1
|
Malebo K, Woodward J, Ximba P, Mkhize Q, Cingo S, Moyo-Gwete T, Moore PL, Williamson AL, Chapman R. Development of a Two-Component Nanoparticle Vaccine Displaying an HIV-1 Envelope Glycoprotein that Elicits Tier 2 Neutralising Antibodies. Vaccines (Basel) 2024; 12:1063. [PMID: 39340093 PMCID: PMC11436023 DOI: 10.3390/vaccines12091063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Despite treatment and other interventions, an effective prophylactic HIV vaccine is still an essential goal in the control of HIV. Inducing robust and long-lasting antibody responses is one of the main targets of an HIV vaccine. The delivery of HIV envelope glycoproteins (Env) using nanoparticle (NP) platforms has been shown to elicit better immunogenicity than soluble HIV Env. In this paper, we describe the development of a nanoparticle-based vaccine decorated with HIV Env using the SpyCatcher/SpyTag system. The Env utilised in this study, CAP255, was derived from a transmitted founder virus isolated from a patient who developed broadly neutralising antibodies. Negative stain and cryo-electron microscopy analyses confirmed the assembly and stability of the mi3 into uniform icosahedral NPs surrounded by regularly spaced CAP255 gp140 Env trimers. A three-dimensional reconstruction of CAP255 gp140 SpyTag-SpyCatcher mi3 clearly showed Env trimers projecting from the centre of each of the pentagonal dodecahedral faces of the NP. To our knowledge, this is the first study to report the formation of SpyCatcher pentamers on the dodecahedral faces of mi3 NPs. To investigate the immunogenicity, rabbits were primed with two doses of DNA vaccines expressing the CAP255 gp150 and a mosaic subtype C Gag and boosted with three doses of the NP-developed autologous Tier 2 CAP255 neutralising antibodies (Nabs) and low levels of heterologous CAP256SU NAbs.
Collapse
Affiliation(s)
- Kegomoditswe Malebo
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Jeremy Woodward
- Electron Microscope Unit, University of Cape Town, Cape Town 7925, South Africa
| | - Phindile Ximba
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Qiniso Mkhize
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2000, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg 2192, South Africa
| | - Sanele Cingo
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Thandeka Moyo-Gwete
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2000, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg 2192, South Africa
| | - Penny L. Moore
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2000, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg 2192, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban 4001, South Africa
| | - Anna-Lise Williamson
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Rosamund Chapman
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
2
|
Akamine P, González-Feliciano JA, Almodóvar R, Morell G, Rivera J, Capó-Vélez CM, Delgado-Vélez M, Prieto-Costas L, Madera B, Eichinger D, Pino I, Rivera JH, Ortiz-Ubarri J, Rivera JM, Baerga-Ortiz A, Lasalde-Dominicci JA. Optimizing the Production of gp145, an HIV-1 Envelope Glycoprotein Vaccine Candidate and Its Encapsulation in Guanosine Microparticles. Vaccines (Basel) 2023; 11:975. [PMID: 37243079 PMCID: PMC10221277 DOI: 10.3390/vaccines11050975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/14/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
We have developed a pipeline to express, purify, and characterize HIV envelope protein (Env) gp145 from Chinese hamster ovary cells, to accelerate the production of a promising vaccine candidate. First in shake flasks, then in bioreactors, we optimized the growth conditions. By adjusting the pH to 6.8, we increased expression levels to 101 mg/L in a 50 L bioreactor, nearly twice the previously reported titer value. A battery of analytical methods was developed in accordance with current good manufacturing practices to ensure a quality biopharmaceutical. Imaged capillary isoelectric focusing verified proper glycosylation of gp145; dynamic light scattering confirmed the trimeric arrangement; and bio-layer interferometry and circular dichroism analysis demonstrated native-like properties (i.e., antibody binding and secondary structure). MALDI-TOF mass spectrometry was used as a multi-attribute platform for accurate mass determination, glycans analysis, and protein identification. Our robust analysis demonstrates that our gp145 product is very similar to a reference standard and emphasizes the importance of accurate characterization of a highly heterogeneous immunogen for the development of an effective vaccine. Finally, we present a novel guanosine microparticle with gp145 encapsulated and displayed on its surface. The unique properties of our gp145 microparticle make it amenable to use in future preclinical and clinical trials.
Collapse
Affiliation(s)
- Pearl Akamine
- Clinical Bioreagent Center, Molecular Sciences Research Center, University of Puerto Rico, San Juan 00926, Puerto Rico (M.D.-V.); (A.B.-O.)
| | - José A. González-Feliciano
- Clinical Bioreagent Center, Molecular Sciences Research Center, University of Puerto Rico, San Juan 00926, Puerto Rico (M.D.-V.); (A.B.-O.)
| | | | | | | | - Coral M. Capó-Vélez
- Clinical Bioreagent Center, Molecular Sciences Research Center, University of Puerto Rico, San Juan 00926, Puerto Rico (M.D.-V.); (A.B.-O.)
| | - Manuel Delgado-Vélez
- Clinical Bioreagent Center, Molecular Sciences Research Center, University of Puerto Rico, San Juan 00926, Puerto Rico (M.D.-V.); (A.B.-O.)
