1
|
Petkov S, Kilpeläinen A, Bayurova E, Latanova A, Mezale D, Fridrihsone I, Starodubova E, Jansons J, Dudorova A, Gordeychuk I, Wahren B, Isaguliants M. HIV-1 Protease as DNA Immunogen against Drug Resistance in HIV-1 Infection: DNA Immunization with Drug Resistant HIV-1 Protease Protects Mice from Challenge with Protease-Expressing Cells. Cancers (Basel) 2022; 15:238. [PMID: 36612231 PMCID: PMC9818955 DOI: 10.3390/cancers15010238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023] Open
Abstract
DNA immunization with HIV-1 protease (PR) is advanced for immunotherapy of HIV-1 infection to reduce the number of infected cells producing drug-resistant virus. A consensus PR of the HIV-1 FSU_A strain was designed, expression-optimized, inactivated (D25N), and supplemented with drug resistance (DR) mutations M46I, I54V, and V82A common for FSU_A. PR variants with D25N/M46I/I54V (PR_Ai2mut) and with D25N/M46I/I54V/V82A (PR_Ai3mut) were cloned into the DNA vaccine vector pVAX1, and PR_Ai3mut, into a lentiviral vector for the transduction of murine mammary adenocarcinoma cells expressing luciferase 4T1luc2. BALB/c mice were DNA-immunized by intradermal injections of PR_Ai, PR_Ai2mut, PR_Ai3mut, vector pVAX1, or PBS with electroporation. All PR variants induced specific CD8+ T-cell responses revealed after splenocyte stimulation with PR-derived peptides. Splenocytes of mice DNA-immunized with PR_Ai and PR_Ai2mut were not activated by peptides carrying V82A, whereas splenocytes of PR_Ai3mut-immunized mice recognized both peptides with and without V82A mutation. Mutations M46I and I54V were immunologically silent. In the challenge study, DNA immunization with PR_Ai3mut protected mice from the outgrowth of subcutaneously implanted adenocarcinoma 4T1luc2 cells expressing PR_Ai3mut; a tumor was formed only in 1/10 implantation sites and no metastases were detected. Immunizations with other PR variants were not protective; all mice formed tumors and multiple metastasis in the lungs, liver, and spleen. CD8+ cells of PR_Ai3mut DNA-immunized mice exhibited strong IFN-γ/IL-2 responses against PR peptides, while the splenocytes of mice in other groups were nonresponsive. Thus, immunization with a DNA plasmid encoding inactive HIV-1 protease with DR mutations suppressed the growth and metastatic activity of tumor cells expressing PR identical to the one encoded by the immunogen. This demonstrates the capacity of T-cell response induced by DNA immunization to recognize single DR mutations, and supports the concept of the development of immunotherapies against drug resistance in HIV-1 infection. It also suggests that HIV-1-infected patients developing drug resistance may have a reduced natural immune response against DR HIV-1 mutations causing an immune escape.
Collapse
Affiliation(s)
- Stefan Petkov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Athina Kilpeläinen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Ekaterina Bayurova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia
- Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
| | - Anastasia Latanova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dzeina Mezale
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia
| | - Ilse Fridrihsone
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia
| | - Elizaveta Starodubova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Juris Jansons
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia
- Latvian Research and Study Centre, LV-1067 Riga, Latvia
| | - Alesja Dudorova
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia
- Paul Stradins University Hospital, LV-1002 Riga, Latvia
| | - Ilya Gordeychuk
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia
- Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
| | - Britta Wahren
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Maria Isaguliants
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia
| |
Collapse
|
2
|
Cafaro A, Ensoli B. HIV-1 therapeutic vaccines in clinical development to intensify or replace antiretroviral therapy: the promising results of the Tat vaccine. Expert Rev Vaccines 2022; 21:1243-1253. [PMID: 35695268 DOI: 10.1080/14760584.2022.2089119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Upon the introduction of the combination antiretroviral therapy (cART), HIV infection has become a chronic disease. However, cART is unable to eradicate the virus and fails to restore the CD4 counts in about 30% of the treated individuals. Furthermore, treatment is life-long, and it does not protect from morbidities typically observed in the elderly. Therapeutic vaccines represent the most cost-effective intervention to intensify or replace cART. AREAS COVERED Here, we briefly discuss the obstacles to the development and evaluation of the efficacy of therapeutic vaccines and review recent approaches evaluated in clinical trials. EXPERT OPINION Although vaccines were generally safe and immunogenic, evidence of efficacy was negligible or marginal in most trials. A notable exception is the therapeutic Tat vaccine approach showing promising results of cART intensification, with CD4 T-cell increase and proviral load reduction beyond those afforded by cART alone. Rationale and evidence in support of choosing Tat as the vaccine target are thoroughly discussed.
Collapse
Affiliation(s)
- Aurelio Cafaro
- National HIV/AIDS Research Center, Istituto Superiore Di Sanità, Rome, Italy
| | - Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore Di Sanità, Rome, Italy
| |
Collapse
|
3
|
Yadavar-Nikravesh MS, Milani A, Vahabpour R, Khoobi M, Bakhshandeh H, Bolhassani A. In vitro Anti-HIV-1 Activity of the Recombinant HIV-1 TAT Protein Along With Tenofovir Drug. Curr HIV Res 2021; 19:138-146. [PMID: 33045968 DOI: 10.2174/1570162x18666201012152600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/19/2020] [Accepted: 09/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND HIV-1 TAT protein is essential for the regulation of viral genome transcription. The first exon of TAT protein has a fundamental role in the stimulation of the extrinsic and intrinsic apoptosis pathways, but its anti-HIV activity is not clear yet. METHODS In the current study, we firstly cloned the first exon of the TAT coding sequence in the pET-24a expression vector and then protein expression was done in the Rosetta expression host. Next, the expressed TAT protein was purified by Ni-NTA column under native conditions. After that, the protein yield was determined by Bradford kit and NanoDrop spectrophotometry. Finally, the cytotoxicity effect and anti-Scr-HIV-1 activity of the recombinant TAT protein alone and along with Tenofovir drug were assessed by MTT and ELISA, respectively. RESULTS The recombinant TAT protein was successfully generated in E. coli, as confirmed by 13.5% SDS-PAGE and western blotting. The protein yield was ~150-200 μg/ml. In addition, the recombinant TAT protein at a certain dose with low toxicity could suppress Scr-HIV replication in the infected HeLa cells (~30%) that was comparable with a low toxic dose of Tenofovir drug (~40%). It was interesting that the recombinant TAT protein could enhance anti-HIV potency of Tenofovir drug up to 66%. CONCLUSION Generally, a combination of TAT protein and Tenofovir drug could significantly inhibit HIV-1 replication. It will be required to determine their mechanism of action in the next studies.
Collapse
Affiliation(s)
| | - Alireza Milani
- Department of Hepatitis, AIDS and Blood Borne Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Rouhollah Vahabpour
- Department of Medical Lab Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences; Tehran, Iran
| | - Mehdi Khoobi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Bakhshandeh
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis, AIDS and Blood Borne Diseases, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|