning of vaccine-induced immunity and heterogeneity in vaccine response. Vaccine effectiveness estimates were predicted to be higher among 4- to 11-month-olds than 12- to 23-month-olds, even when vaccine-induced immunity did not wane, due to differences in the rate at which vaccinated and unvaccinated individuals acquire immunity from natural infection. We found that vaccine effectiveness during the first and second years of life could potentially be improved by increasing the proportion of infants who respond to vaccination or by lowering the rotavirus transmission rate. An additional dose of rotavirus vaccine at 9 months of age was predicted to lead to higher estimated vaccine effectiveness but to only modest (5 to 16%) reductions in RVGE incidence over the first 3 years after introduction, regardless of assumptions about waning of vaccine-induced immunity.
Collapse
Affiliation(s)
- Virginia E Pitzer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT 06520-8034, USA.
| | - Aisleen Bennett
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre 3, Malawi.,Centre for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, Liverpool L69 3BX, UK
| | - Naor Bar-Zeev
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre 3, Malawi.,International Vaccine Access Center, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Khuzwayo C Jere
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre 3, Malawi.,Centre for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, Liverpool L69 3BX, UK.,Department of Medical Laboratory Sciences, College of Medicine, University of Malawi, Blantyre 3, Malawi
| | - Benjamin A Lopman
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.,Epidemiology Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329-4027, USA
| | - Joseph A Lewnard
- Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Umesh D Parashar
- Epidemiology Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329-4027, USA
| | - Nigel A Cunliffe
- Centre for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
14
|
Groome MJ, Fairlie L, Morrison J, Fix A, Koen A, Masenya M, Jose L, Madhi SA, Page N, McNeal M, Dally L, Cho I, Power M, Flores J, Cryz S. Safety and immunogenicity of a parenteral trivalent P2-VP8 subunit rotavirus vaccine: a multisite, randomised, double-blind, placebo-controlled trial. THE LANCET. INFECTIOUS DISEASES 2020; 20:851-863. [PMID: 32251641 PMCID: PMC7322558 DOI: 10.1016/s1473-3099(20)30001-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/25/2019] [Accepted: 01/02/2020] [Indexed: 12/16/2022]
Abstract
Background A monovalent, parenteral, subunit rotavirus vaccine was well tolerated and immunogenic in adults in the USA and in toddlers and infants in South Africa, but elicited poor responses against heterotypic rotavirus strains. We aimed to evaluate safety and immunogenicity of a trivalent vaccine formulation (P2-VP8-P[4],[6],[8]). Methods A double-blind, randomised, placebo-controlled, dose-escalation, phase 1/2 study was done at three South African research sites. Healthy adults (aged 18–45 years), toddlers (aged 2–3 years), and infants (aged 6–8 weeks, ≥37 weeks' gestation, and without previous receipt of rotavirus vaccination), all without HIV infection, were eligible for enrolment. In the dose-escalation phase, adults and toddlers were randomly assigned in blocks (block size of five) to receive 30 μg or 90 μg of vaccine, or placebo, and infants were randomly assigned in blocks (block size of four) to receive 15 μg, 30 μg, or 90 μg of vaccine, or placebo. In the expanded phase, infants were randomly assigned in a 1:1:1:1 ratio to receive 15 μg, 30 μg, or 90 μg of vaccine, or placebo, in block sizes of four. Participants, parents of participants, and clinical, data, and laboratory staff were masked to treatment assignment. Adults received an intramuscular injection of vaccine or placebo in the deltoid muscle on the day of randomisation (day 0), day 28, and day 56; toddlers received a single injection of vaccine or placebo in the anterolateral thigh on day 0. Infants in both phases received an injection of vaccine or placebo in the anterolateral thigh on days 0, 28, and 56, at approximately 6, 10, and 14 weeks of age. Primary safety endpoints were local and systemic reactions (grade 2 or worse) within 7 days and adverse events and serious adverse events within 28 days after each injection in all participants who received at least one injection. Primary immunogenicity endpoints were analysed in infants in either phase who received all planned injections, had blood samples analysed at the relevant timepoints, and presented no major protocol violations considered to have an effect on the immunogenicity results of the study, and included serum anti-P2-VP8 IgA, IgG, and neutralising antibody geometric mean titres and responses measured 4 weeks after the final injection in vaccine compared with placebo groups. This trial is registered with