1
|
Zhu W, Waltmann A, Little MB, Connolly KL, Matthias KA, Thomas KS, Gray MC, Sikora AE, Criss AK, Bash MC, Macintyre AN, Jerse AE, Duncan JA. Protection against N. gonorrhoeae induced by OMV-based Meningococcal Vaccines are associated with cross-species directed humoral and cellular immune responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.626107. [PMID: 39651121 PMCID: PMC11623675 DOI: 10.1101/2024.11.29.626107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Limited protective immunologic responses to natural N. gonorrhoeae infection and a lack of knowledge about mechanisms of protection have hampered development of an effective vaccine. Recent studies in humans and mice have found meningococcal outer membrane vesicle-containing vaccines (OMV) induce cross species immune responses against gonococci and are associated with protection. The exact mechanisms or how humoral and cellular immunity are related to protection, remain unclear. To study this, we immunized mice with two meningococcal OMV-containing vaccines known to accelerate clearance of N. gonorrhoeae , 4CMenB and OMV from an engineered N. meningitidis strain lacking major surface antigens PorA, PorB, and Rmp (MC58 ΔABR). We assessed serologic and cellular immune signatures associated with these immunizations and assessed bacterial clearance in the mice using a vaginal/cervical gonococcal infection model. Mice immunized with 4CMenB or MC58 ΔABR demonstrated shortened courses of recovery of vaginal N. gonorrhoeae compared to control mice immunized with alum alone. Vaccination with 4CMenB or MC58ΔABR OMV elicited serum and vaginal cross-reactive anti-Ng-OMV antibody responses that were augmented after vaginal challenge with N. gonorrhoeae . Further, splenocytes in 4CMenB and MC58 ΔABR immunized mice exhibited elevated cytokine production after restimulation with heterologous N. gonorrhoeae OMV when compared to splenocytes from Alum immunized mice. We further tested for correlations between bacterial burden and the measured anti-gonococcal immune responses within each vaccination group and found different immunologic parameters associated with reduced bacterial burden for each vaccine. Our findings suggest the cross-protection against gonococcal infection induced by different meningococcal OMV vaccines is likely multifactorial and mediated by different humoral and cellular immune responses induced by these two vaccines.
Collapse
|
2
|
Manoharan S, Farman TA, Piliou S, Mastroeni P. Characterisation and Immunogenicity of Neisseria cinerea outer membrane vesicles displaying NadA, NHBA and fHbp from Neisseria meningitidis serogroup B. Front Immunol 2024; 15:1473064. [PMID: 39380985 PMCID: PMC11458423 DOI: 10.3389/fimmu.2024.1473064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
More affordable and effective vaccines against bacterial meningitis caused by Neisseria meningitidis serogroup B are still required for global prevention. We have previously shown that modified outer membrane vesicles (mOMVs) from commensal Neisseria cinerea can be used as a platform to induce immune responses against meningococcal antigens. The aim of the present study was to use a combination of two genetically engineered mOMVs to express multiple antigens from N. meningitidis known to be involved in protective immunity to meningococcal meningitis (different variants of factor H binding protein (fHbp), Neisseria Heparin Binding Antigen (NHBA) and Neisseria Adhesin A (NadA)). Antigen expression in the mOMVs was confirmed by Western blotting; detoxification of the lipooligosaccharide (LOS) was confirmed by measuring human Toll-like receptor 4 (hTLR4) activation using in vitro cell assays. Mice immunised with a combination of two mOMVs expressing fHbp, NHBA and NadA produced antibodies to all the antigens. Furthermore, serum bactericidal activity (SBA) was induced by the immunisation, with mOMVs expressing NadA displaying high SBA titres against a nadA+ MenB strain. The work highlights the potential of mOMVs from N. cinerea to induce functional immune responses against multiple antigens involved in the protective immune response to meningococcal disease.