- Department of Biology, Río Piedras Campus, University of Puerto Rico, San Juan 00931, Puerto Rico
| | - Luis Prieto-Costas
- Department of Chemistry, Río Piedras Campus, University of Puerto Rico, San Juan 00925, Puerto Rico
| | - Bismark Madera
- Clinical Bioreagent Center, Molecular Sciences Research Center, University of Puerto Rico, San Juan 00926, Puerto Rico (M.D.-V.); (A.B.-O.)
- Department of Biology, Río Piedras Campus, University of Puerto Rico, San Juan 00931, Puerto Rico
| | | | | | | | - José Ortiz-Ubarri
- Department of Computer Sciences, Río Piedras Campus, University of Puerto Rico, San Juan 00925, Puerto Rico
| | - José M. Rivera
- Department of Chemistry, Río Piedras Campus, University of Puerto Rico, San Juan 00925, Puerto Rico
| | - Abel Baerga-Ortiz
- Clinical Bioreagent Center, Molecular Sciences Research Center, University of Puerto Rico, San Juan 00926, Puerto Rico (M.D.-V.); (A.B.-O.)
- Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan 00936, Puerto Rico
| | - José A. Lasalde-Dominicci
- Clinical Bioreagent Center, Molecular Sciences Research Center, University of Puerto Rico, San Juan 00926, Puerto Rico (M.D.-V.); (A.B.-O.)
- Department of Biology, Río Piedras Campus, University of Puerto Rico, San Juan 00931, Puerto Rico
- Department of Chemistry, Río Piedras Campus, University of Puerto Rico, San Juan 00925, Puerto Rico
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan 00901, Puerto Rico
| |
Collapse
|
3
|
The impact of the suppression of highly connected protein interactions on the corona virus infection. Sci Rep 2022; 12:9188. [PMID: 35654986 PMCID: PMC9160517 DOI: 10.1038/s41598-022-13373-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/09/2022] [Indexed: 11/28/2022] Open
Abstract
Several highly effective Covid-19 vaccines are in emergency use, although more-infectious coronavirus strains, could delay the end of the pandemic even further. Because of this, it is highly desirable to develop fast antiviral drug treatments to accelerate the lasting immunity against the virus. From a theoretical perspective, computational approaches are useful tools for antiviral drug development based on the data analysis of gene expression, chemical structure, molecular pathway, and protein interaction mapping. This work studies the structural stability of virus–host interactome networks based on the graphical representation of virus–host protein interactions as vertices or nodes connected by commonly shared proteins. These graphical network visualization methods are analogous to those use in the design of artificial neural networks in neuromorphic computing. In standard protein-node-based network representation, virus–host interaction merges with virus–protein and host–protein networks, introducing redundant links associated with the internal virus and host networks. On the contrary, our approach provides a direct geometrical representation of viral infection structure and allows the effective and fast detection of the structural robustness of the virus–host network through proteins removal. This method was validated by applying it to H1N1 and HIV viruses, in which we were able to pinpoint the changes in the Interactome Network produced by known vaccines. The application of this method to the SARS-CoV-2 virus–host protein interactome implies that nonstructural proteins nsp4, nsp12, nsp16, the nuclear pore membrane glycoprotein NUP210, and ubiquitin specific peptidase USP54 play a crucial role in the viral infection, and their removal may provide an efficient therapy. This method may be extended to any new mutations or other viruses for which the Interactome Network is experimentally determined. Since time is of the essence, because of the impact of more-infectious strains on controlling the spread of the virus, this method may be a useful tool for novel antiviral therapies.
Collapse
|
4
|
Innovative Ecosystem Model of Vaccine Lifecycle Management. JOURNAL OF OPEN INNOVATION: TECHNOLOGY, MARKET, AND COMPLEXITY 2022; 8. [PMCID: PMC9906693 DOI: 10.3390/joitmc8010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
The COVID-19 pandemic has severely tested humanity, revealing the need to develop and improve the medical, economic, managerial, and IT components of vaccine management systems. The vaccine lifecycle includes vaccine research and development, production, distribution, and vaccination of the population. To manage this cycle effectively the proper organizational and IT support model of the interaction of vaccine lifecycle management stakeholders is needed—which are an innovation ecosystem and an appropriate virtual platform. A literature review has revealed the lack of methodological basis for the vaccine innovation ecosystem and virtual platform. This article is devoted to the development of a complex approach for the development of an innovation ecosystem based on vaccine lifecycle management and a virtual platform which provides the data exchange environment and IT support for the ecosystem stakeholders. The methodological foundation of the solution, developed in the article, is an enterprise architecture approach, CALS technologies, supply chain management and an open innovation philosophy. The results, presented in the article, are supposed to be a reference set of models for the creation of a vaccine innovation ecosystem, both during pandemics and periods of stable viral load.
Collapse
|