ClinicalTrials.gov, NCT02646891. Findings Between Feb 15, 2016, and Dec 22, 2017, 30 adults (12 each in the 30 μg and 90 μg groups and six in the placebo group), 30 toddlers (12 each in the 30 μg and 90 μg groups and six in the placebo group), and 557 infants (139 in the 15 μg group, 140 in the 30 μg group, 139 in the 90 μg group, and 139 in the placebo group) were randomly assigned, received at least one dose, and were assessed for safety. There were no significant differences in local or systemic adverse events, or unsolicited adverse events, between vaccine and placebo groups. There were no serious adverse events within 28 days of injection in adults, whereas one serious adverse event occurred in a toddler (febrile convulsion in the 30 μg group) and 23 serious adverse events (four in placebo, ten in 15 μg, four in 30 μg, and five in 90 μg groups) occurred among 20 infants, most commonly respiratory tract infections. One death occurred in an infant within 28 days of injection due to pneumococcal meningitis. In 528 infants (130 in placebo, 132 in 15 μg, 132 in 30 μg, and 134 in 90 μg groups), adjusted anti-P2-VP8 IgG seroresponses (≥4-fold increase from baseline) to P[4], P[6], and P[8] antigens were significantly higher in the 15 μg, 30 μg, and 90 μg groups (99–100%) than in the placebo group (10–29%; p<0·0001). Although significantly higher than in placebo recipients (9–10%), anti-P2-VP8 IgA seroresponses (≥4-fold increase from baseline) to each individual antigen were modest (20–34%) across the 15 μg, 30 μg, and 90 μg groups. Adjusted neutralising antibody seroresponses in infants (≥2·7-fold increase from baseline) to DS-1 (P[4]), 1076 (P[6]), and Wa (P[8]) were higher in vaccine recipients than in placebo recipients: p<0·0001 for all comparisons. Interpretation The trivalent P2-VP8 vaccine was well tolerated, with promising anti-P2-VP8 IgG and neutralising antibody responses across the three vaccine P types. Our findings support advancing the vaccine to efficacy testing. Funding Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Michelle J Groome
- South African Medical Research Council (SAMRC): Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Department of Science and Technology/National Research Foundation (DST/NRF): Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Lee Fairlie
- Wits Reproductive Health and HIV Institute, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Julie Morrison
- Family Clinical Research Unit, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, South Africa
| | | | - Anthonet Koen
- South African Medical Research Council (SAMRC): Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Department of Science and Technology/National Research Foundation (DST/NRF): Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Maysseb Masenya
- Wits Reproductive Health and HIV Institute, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lisa Jose
- South African Medical Research Council (SAMRC): Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Department of Science and Technology/National Research Foundation (DST/NRF): Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shabir A Madhi
- South African Medical Research Council (SAMRC): Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Department of Science and Technology/National Research Foundation (DST/NRF): Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nicola Page
- National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa; Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Monica McNeal
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Len Dally
- The Emmes Corporation, Rockville, MD, USA
| | - Iksung Cho
- PATH, Washington, DC, USA; Novavax, Gaithersburg, MD, USA
| | | | | | | |
Collapse
|
15
|
Sartorio MUA, Folgori L, Zuccotti G, Mameli C. Rotavirus vaccines in clinical development: Current pipeline and state-of-the-art. Pediatr Allergy Immunol 2020; 31 Suppl 24:58-60. [PMID: 32017224 DOI: 10.1111/pai.13167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 11/28/2022]
Abstract
Rotavirus (RV) disease is a leading cause of mortality and morbidity, especially in children under 5 years of age. The introduction of the two oral rotavirus vaccines Rotarix® and RotaTeq® has shown significant reductions in RV-related mortality, severe RV disease, and hospitalizations. However, some barriers, including a reduced efficacy in low-income countries, safety issues regarding the intussusception risk, age restrictions on vaccine use, the live-attenuated nature itself, and the substantial vaccine costs, currently restrict the full potential of RV disease prevention. Therefore, research is now focusing on the implementation of new oral vaccines and the development of parenteral vaccines to overcome these limits. This review provides an overview of the new rotavirus vaccines in clinical development and the ongoing clinical trials on new RV vaccines in the pediatric age.