Collapse
MESH Headings
- Antigens, Bacterial/immunology
- Antigens, Bacterial/genetics
- Animals
- Adhesins, Bacterial/immunology
- Adhesins, Bacterial/genetics
- Neisseria meningitidis, Serogroup B/immunology
- Bacterial Proteins/immunology
- Bacterial Proteins/genetics
- Mice
- Meningococcal Vaccines/immunology
- Humans
- Antibodies, Bacterial/immunology
- Antibodies, Bacterial/blood
- Meningitis, Meningococcal/immunology
- Meningitis, Meningococcal/prevention & control
- Meningitis, Meningococcal/microbiology
- Neisseria cinerea/immunology
- Bacterial Outer Membrane/immunology
- Female
- Extracellular Vesicles/immunology
- Bacterial Outer Membrane Proteins/immunology
- Bacterial Outer Membrane Proteins/genetics
- Mice, Inbred BALB C
- Carrier Proteins
Collapse
Affiliation(s)
- Shathviga Manoharan
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
3
|
Lei EK, Azmat A, Henry KA, Hussack G. Outer membrane vesicles as a platform for the discovery of antibodies to bacterial pathogens. Appl Microbiol Biotechnol 2024; 108:232. [PMID: 38396192 PMCID: PMC10891261 DOI: 10.1007/s00253-024-13033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Bacterial outer membrane vesicles (OMVs) are nanosized spheroidal particles shed by gram-negative bacteria that contain biomolecules derived from the periplasmic space, the bacterial outer membrane, and possibly other compartments. OMVs can be purified from bacterial culture supernatants, and by genetically manipulating the bacterial cells that produce them, they can be engineered to harbor cargoes and/or display molecules of interest on their surfaces including antigens that are immunogenic in mammals. Since OMV bilayer-embedded components presumably maintain their native structures, OMVs may represent highly useful tools for generating antibodies to bacterial outer membrane targets. OMVs have historically been utilized as vaccines or vaccine constituents. Antibodies that target bacterial surfaces are increasingly being explored as antimicrobial agents either in unmodified form or as targeting moieties for bactericidal compounds. Here, we review the properties of OMVs, their use as immunogens, and their ability to elicit antibody responses against bacterial antigens. We highlight antigens from bacterial pathogens that have been successfully targeted using antibodies derived from OMV-based immunization and describe opportunities and limitations for OMVs as a platform for antimicrobial antibody development. KEY POINTS: • Outer membrane vesicles (OMVs) of gram-negative bacteria bear cell-surface molecules • OMV immunization allows rapid antibody (Ab) isolation to bacterial membrane targets • Review and analysis of OMV-based immunogens for antimicrobial Ab development.
Collapse
Affiliation(s)
- Eric K Lei
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Aruba Azmat
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Kevin A Henry
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Greg Hussack
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada.
| |
Collapse
|
4
|
Effah CY, Ding X, Drokow EK, Li X, Tong R, Sun T. Bacteria-derived extracellular vesicles: endogenous roles, therapeutic potentials and their biomimetics for the treatment and prevention of sepsis. Front Immunol 2024; 15:1296061. [PMID: 38420121 PMCID: PMC10899385 DOI: 10.3389/fimmu.2024.1296061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Sepsis is one of the medical conditions with a high mortality rate and lacks specific treatment despite several years of extensive research. Bacterial extracellular vesicles (bEVs) are emerging as a focal target in the pathophysiology and treatment of sepsis. Extracellular vesicles (EVs) derived from pathogenic microorganisms carry pathogenic factors such as carbohydrates, proteins, lipids, nucleic acids, and virulence factors and are regarded as "long-range weapons" to trigger an inflammatory response. In particular, the small size of bEVs can cross the blood-brain and placental barriers that are difficult for pathogens to cross, deliver pathogenic agents to host cells, activate the host immune system, and possibly accelerate the bacterial infection process and subsequent sepsis. Over the years, research into host-derived EVs has increased, leading to breakthroughs in cancer and sepsis treatments. However, related approaches to the role and use of bacterial-derived EVs are still rare in the treatment of sepsis. Herein, this review looked at the dual nature of bEVs in sepsis by highlighting their inherent functions and emphasizing their therapeutic characteristics and potential. Various biomimetics of bEVs for the treatment and prevention of sepsis have also been reviewed. Finally, the latest progress and various obstacles in the clinical application of bEVs have been highlighted.
