1
|
Wen D, Meng C, Feng Y, Shen L, Liu Y, Sun W, Chen G, Wu C. Syringaldehyde Exhibits Antibacterial and Antioxidant Activities against Mycobacterium marinum Infection. Microorganisms 2024; 12:348. [PMID: 38399751 PMCID: PMC10893232 DOI: 10.3390/microorganisms12020348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Tuberculosis (TB) is caused by infection with Mycobacterium tuberculosis (Mtb), which has a unique resistance to many antimicrobial agents. TB has emerged as a significant worldwide health issue because of the rise of multidrug-resistant strains causing drug-resistant TB (DR-TB). As a result, the development of new drugs or effective strategies is crucial for patients with TB. Mycobacterium marinum (Mm) and Mtb are both species of mycobacteria. In zebrafish, Mm proliferates and forms chronic granulomatous infections, which are similar to Mtb infections in lung tissue. Syringaldehyde (SA) is a member of the phenolic aldehyde family found in various plants. Here, we investigated its antioxidative and antibacterial properties in Mm-infected cells and zebrafish. Our results demonstrated that SA inhibits Mm-infected pulmonary epithelial cells and inhibits the proliferation of Mm in Mm-infected zebrafish, suggesting that SA provides an antibacterial effect during Mm infection. Further study demonstrated that supplementation with SA inhibits the production of malondialdehyde (MDA) and reactive oxygen species (ROS) and increases the levels of reduced glutathione (GSH) in Mm-infection-induced macrophages. SA inhibits the levels of MDA in Mm-infected zebrafish, suggesting that SA exerts antioxidative effects in vivo. Additionally, we found that SA promotes the expression of NRF2/HO-1/NQO-1 and the activation of the AMPK-α1/AKT/GSK-3β signaling pathway. In summary, our data demonstrated that SA exerts antioxidative and antibacterial effects during Mm infection both in vivo and in vitro and that the antioxidative effects of SA may be due to the regulation of NRF2/HO-1/NQO-1 and the AMPK-α1/AKT/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Da Wen
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan 030006, China
| | - Chaoqun Meng
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan 030006, China
| | - Yazhi Feng
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan 030006, China
| | - Lin Shen
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan 030006, China
| | - Yiyao Liu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan 030006, China
| | - Wei Sun
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan 030006, China
| | - Guangxin Chen
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan 030006, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
2
|
Chen G, Yang Z, Wen D, Li P, Xiong Q, Wu C. Oridonin Inhibits Mycobacterium marinum Infection-Induced Oxidative Stress In Vitro and In Vivo. Pathogens 2023; 12:799. [PMID: 37375489 DOI: 10.3390/pathogens12060799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Prior to the COVID-19 pandemic, tuberculosis (TB) was the leading cause of death globally attributable to a single infectious agent, ranking higher than HIV/AIDS. Consequently, TB remains an urgent public health crisis worldwide. Oridonin (7a,20-Epoxy-1a,6b,7,14-tetrahydroxy-Kaur-16-en-15-one Isodonol, C20H28O6, Ori), derived from the Rabdosia Rrubescens plant, is a natural compound that exhibits antioxidant, anti-inflammatory, and antibacterial properties. Our objective was to investigate whether Ori's antioxidant and antibacterial effects could be effective against the infection Mycobacterium marinum (Mm)-infected cells and zebrafish. We observed that Ori treatment significantly impeded Mm infection in lung epithelial cells, while also suppressing inflammatory response and oxidative stress in Mm-infected macrophages. Further investigation revealed that Ori supplementation inhibited the proliferation of Mm in zebrafish, as well as reducing oxidative stress levels in infected zebrafish. Additionally, Ori promoted the expression of NRF2/HO-1/NQO-1 and activated the AKT/AMPK-α1/GSK-3β signaling pathway, which are both associated with anti-inflammatory and antioxidant effects. In summary, our results demonstrate that Ori exerts inhibitory effects on Mm infection and proliferation in cells and zebrafish, respectively. Additionally, Ori regulates oxidative stress by modulating the NRF2/HO-1/NQO-1 and AKT/AMPK-α1/GSK-3β signaling pathways.