Collapse
Affiliation(s)
| | - Laura Folgori
- Paediatric Infectious Disease Unit, Department of Pediatrics, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, V. Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Chiara Mameli
- Department of Pediatrics, V. Buzzi Children's Hospital, University of Milan, Milan, Italy
| |
Collapse
|
16
|
Pérez-Ortín R, Santiso-Bellón C, Vila-Vicent S, Carmona-Vicente N, Rodríguez-Díaz J, Buesa J. Rotavirus symptomatic infection among unvaccinated and vaccinated children in Valencia, Spain. BMC Infect Dis 2019; 19:998. [PMID: 31771522 PMCID: PMC6880582 DOI: 10.1186/s12879-019-4550-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 10/03/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Human group A rotavirus is the leading cause of severe acute gastroenteritis in young children worldwide. Immunization programs have reduced the disease burden in many countries. Vaccination coverage in the Autonomous Region of Valencia, Spain, is around 40%, as the rotavirus vaccine is not funded by the National Health System. Despite this low-medium vaccine coverage, rotavirus vaccination has substantially reduced hospitalizations due to rotavirus infection and hospital-related costs. However, there are very few studies evaluating symptomatic rotavirus infections not requiring hospitalization in vaccinated children. The objective of this study was to investigate symptomatic rotavirus infections among vaccinated children in the health area served by the Hospital Clínico Universitario of Valencia, Spain, from 2013 to 2015. METHODS A total of 133 children younger than 5 years of age with rotavirus infection were studied. Demographic and epidemiological data were collected and informed consent from their caretakers obtained. Rotavirus infection was detected by immunological methods and G/P rotavirus genotypes were determined by RT-PCR, following standard procedures from the EuroRotaNet network. RESULTS Forty infants (30.1%; 95% CI: 22.3-37.9) out of 133 were diagnosed with symptomatic rotavirus infection despite having been previously vaccinated, either with RotaTeq (85%) or with Rotarix (15%). Children fully vaccinated against rotavirus (24.8%), partially vaccinated (5.3%) and unvaccinated (69.9%) were found. The infecting genotypes showed high G-type diversity, although no significant differences were found between the G/P genotypes infecting vaccinated and unvaccinated children during the same time period. G9P[8], G12P[8] and G1P[8] were the most prevalent genotypes. Severity of gastroenteritis symptoms required 28 (66.6%) vaccinated and 67 (73.6%) unvaccinated children to be attended at the Emergency Room. CONCLUSION Rotavirus vaccine efficacy in reducing the incidence of severe rotavirus infection has been well documented, but symptomatic rotavirus infection can sometimes occur in vaccinees.
Collapse
Affiliation(s)
- Raúl Pérez-Ortín
- Department of Microbiology, School of Medicine, University of Valencia and Microbiology Service, Hospital Clínico Universitario and Instituto de Investigación INCLIVA, Avda. Blasco Ibañez, 17, 46010, Valencia, Spain
| | - Cristina Santiso-Bellón
- Department of Microbiology, School of Medicine, University of Valencia and Microbiology Service, Hospital Clínico Universitario and Instituto de Investigación INCLIVA, Avda. Blasco Ibañez, 17, 46010, Valencia, Spain
| | - Susana Vila-Vicent
- Department of Microbiology, School of Medicine, University of Valencia and Microbiology Service, Hospital Clínico Universitario and Instituto de Investigación INCLIVA, Avda. Blasco Ibañez, 17, 46010, Valencia, Spain
| | - Noelia Carmona-Vicente
- Department of Microbiology, School of Medicine, University of Valencia and Microbiology Service, Hospital Clínico Universitario and Instituto de Investigación INCLIVA, Avda. Blasco Ibañez, 17, 46010, Valencia, Spain
| | - Jesús Rodríguez-Díaz
- Department of Microbiology, School of Medicine, University of Valencia and Microbiology Service, Hospital Clínico Universitario and Instituto de Investigación INCLIVA, Avda. Blasco Ibañez, 17, 46010, Valencia, Spain
| | - Javier Buesa
- Department of Microbiology, School of Medicine, University of Valencia and Microbiology Service, Hospital Clínico Universitario and Instituto de Investigación INCLIVA, Avda. Blasco Ibañez, 17, 46010, Valencia, Spain.