Collapse
Affiliation(s)
- Clement Yaw Effah
- Department of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou, China
| | - Xianfei Ding
- Department of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou, China
| | - Emmanuel Kwateng Drokow
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Biostatistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Xiang Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou, China
| | - Ran Tong
- Department of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou, China
| | - Tongwen Sun
- Department of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou, China
| |
Collapse
|
5
|
Bista PK, Pillai D, Narayanan SK. Outer-Membrane Vesicles of Fusobacterium necrophorum: A Proteomic, Lipidomic, and Functional Characterization. Microorganisms 2023; 11:2082. [PMID: 37630642 PMCID: PMC10458137 DOI: 10.3390/microorganisms11082082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Outer-membrane vesicles (OMVs) are extruded nanostructures shed by Gram-negative bacteria, containing periplasmic contents, and often including virulence factors with immunogenic properties. To assess their potential for use in vaccine development, we purified OMVs from the Fusobacterium necrophorum subspecies necrophorum, an opportunistic necrotic infection-causing pathogen, and characterized these structures using proteomics, lipid-profiling analyses, and cytotoxicity assays. A proteomic analysis of density-gradient-purified F. necrophorum OMVs identified 342 proteins, a large proportion of which were outer-membrane proteins (OMPs), followed by cytoplasmic proteins, based on a subcellular-localization-prediction analysis. The OMPs and toxins were among the proteins with the highest intensity identified, including the 43-kDa-OMP-, OmpA-, and OmpH-family proteins, the cell-surface protein, the FadA adhesin protein, the leukotoxin-LktA-family filamentous adhesin, the N-terminal domain of hemagglutinin, and the OMP transport protein and assembly factor. A Western blot analysis confirmed the presence of several OMPs and toxins in the F. necrophorum OMVs. The lipid-profiling analysis revealed phospholipids, sphingolipids, and acetylcarnitine as the main lipid contents of OMVs. The lactate-dehydrogenase-cytotoxicity assays showed that the OMVs had a high degree of cytotoxicity against a bovine B-lymphocyte cell line (BL-3 cells). Thus, our data suggest the need for further studies to evaluate the ability of OMVs to induce immune responses and assess their vaccine potential in vivo.
Collapse
Affiliation(s)
- Prabha K. Bista
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA; (P.K.B.); (D.P.)
| | - Deepti Pillai
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA; (P.K.B.); (D.P.)
- Indiana Animal Disease and Diagnostic Laboratory, Purdue University, West Lafayette, IN 47907, USA
| | - Sanjeev K. Narayanan
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA; (P.K.B.); (D.P.)
| |
Collapse
|
6
|
Gao J, Su Y, Wang Z. Engineering bacterial membrane nanovesicles for improved therapies in infectious diseases and cancer. Adv Drug Deliv Rev 2022; 186:114340. [PMID: 35569561 PMCID: PMC9899072 DOI: 10.1016/j.addr.2022.114340] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/08/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023]
Abstract
Research on bacterial membrane vesicles (BMVs) is an emerging topic, and the goal is to address whether BMVs can bring translational tools to improve current therapies. In this review, we provided the updated studies on BMVs including their production, their types, and therapeutic regimens for treating infectious diseases and cancers. We described several platforms of BMVs, such as outer membrane vesicles (OMVs), inner membrane vesicles (IMVs) and double membrane vesicles (DMVs), and those structures were produced from Gram-negative or Gram-positive bacteria. We also discussed how to engineer and formulate new and novel BMVs using chemical, physical, and genetic methods. For therapies, we analyzed current methods for loading drugs in BMVs and discussed their limitations. Finally, we reviewed several therapeutic platforms of BMVs that have been exploited in improving the treatments of infectious diseases and cancers. Although BMVs offer the promising biomedical applications, it is needed to develop rigorous approaches and methods to generate reproducible and scalable drug delivery systems for translation.
Collapse
Affiliation(s)
| | | | - Zhenjia Wang
- Corresponding author at: 205 East Spokane Falls BLVD, Spokane, WA 99202, United States of America. (Z. Wang)
| |
Collapse
|
7
|
The tremendous biomedical potential of bacterial extracellular vesicles. Trends Biotechnol 2022; 40:1173-1194. [DOI: 10.1016/j.tibtech.2022.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 12/20/2022]
|
8
|
Human B Cell Responses to Dominant and Subdominant Antigens Induced by a Meningococcal Outer Membrane Vesicle Vaccine in a Phase I Trial. mSphere 2022; 7:e0067421. [PMID: 35080470 PMCID: PMC8791392 DOI: 10.1128/msphere.00674-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Neisseria meningitidis outer membrane vesicle (OMV) vaccines are safe and provide strain-specific protection against invasive meningococcal disease (IMD) primarily by inducing serum bactericidal antibodies against the outer membrane proteins (OMP). To design broader coverage vaccines, knowledge of the immunogenicity of all the antigens contained in OMVs is needed. In a Phase I clinical trial, an investigational meningococcal OMV vaccine, MenPF1, made from a meningococcus genetically modified to constitutively express the iron-regulated FetA induced bactericidal responses to both the PorA and the FetA antigen present in the OMP. Using peripheral blood mononuclear cells collected from this trial, we analyzed the kinetics of and relationships between IgG, IgA, and IgM B cell responses against recombinant PorA and FetA, including (i) antibody-secreting cells, (ii) memory B cells, and (iii) functional antibody responses (opsonophagocytic and bactericidal activities). Following MenPF1vaccination, PorA-specific IgG secreting cell responses were detected in up to 77% of participants and FetA-specific responses in up to 36%. Memory B cell responses to the vaccine were low or absent and mainly detected in participants who had evidence of preexisting immunity (P = 0.0069). Similarly, FetA-specific antibody titers and bactericidal activity increased in participants with preexisting immunity and is consistent with the idea that immune responses are elicited to minor antigens during asymptomatic Neisseria carriage, which can be boosted by OMV vaccines. IMPORTANCENeisseria meningitidis outer membrane vesicles (OMV) are a component of the capsular group B meningococcal vaccine 4CMenB (Bexsero) and have been shown to induce 30% efficacy against gonococcal infection. They are composed of multiple antigens and are considered an interesting delivery platform for vaccines against several bacterial diseases. However, the protective antibody response after two or three doses of OMV-based meningococcal vaccines appears short-lived. We explored the B cell response induced to a dominant and a subdominant antigen in a meningococcal OMV vaccine in a clinical trial and showed that immune responses are elicited to minor antigens. However, memory B cell responses to the OMV were low or absent and mainly detected in participants who had evidence of preexisting immunity against the antigens. Failure to induce a strong B cell response may be linked with the low persistence of protective responses.
