1
|
Chaithongwongwatthana S, Wijagkanalan W, Wanlapakorn N, Fortuna L, Yuwaree V, Kerdsomboon C, Poredi IK, Mansouri S, Pham HT, Poovorawan Y. Transplacental transfer of maternal antibodies following immunization with recombinant pertussis vaccines during pregnancy: Real-world evidence. Int J Infect Dis 2024; 144:107047. [PMID: 38609035 DOI: 10.1016/j.ijid.2024.107047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024] Open
Abstract
AIM/OBJECTIVE This study investigates placental antibody transfer following recombinant pertussis vaccination in pregnancy in a real-world setting. METHODS This postmarketing observational study recruited pregnant women vaccinated with monovalent recombinant acellular pertussis (aP) vaccine (aPgen; n = 199) or combined to tetanus-diphtheria (TdaPgen; n = 200), or Td-vaccine only (n = 54). Pregnancy, delivery, and neonatal outcomes were assessed. Cord blood was collected postdelivery and pertussis toxin (PT)-IgG, filamentous hemagglutinin (FHA)-IgG, and PT-neutralizing antibodies (PT-Nab) were assessed. RESULTS No adverse pregnancy, delivery, or neonatal outcomes attributed to aPgen, TdaPgen, or Td vaccination were reported. High anti-PT antibody levels were detected in cord samples from women vaccinated with aPgen (geometric mean concentration [GMC] PT-IgG 206.1 IU/ml, 95% confidence intervals [CI]: 164.3-258.6; geometric mean titer [GMT] PT-Nab 105.3 IU/ml, 95% CI: 81.7-135.8) or TdaPgen (GMC PT-IgG 153.1 IU/ml, 95% CI: 129.1-181.5; GMT PT-Nab 81.5 IU/ml, 95% CI: 66.4-100.0). In the Td-only group, anti-PT antibodies were low (GMC PT-IgG 6.5 IU/ml, 95% CI: 4.9-8.8; GMT PT-Nab 3.8 IU/ml, 95% CI: 2.8-5.1). The same was found for FHA-IgG. Recombinant pertussis vaccination at <27 or 27-36 weeks gestation induced similar cord pertussis antibody levels. CONCLUSION This first real-world study confirms that recombinant pertussis vaccination in the second or third trimester of pregnancy results in high levels of passive immunity in infants. Thai Clinical Trial Registry: TCTR20200528006.
Collapse
Affiliation(s)
| | | | - Nasamon Wanlapakorn
- Department of Pediatrics, Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | | | | | | | | | | | | | - Yong Poovorawan
- Department of Pediatrics, Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Liu Y, Lam DMK, Luan M, Zheng W, Ai H. Recent development of oral vaccines (Review). Exp Ther Med 2024; 27:223. [PMID: 38590568 PMCID: PMC11000446 DOI: 10.3892/etm.2024.12511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/08/2024] [Indexed: 04/10/2024] Open
Abstract
Oral immunization can elicit an effective immune response and immune tolerance to specific antigens. When compared with the traditional injection route, delivering antigens via the gastrointestinal mucosa offers superior immune effects and compliance, as well as simplicity and convenience, making it a more optimal route for immunization. At present, various oral vaccine delivery systems exist. Certain modified bacteria, such as Salmonella, Escherichia coli and particularly Lactobacillus, are considered promising carriers for oral vaccines. These carriers can significantly enhance immunization efficiency by actively replicating in the intestinal tract following oral administration. The present review provided a discussion of the main mechanisms of oral immunity and the research progress made in the field of oral vaccines. Additionally, it introduced the advantages and disadvantages of the currently more commonly administered injectable COVID-19 vaccines, alongside the latest advancements in this area. Furthermore, recent developments in oral vaccines are summarized, and their potential benefits and side effects are discussed.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | | | - Mei Luan
- Department of Geriatric Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Wenfu Zheng
- Chinese Academy of Sciences Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hao Ai
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| |
Collapse
|
3
|