| |
Collapse
|
17
|
Plotkin SA. Updates on immunologic correlates of vaccine-induced protection. Vaccine 2019; 38:2250-2257. [PMID: 31767462 DOI: 10.1016/j.vaccine.2019.10.046] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023]
Abstract
Correlates of protection (CoPs) are increasingly important in the development and licensure of vaccines. Although the study of CoPs was initially directed at identifying a single immune function that could explain vaccine efficacy, it has become increasingly clear that there are often multiple functions responsible for efficacy. This review is meant to supplement prior articles on the subject, illustrating both simple and complex CoPs.
Collapse
Affiliation(s)
- Stanley A Plotkin
- Emeritus Professor of Pediatrics, University of Pennsylvania, Vaxconsult, 4650 Wismer Rd., Doylestown, PA 18902, United States.
| |
Collapse
|
18
|
Safety and immunogenicity of the oral, inactivated, enterotoxigenic Escherichia coli vaccine ETVAX in Bangladeshi children and infants: a double-blind, randomised, placebo-controlled phase 1/2 trial. THE LANCET. INFECTIOUS DISEASES 2019; 20:208-219. [PMID: 31757774 PMCID: PMC6990395 DOI: 10.1016/s1473-3099(19)30571-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/10/2019] [Accepted: 08/12/2019] [Indexed: 12/23/2022]
Abstract
Background Enterotoxigenic Escherichia coli causes diarrhoea, leading to substantial mortality and morbidity in children, but no specific vaccine exists. This trial tested an oral, inactivated, enterotoxigenic E coli vaccine (ETVAX), which has been previously shown to be safe and highly immuongenic in Swedish and Bangladeshi adults. We tested the safety and immunogenicity of ETVAX, consisting of four E coli strains overexpressing the most prevalent colonisation factors (CFA/I, CS3, CS5, and CS6) and a toxoid (LCTBA) administered with or without a double-mutant heat-labile enterotoxin (dmLT) as an adjuvant, in Bangladeshi children. Methods We did a randomised, double-blind, placebo-controlled, dose-escalation, age-descending, phase 1/2 trial in Dhaka, Bangladesh. Healthy children in one of three age groups (24–59 months, 12–23 months, and 6–11 months) were eligible. Children were randomly assigned with block randomisation to receive either ETVAX, with or without dmLT, or placebo. ETVAX (half [5·5 × 1010 cells], quarter [2·5 × 1010 cells], or eighth [1·25 × 1010 cells] adult dose), with or without dmLT adjuvant (2·5 μg, 5·0 μg, or 10·0 μg), or placebo were administered orally in two doses 2 weeks apart. Investigators and participants were masked to treatment allocation. The primary endpoint was safety and tolerability, assessed in all children who received at least one dose of vaccine. Antibody responses to vaccine antigens, defined as at least a two-times increase in antibody levels between baseline and post-immunisation, were assessed as secondary endpoints. This trial is registered with ClinicalTrials.gov, NCT02531802. Findings Between Dec 7, 2015, and Jan 10, 2017, we screened 1500 children across the three age groups, of whom 430 were enrolled and randomly assigned to the different treatment groups (130 aged 24–59 months, 100 aged 12–23 months, and 200 aged 6–11 months). All participants received at least one dose of vaccine. No solicited adverse events occurred that were greater than moderate in severity, and most were mild. The most common solicited event was vomiting (ten [8%] of 130 patients aged 24–59 months, 13 [13%] of 100 aged 12–23 months, and 29 [15%] of 200 aged 6–11 months; mostly of mild severity), which appeared related to dose and age. The addition of dmLT did not modify the safety profile. Three serious adverse events occurred but they were not considered related to the study drug. Mucosal IgA antibody responses in lymphocyte secretions were detected against all primary vaccine antigens (CFA/I, CS3, CS5, CS6, and the LCTBA toxoid) in most participants in the two older age groups, whereas such responses to four of the five antigens were less frequent and of lower magnitude in infants aged 6–11 months than in older children. Faecal secretory IgA immune responses were recorded against all vaccine antigens in infants aged 6–11 months. 78 (56%) of 139 infants aged 6–11 months who were vaccinated developed mucosal responses against at least three of the vaccine antigens versus 14 (29%) of 49 of the infants given placebo. Addition of the adjuvant dmLT enhanced the magnitude, breadth, and kinetics (based on number of responders after the first dose of vaccine) of immune responses in infants. Interpretation The encouraging safety and immunogenicity of ETVAX and benefit of dmLT adjuvant in young children support its further assessment for protective efficacy in children in enterotoxigenic E coli-endemic areas. Funding PATH (Bill & Melinda Gates Foundation and the UK's Department for International Development), the Swedish Research Council, and The Swedish Foundation for Strategic Research.
