1
|
Aikawa NE, Borba EF, Balbi VA, Sallum AME, Buscatti IM, Campos LMA, Kozu KT, Garcia CC, Capão ASV, de Proença ACT, Leon EP, da Silva Duarte AJ, Lopes MH, Silva CA, Bonfá E. Safety and immunogenicity of influenza A(H3N2) component vaccine in juvenile systemic lupus erythematosus. Adv Rheumatol 2023; 63:55. [PMID: 38017564 DOI: 10.1186/s42358-023-00339-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/18/2023] [Indexed: 11/30/2023] Open
Abstract
INTRODUCTION Seasonal influenza A (H3N2) virus is an important cause of morbidity and mortality in the last 50 years in population that is greater than the impact of H1N1. Data assessing immunogenicity and safety of this virus component in juvenile systemic lupus erythematosus (JSLE) is lacking in the literature. OBJECTIVE To evaluate short-term immunogenicity and safety of influenza A/Singapore (H3N2) vaccine in JSLE. METHODS 24 consecutive JSLE patients and 29 healthy controls (HC) were vaccinated with influenza A/Singapore/INFIMH-16-0019/2016(H3N2)-like virus. Influenza A (H3N2) seroprotection (SP), seroconversion (SC), geometric mean titers (GMT), factor increase in GMT (FI-GMT) titers were assessed before and 4 weeks post-vaccination. Disease activity, therapies and adverse events (AE) were also evaluated. RESULTS JSLE patients and controls were comparable in current age [14.5 (10.1-18.3) vs. 14 (9-18.4) years, p = 0.448] and female sex [21 (87.5%) vs. 19 (65.5%), p = 0.108]. Before vaccination, JSLE and HC had comparable SP rates [22 (91.7%) vs. 25 (86.2%), p = 0.678] and GMT titers [102.3 (95% CI 75.0-139.4) vs. 109.6 (95% CI 68.2-176.2), p = 0.231]. At D30, JSLE and HC had similar immune response, since no differences were observed in SP [24 (100%) vs. 28 (96.6%), p = 1.000)], SC [4 (16.7%) vs. 9 (31.0%), p = 0.338), GMT [162.3 (132.9-198.3) vs. 208.1 (150.5-287.8), p = 0.143] and factor increase in GMT [1.6 (1.2-2.1) vs. 1.9 (1.4-2.5), p = 0.574]. SLEDAI-2K scores [2 (0-17) vs. 2 (0-17), p = 0.765] and therapies remained stable throughout the study. Further analysis of possible factors influencing vaccine immune response among JSLE patients demonstrated similar GMT between patients with SLEDAI < 4 compared to SLEDAI ≥ 4 (p = 0.713), as well as between patients with and without current use of prednisone (p = 0.420), azathioprine (p = 1.0), mycophenolate mofetil (p = 0.185), and methotrexate (p = 0.095). No serious AE were reported in both groups and most of them were asymptomatic (58.3% vs. 44.8%, p = 0.958). Local and systemic AE were alike in both groups (p > 0.05). CONCLUSION This is the first study that identified adequate immune protection against H3N2-influenza strain with additional vaccine-induced increment of immune response and an adequate safety profile in JSLE. ( www. CLINICALTRIALS gov , NCT03540823).
Collapse
Affiliation(s)
- Nadia Emi Aikawa
- Pediatric Rheumatology Unit, Instituto da Criança e do Adolescente, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455, 3Rd Floor, room 3190 - Cerqueira Cesar, São Paulo, SP, CEP 05403-010, Brazil.
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - Eduardo Ferreira Borba
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Verena Andrade Balbi
- Pediatric Rheumatology Unit, Instituto da Criança e do Adolescente, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455, 3Rd Floor, room 3190 - Cerqueira Cesar, São Paulo, SP, CEP 05403-010, Brazil
| | - Adriana Maluf Elias Sallum
- Pediatric Rheumatology Unit, Instituto da Criança e do Adolescente, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455, 3Rd Floor, room 3190 - Cerqueira Cesar, São Paulo, SP, CEP 05403-010, Brazil
| | - Izabel Mantovani Buscatti
- Pediatric Rheumatology Unit, Instituto da Criança e do Adolescente, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455, 3Rd Floor, room 3190 - Cerqueira Cesar, São Paulo, SP, CEP 05403-010, Brazil
| | - Lucia Maria Arruda Campos
- Pediatric Rheumatology Unit, Instituto da Criança e do Adolescente, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455, 3Rd Floor, room 3190 - Cerqueira Cesar, São Paulo, SP, CEP 05403-010, Brazil
| | - Kátia Tomie Kozu
- Pediatric Rheumatology Unit, Instituto da Criança e do Adolescente, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455, 3Rd Floor, room 3190 - Cerqueira Cesar, São Paulo, SP, CEP 05403-010, Brazil
| | - Cristiana Couto Garcia
- Laboratory of Respiratory, Exanthematic Viruses, Enterovirus and Viral Emergencies, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Integrated Research Group On Biomarkers. René Rachou Institute, FIOCRUZ Minas, Belo Horizonte, MG, Brazil
| | - Artur Silva Vidal Capão
- Laboratory of Respiratory, Exanthematic Viruses, Enterovirus and Viral Emergencies, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Adriana Coracini Tonacio de Proença
- Department of Infectious and Parasitic Diseases, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Elaine Pires Leon
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Alberto José da Silva Duarte
- Clinical Laboratory Division - Department of Pathology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Marta Heloisa Lopes
- Department of Infectious and Parasitic Diseases, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Clovis Artur Silva
- Pediatric Rheumatology Unit, Instituto da Criança e do Adolescente, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455, 3Rd Floor, room 3190 - Cerqueira Cesar, São Paulo, SP, CEP 05403-010, Brazil
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Eloisa Bonfá
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
2
|
Teng Z, Meng LY, Yang JK, He Z, Chen XG, Liu Y. Bridging nanoplatform and vaccine delivery, a landscape of strategy to enhance nasal immunity. J Control Release 2022; 351:456-475. [PMID: 36174803 DOI: 10.1016/j.jconrel.2022.09.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022]
Abstract
Vaccination is an urgently needed and effective option to address epidemic, cancers, allergies, and other diseases. Nasal administration of vaccines offers many benefits over needle-based injection including high compliance and less risk of infection. Inactivated or attenuated vaccines as convention vaccine present potential risks of pathogenic virulence reversal, the focus of nasal vaccine development has shifted to the use of next-generation (subunit and nucleic acid) vaccines. However, subunit and nucleic acid vaccine intranasally have numerous challenges in development and utilization due to mucociliary clearance, mucosal epithelial tight junction, and enzyme/pH degradation. Nanoplatforms as ideal delivery systems, with the ability to enhance the retention, penetration, and uptake of nasal mucosa, shows great potential in improving immunogenic efficacy of nasal vaccine. This review provides an overview of delivery strategies for overcoming nasal barrier, including mucosal adhesion, mucus penetration, targeting of antigen presenting cells (APCs), enhancement of paracellular transportation. We discuss methods of enhancing antigen immunogenicity by nanoplatforms as immune-modulators or multi-antigen co-delivery. Meanwhile, we describe the application status and development prospect of nanoplatforms for nasal vaccine administration. Development of nanoplatforms for vaccine delivery via nasal route will facilitate large-scale and faster global vaccination, helping to address the threat of epidemics.
Collapse
Affiliation(s)
- Zhuang Teng
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Ling-Yang Meng
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Jian-Ke Yang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Zheng He
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Xi-Guang Chen
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, PR China
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|