Chokephaibulkit K, Puthanakit T, Chaithongwongwatthana S, Bhat N, Tang Y, Anugulruengkitt S, Chayachinda C, Anuwutnavin S, Lapphra K, Rungmaitree S, Tawan M, Andi-Lolo I, Holt R, Fortuna L, Kerdsomboon C, Yuwaree V, Mansouri S, Thai PH, Innis BL. Effective and safe transfer of maternal antibodies persisting two months postpartum following maternal immunization with different doses of recombinant pertussis-containing vaccines. Vaccine 2024; 42:383-395. [PMID: 38061956 PMCID: PMC10789266 DOI: 10.1016/j.vaccine.2023.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/29/2023] [Accepted: 11/20/2023] [Indexed: 01/01/2024]
Abstract
INTRODUCTION Recombinant acellular pertussis (ap) vaccines containing genetically inactivated pertussis toxin (PTgen) and filamentous hemagglutinin (FHA) with or without tetanus (TT) and diphtheria (DT) vaccines (Td) were found safe and immunogenic in non-pregnant and pregnant women. We report here maternal antibody transfer and safety data in mothers and neonates. METHODS This is the follow up of a phase 2 trial in 2019 among 400 pregnant women who randomly received one dose of recombinant pertussis-only vaccine containing 1 µg PTgen and 1 µg FHA (ap1gen), or Td combined with ap1gen (Tdap1gen), or with 2 µg PTgen and 5 µg FHA (Tdap2gen), or with 5 µg PTgen and 5 µg FHA (TdaP5gen, Boostagen®, BioNet, Thailand) or chemically-inactivated acellular pertussis comparator (Tdap8chem, Boostrix™, GSK, Belgium), either in the second or third trimester of gestation. IgG against PT, FHA, TT and DT were assessed by ELISA, PT-neutralizing antibodies (PTNA) by Chinese Hamster Ovary cell assay and safety outcomes at delivery in mothers and at birth. RESULTS Anti-PT and anti-FHA geometric mean concentration (GMC) ratio between infants at birth and mothers at delivery was above 1 in all groups. PT GMC in infants at birth were ≥30 IU/mL in all groups with the highest titers in infants found in TdaP5gen group at birth (118.8 [95% CI 93.9-150.4]). At 2 months, PT GMC ratio to Tdap8chem (98.75% CI) was significantly higher for TdaP5gen (2.6 [1.7-4.0]) and comparable for other recombinant vaccines. No difference in PTNA titers at birth was observed between all groups nor between time of vaccination. Adverse events were comparable in all vaccine groups. CONCLUSIONS BioNet licensed (TdaP5gen and Tdap2gen) and candidate vaccines (Tdap1gen and ap1gen) when given to pregnant women in the second or third trimester of gestation are safe and have induced passive pertussis immunity to infants.
Collapse
Affiliation(s)
- Kulkanya Chokephaibulkit
- Siriraj Institute of Clinical Research (SICRES) Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok 10700, Thailand; Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok 10700, Thailand
| | - Thanyawee Puthanakit
- Department of Pediatrics, Faculty of Medicine and Center of Excellence in Pediatric Infectious Diseases and Vaccines, Chulalongkorn University, Rama IV Road, Bangkok 10330, Thailand
| | - Surasith Chaithongwongwatthana
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Rama IV Road, Bangkok 10330, Thailand
| | - Niranjan Bhat
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA 98121, USA
| | - Yuxiao Tang
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA 98121, USA
| | - Suvaporn Anugulruengkitt
- Department of Pediatrics, Faculty of Medicine and Center of Excellence in Pediatric Infectious Diseases and Vaccines, Chulalongkorn University, Rama IV Road, Bangkok 10330, Thailand
| | - Chenchit Chayachinda
- Department of Obstetrics & Gynaecology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok 10700, Thailand
| | - Sanitra Anuwutnavin
- Department of Obstetrics & Gynaecology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok 10700, Thailand
| | - Keswadee Lapphra
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok 10700, Thailand
| | - Supattra Rungmaitree
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok 10700, Thailand
| | - Monta Tawan
- Department of Pediatrics, Faculty of Medicine and Center of Excellence in Pediatric Infectious Diseases and Vaccines, Chulalongkorn University, Rama IV Road, Bangkok 10330, Thailand
| | - Indah Andi-Lolo
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA 98121, USA
| | - Renee Holt
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA 98121, USA
| | - Librada Fortuna
- BioNet-Asia Co., Ltd., 19 Soi Udomsuk 37, Sukhumvit 103 Road, Bangjak, Prakanong, Bangkok 10260, Thailand.