Collapse
|
9
|
Huang Y, Nieh MP, Chen W, Lei Y. Outer membrane vesicles (OMVs) enabled bio-applications: A critical review. Biotechnol Bioeng 2021; 119:34-47. [PMID: 34698385 DOI: 10.1002/bit.27965] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 07/28/2021] [Accepted: 10/10/2021] [Indexed: 11/07/2022]
Abstract
Outer membrane vesicles (OMVs) are nanoscale spherical vesicles released from Gram-negative bacteria. The lipid bilayer membrane structure of OMVs consists of similar components as bacterial membrane and thus has attracted more and more attention in exploiting OMVs' bio-applications. Although the endotoxic lipopolysaccharide on natural OMVs may impose potential limits on their clinical applications, genetic modification can reduce their endotoxicity and decorate OMVs with multiple functional proteins. These genetically engineered OMVs have been employed in various fields including vaccination, drug delivery, cancer therapy, bioimaging, biosensing, and enzyme carrier. This review will first briefly introduce the background of OMVs followed by recent advances in functionalization and various applications of engineered OMVs with an emphasis on the working principles and their performance, and then discuss about the future trends of OMVs in biomedical applications.
Collapse
Affiliation(s)
- Yikun Huang
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Mu-Ping Nieh
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Yu Lei
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA.,Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
10
|
Matthias KA, Connolly KL, Begum AA, Jerse AE, Macintyre AN, Sempowski GD, Bash MC. Meningococcal Detoxified Outer Membrane Vesicle Vaccines Enhance Gonococcal Clearance in a Murine Infection Model. J Infect Dis 2021; 225:650-660. [PMID: 34498079 DOI: 10.1093/infdis/jiab450] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Despite decades of research efforts, development of a gonorrhea vaccine has remained elusive. Epidemiological studies suggest that detoxified outer membrane vesicle (dOMV) vaccines from Neisseria meningitidis (Nm) may protect against infection with Neisseria gonorrhoeae (Ng). We recently reported that Nm dOMVs lacking the major outer membrane proteins (OMPs) PorA, PorB, and RmpM induced greater antibody cross-reactivity against heterologous Nm strains than wild-type (WT) dOMVs and may represent an improved vaccine against gonorrhea. METHODS We prepared dOMV vaccines from meningococcal strains that were sufficient or deleted for PorA, PorB, and RmpM. Vaccines were tested in a murine genital tract infection model and antisera were used to identify vaccine targets. RESULTS Immunization with Nm dOMVs significantly and reproducibly enhanced gonococcal clearance for mice immunized with OMP-deficient dOMVs; significant clearance for WT dOMV-immunized mice was observed in one of two experiments. Clearance was associated with serum and vaginal anti-Nm dOMV IgG antibodies that cross-reacted with Ng. Serum IgG was used to identify putative Ng vaccine targets, including PilQ, MtrE, NlpD, and GuaB. CONCLUSIONS Meningococcal dOMVs elicited a protective effect against experimental gonococcal infection. Recognition and identification of Ng vaccine targets by Nm dOMV-induced antibodies supports the development of a cross-protective Neisseria vaccine.