Collapse
Affiliation(s)
- Guangxin Chen
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Taiyuan 030006, China
| | - Ziyue Yang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Taiyuan 030006, China
| | - Da Wen
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Taiyuan 030006, China
| | - Ping Li
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Taiyuan 030006, China
| | - Qiuhong Xiong
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Taiyuan 030006, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, Taiyuan 030006, China
| |
Collapse
|
3
|
Dolgopolov IS, Federiakina OB, Volzhenina OM, Erokhina GG, Leonov KA, Shneivais AO, Siadrin MG, Rykov MY. Congenital pulmonary tuberculosis. ROSSIYSKIY VESTNIK PERINATOLOGII I PEDIATRII (RUSSIAN BULLETIN OF PERINATOLOGY AND PEDIATRICS) 2023. [DOI: 10.21508/1027-4065-2023-68-1-97-104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Congenital tuberculosis is a fatal disease in the absence of treatment. The diagnosis is difficult due to polymorphic and nonspecific symptoms in neonates, as well as the lack of alertness of neonatologists and pediatricians. Less than 500 confirmed cases of congenital tuberculosis have been described in the available literature. Mortality ranges from 15 to 33%. Early diagnosis and adequate therapy are essential to improve the prognosis of the disease. Two cases of pulmonary congenital tuberculosis in premature neonates with a positive maternal and familial history of tuberculosis is presented. The clinical symptoms and radiological features started on the days 24 and 48 of life, respectively. Shortness of breath, low blood oxygen level requiring oxygen therapy, fever, and impaired general well-being revealed. The chest X-ray revealed bilateral polysegmental infiltrative lesions with the formation of a cavity of destruction in one case. The diagnosis was established after the detection of M. tuberculosis DNA in gastric aspirates. Patients received therapy according to a regimen designed for multidrug-resistant tuberculosis, including conventional anti-TB drugs in combination with linezolid, fluoroquinolones, meropenem, and aminoglycosides. The infectious syndrome in a premature newborn associated with pneumonia resistant to standard antibiotic therapy, the presence of tuberculosis in the mother, relatives, or siblings require a work-up for the detection of M. tuberculosis and instrumental diagnostics. Early diagnosis and treatment are critical for improving the prognosis of the disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - M. Yu. Rykov
- Russian State Social University; N.A. Semashko National Research Institute of Public Health
| |
Collapse
|
4
|
Miner MD, Hatherill M, Mave V, Gray GE, Nachman S, Read SW, White RG, Hesseling A, Cobelens F, Patel S, Frick M, Bailey T, Seder R, Flynn J, Rengarajan J, Kaushal D, Hanekom W, Schmidt AC, Scriba TJ, Nemes E, Andersen-Nissen E, Landay A, Dorman SE, Aldrovandi G, Cranmer LM, Day CL, Garcia-Basteiro AL, Fiore-Gartland A, Mogg R, Kublin JG, Gupta A, Churchyard G. Developing tuberculosis vaccines for people with HIV: consensus statements from an international expert panel. Lancet HIV 2022; 9:e791-e800. [PMID: 36240834 PMCID: PMC9667733 DOI: 10.1016/s2352-3018(22)00255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/16/2022] [Accepted: 08/30/2022] [Indexed: 11/06/2022]
Abstract
New tuberculosis vaccine candidates that are in the development pipeline need to be studied in people with HIV, who are at high risk of acquiring Mycobacterium tuberculosis infection and tuberculosis disease and tend to develop less robust vaccine-induced immune responses. To address the gaps in developing tuberculosis vaccines for people with HIV, a series of symposia was held that posed six framing questions to a panel of international experts: What is the use case or rationale for developing tuberculosis vaccines? What is the landscape of tuberculosis vaccines? Which vaccine candidates should be prioritised? What are the tuberculosis vaccine trial design considerations? What is the role of immunological correlates of protection? What are the gaps in preclinical models for studying tuberculosis vaccines? The international expert panel formulated consensus statements to each of the framing questions, with the intention of informing tuberculosis vaccine development and the prioritisation of clinical trials for inclusion of people with HIV.
Collapse
Affiliation(s)
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Vidya Mave
- Johns Hopkins India, Byramjee-Jeejeebhoy Government Medical College Clinical Research Site, Pune, India
| | - Glenda E Gray
- South African Medical Research Council, Cape Town, South Africa
| | - Sharon Nachman
- Department of Pediatrics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Sarah W Read
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Richard G White
- Department of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Anneke Hesseling
- Desmond Tutu Tuberculosis Centre, Stellenbosch University, Stellenbosch, South Africa
| | - Frank Cobelens
- Department of Global Health, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Sheral Patel
- US Food and Drug Administration, Silver Spring, MD, USA
| | - Mike Frick
- Treatment Action Group, New York, NY, USA
| | | | - Robert Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joanne Flynn
- Microbiology and Molecular Genetics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Deepak Kaushal
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Willem Hanekom
- Africa Health Research Institute, Durban, KwaZulu-Natal, South Africa
| | | | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Elisa Nemes
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Erica Andersen-Nissen
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Cape Town HIV Vaccine Trials Network (HVTN) Immunology Laboratory, Cape Town, South Africa
| | | | - Susan E Dorman
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Grace Aldrovandi
- Department of Pediatrics, University of California, Los Angeles, CA, USA
| | - Lisa M Cranmer
- Emory School of Medicine, Emory University, Atlanta, GA, USA
| | - Cheryl L Day
- Emory School of Medicine, Emory University, Atlanta, GA, USA
| | - Alberto L Garcia-Basteiro
- ISGlobal, Hospital Clínic Universitat de Barcelona, Barcelona, Spain; Centro de investigação de Saúde de Manhiça, Maputo, Mozambique
| | | | - Robin Mogg
- Takeda Pharmaceutical Company, Cambridge, MA, USA
| | - James G Kublin
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Amita Gupta
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gavin Churchyard
- The Aurum Institute, Johannesburg, South Africa; School of Public Health, University of Witwatersrand, Johannesburg, South Africa; Department of Medicine, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|