Collapse
|
19
|
The distinct impact of maternal antibodies on the immunogenicity of live and recombinant rotavirus vaccines. Vaccine 2019; 37:4061-4067. [DOI: 10.1016/j.vaccine.2019.05.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/30/2019] [Accepted: 05/26/2019] [Indexed: 12/20/2022]
|
20
|
Polio endgame: Lessons for the global rotavirus vaccination program. Vaccine 2019; 37:3040-3049. [DOI: 10.1016/j.vaccine.2019.04.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 12/19/2022]
|
21
|
Wang Y, Zade J, Moon SS, Weldon W, Pisal SS, Glass RI, Dhere RM, Jiang B. Lack of immune interference between inactivated polio vaccine and inactivated rotavirus vaccine co-administered by intramuscular injection in two animal species. Vaccine 2019; 37:698-704. [PMID: 30626530 DOI: 10.1016/j.vaccine.2018.12.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/12/2018] [Accepted: 12/16/2018] [Indexed: 11/27/2022]
Abstract
A parenteral inactivated rotavirus vaccine (IRV) in development could address three problems with current live oral rotavirus vaccines (ORV): their lower efficacy in low and middle-income countries (LMICs), lingering concerns about their association with intussusception, and their requirement for a separate supply chain with large volume cold storage. Adding a new parenteral IRV to the current schedule of childhood immunizations would be more acceptable if it could be combined with another injectable vaccine such as inactivated polio vaccine (IPV). Current plans for polio eradication call for phasing out oral polio vaccine (OPV) and transitioning to IPV, initially in LMICs as a single dose booster after two doses of OPV and ultimately as a two dose schedule. Today in many LMICs, IPV is administered as a standalone vaccine, which involves a separate cold chain and is relatively costly. We therefore tested in two animal models formulations of IPV with IRV to determine whether co-administration might interfere with the immune response to each product and spare antigen dose for both vaccines. Our results demonstrate that IRV when adjuvanted with alum and administered alone or in combination with IPV did not impair the immune responses to either rotavirus or poliovirus serotypes 1, 2 and 3. Similarly, IPV when formulated and administered alone or together with IRV induced comparable levels of neutralizing antibody to poliovirus type 1, 2 and 3. Furthermore, comparable antibody titers were observed in animals vaccinated with low, middle or high dose of IPV or IRV in combination. This dose sparing and the lack of interference between IPV and IRV administered together represent another step to support the further development of this novel combination vaccine for children.
Collapse
Affiliation(s)
- Yuhuan Wang
- Division of Viral Diseases, Centers for Diseases Control and Prevention, Atlanta, GA, United States
| | | | - Sung-Sil Moon
- Division of Viral Diseases, Centers for Diseases Control and Prevention, Atlanta, GA, United States
| | - William Weldon
- Division of Viral Diseases, Centers for Diseases Control and Prevention, Atlanta, GA, United States
| | - S S Pisal
- Serum Institute of India Pvt. Ltd., Pune, India
| | - Roger I Glass
- Division of Viral Diseases, Centers for Diseases Control and Prevention, Atlanta, GA, United States; Fogarty International Center, National Institutes of Health, Bethesda, MD, United States
| | | | - Baoming Jiang
- Division of Viral Diseases, Centers for Diseases Control and Prevention, Atlanta, GA, United States.
| |
Collapse
|