Collapse
Affiliation(s)
- Kathryn A Matthias
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, USA
| | - Kristie L Connolly
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Afrin A Begum
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Ann E Jerse
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Andrew N Macintyre
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Gregory D Sempowski
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Margaret C Bash
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, USA
| |
Collapse
|
11
|
Zhao Y, Li X, Zhang W, Yu L, Wang Y, Deng Z, Liu M, Mo S, Wang R, Zhao J, Liu S, Hao Y, Wang X, Ji T, Zhang L, Wang C. Trends in the biological functions and medical applications of extracellular vesicles and analogues. Acta Pharm Sin B 2021; 11:2114-2135. [PMID: 34522580 PMCID: PMC8424226 DOI: 10.1016/j.apsb.2021.03.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 12/18/2022] Open
Abstract
Natural extracellular vesicles (EVs) play important roles in many life processes such as in the intermolecular transfer of substances and genetic information exchanges. Investigating the origins and working mechanisms of natural EVs may provide an understanding of life activities, especially regarding the occurrence and development of diseases. Additionally, due to their vesicular structure, EVs (in small molecules, nucleic acids, proteins, etc.) could act as efficient drug-delivery carriers. Herein, we describe the sources and biological functions of various EVs, summarize the roles of EVs in disease diagnosis and treatment, and review the application of EVs as drug-delivery carriers. We also assess the challenges and perspectives of EVs in biomedical applications.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Xiaolu Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Wenbo Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Lanlan Yu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yang Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Zhun Deng
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Mingwei Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Shanshan Mo
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Ruonan Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Jinming Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Shuli Liu
- Department of Clinical Laboratory, Peking University Civil Aviation School of Clinical Medicine, Beijing 100123, China
| | - Yun Hao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Xiangdong Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Tianjiao Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding authors. Tel./fax: +86 10 69156463.
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
- Corresponding authors. Tel./fax: +86 10 69156463.
| | - Chenxuan Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
- Corresponding authors. Tel./fax: +86 10 69156463.
| |
Collapse
|
12
|
Li Z, Li Y, Wang Y, Hou Y, Cao H, Wu X, Hu S, Long D. Intranasal immunization with a rNMB0315 and combination adjuvants induces protective immunity against Neisseria meningitidis serogroup B in mice. Int Immunopharmacol 2021; 93:107411. [PMID: 33548582 DOI: 10.1016/j.intimp.2021.107411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/02/2021] [Accepted: 01/17/2021] [Indexed: 12/01/2022]
Abstract
Neisseria meningitidis (N. meningitidis) is a human-specific pathogen and a major cause of meningitis and septicemia with a high case fatality rate. N. meningitidis may penetrate the nasopharyngeal mucosal membrane and cause severe meningitis, a mucosal immune response plays a key role in the defense against meningococcal infections. Our previous study demonstrated that N. meningitidis serogroup B 0315 (NMB0315) was a vaccine candidate against N. meningitidis serogroup B (NMB) through parenteral immunization. In this study, immunopotentiators (C48/80 or CpG-ODN) were loaded into chitosan nanoparticle (Chi NP) to form combination adjuvants (Chi-CpG NP and Chi-C48/80 NP) and adopted to enhance the immunogenicity of NMB0315 through intranasal immunization. The experimental results have indicated that both Chi-CpG NP and Chi-C48/80 NP are effective mucosal adjuvants for the induction of significantly higher rNMB0315-specific IgG, IgG1, IgG2a and sIgA antibodies. Meanwhile, Chi-CpG NP and Chi-C48/80 NP could change the ratio of IgG1/IgG2a, inducing a more balanced cellular/humoral immune response. Chi-CpG NP and Chi-C48/80 NP also boosted interleukin-4 (IL-4), interferon-γ (IFN-γ) and interleukin-17 A (IL-17A) production by splenocytes. The bactericidal antibodies have been detected in sera from mice immunized with rNMB0315 + Chi-CpG NP and rNMB0315 + Chi-C48/80 NP. Overall, the combination adjuvants could be applicable to the development of a mucosal vaccine against NMB.
Collapse
Affiliation(s)
- Zhenyu Li
- Institute of Pathogenic Biology, Medical College, University of South China, Hengyang 421001, China
| | - Yumeng Li
- Institute of Pathogenic Biology, Medical College, University of South China, Hengyang 421001, China
| | - Yan Wang
- Operating Room, The Second Hospital University of South China, Hengyang 421001, China
| | - Yongli Hou
- Institute of Pathogenic Biology, Medical College, University of South China, Hengyang 421001, China
| | - Hui Cao
- Institute of Pathogenic Biology, Medical College, University of South China, Hengyang 421001, China
| | - Xiaoxia Wu
- Institute of Pathogenic Biology, Medical College, University of South China, Hengyang 421001, China
| | - Sihai Hu
- Institute of Pathogenic Biology, Medical College, University of South China, Hengyang 421001, China.
| | - Dingxin Long
- China School of Public Health, University of South China, Hengyang 421001, China.
| |
Collapse
|