| | - Chawanee Kerdsomboon
- BioNet-Asia Co., Ltd., 19 Soi Udomsuk 37, Sukhumvit 103 Road, Bangjak, Prakanong, Bangkok 10260, Thailand
| | - Vilasinee Yuwaree
- BioNet-Asia Co., Ltd., 19 Soi Udomsuk 37, Sukhumvit 103 Road, Bangjak, Prakanong, Bangkok 10260, Thailand
| | - Souad Mansouri
- BioNet-Asia Co., Ltd., 19 Soi Udomsuk 37, Sukhumvit 103 Road, Bangjak, Prakanong, Bangkok 10260, Thailand
| | - Pham Hong Thai
- BioNet-Asia Co., Ltd., 19 Soi Udomsuk 37, Sukhumvit 103 Road, Bangjak, Prakanong, Bangkok 10260, Thailand
| | - Bruce L Innis
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA 98121, USA
| |
Collapse
|
4
|
Puthanakit T, Chokephaibulkit K, Chaithongwongwatthana S, Bhat N, Tang Y, Anugulruengkitt S, Chayachinda C, Anuwutnavin S, Lapphra K, Rungmaitree S, Tawan M, Andi-Lolo I, Holt R, Fortuna L, Kerdsomboon C, Yuwaree V, Mansouri S, Thai PH, Innis BL. A phase 2 randomized controlled dose-ranging trial of recombinant pertussis booster vaccines containing genetically inactivated pertussis toxin in pregnant women. Vaccine 2023; 41:4541-4553. [PMID: 37330371 PMCID: PMC10267846 DOI: 10.1016/j.vaccine.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/29/2022] [Accepted: 06/01/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Despite a decrease in infections caused by Bordetella pertussis due to COVID-19 pandemic, booster vaccination of pregnant women is still recommended to protect newborns. Highly immunogenic vaccines containing genetically inactivated pertussis toxin (PTgen) and filamentous hemagglutinin (FHA) may generate comparable anti-PT antibody concentrations, even at lower doses, to chemically inactivated acellular pertussis vaccines (Tdapchem) shown effective for maternal immunization. METHODS This phase 2 randomized, observer-blind, active-controlled non-inferiority trial was conducted in healthy Thai pregnant women randomly assigned to receive one dose of low-dose recombinant pertussis-only vaccine containing 1 µg PTgen and 1 µg FHA (ap1gen), or tetanus, reduced-dose diphtheria combined with ap1gen (Tdap1gen), or combined with 2 µg PTgen and 5 µg FHA (Tdap2gen), or with 5 µg PTgen and 5 µg FHA (TdaP5gen, Boostagen®) or comparator containing 8 µg of chemically inactivated pertussis toxoid, 8 µg FHA, and 2.5 µg pertactin (Boostrix™, Tdap8chem). Blood was collected at Day 0 and Day 28 post-vaccination. The non-inferiority of the study vaccines was assessed based on anti-PT IgG antibody levels on Day 28 pooled with results from a similarly structured previous trial in non-pregnant women. RESULTS 400 healthy pregnant women received one dose of vaccine. Combined with data from 250 non-pregnant women, all study vaccines containing PTgen were non-inferior to comparator vaccine (Tdap8chem). Both ap1gen and TdaP5gen vaccines could be considered to have superior immunogenicity to Tdap8chem. Local and systemic solicited reactions were similar among all vaccine groups. CONCLUSIONS Vaccine formulations containing PTgen were safe and immunogenic in pregnant women. The ap1gen vaccine, with the lowest cost and reactogenicity, may be suitable for use in pregnant women when diphtheria and tetanus toxoids are not needed. This study is registered in the Thai Clinical Trial Registry (www. CLINICALTRIALS in.th), number TCTR20180725004.
Collapse
Affiliation(s)
- Thanyawee Puthanakit
- Department of Pediatrics, Faculty of Medicine and Center of Excellence in Pediatric Infectious Diseases and Vaccines, Chulalongkorn University, Rama IV Road, Bangkok 10330, Thailand
| | - Kulkanya Chokephaibulkit
- Siriraj Institute of Clinical Research (SICRES) Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok 10700, Thailand; Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok 10700, Thailand
| | - Surasith Chaithongwongwatthana
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Rama IV Road, Bangkok 10330, Thailand
| | - Niranjan Bhat
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA 98121, USA
| | - Yuxiao Tang
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA 98121, USA
| | - Suvaporn Anugulruengkitt
- Department of Pediatrics, Faculty of Medicine and Center of Excellence in Pediatric Infectious Diseases and Vaccines, Chulalongkorn University, Rama IV Road, Bangkok 10330, Thailand
| | - Chenchit Chayachinda
- Department of Obstetrics & Gynaecology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok 10700, Thailand
| | - Sanitra Anuwutnavin
- Department of Obstetrics & Gynaecology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok 10700, Thailand
| | - Keswadee Lapphra
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok 10700, Thailand
| | - Supattra Rungmaitree
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok 10700, Thailand
| | - Monta Tawan
- Department of Pediatrics, Faculty of Medicine and Center of Excellence in Pediatric Infectious Diseases and Vaccines, Chulalongkorn University, Rama IV Road, Bangkok 10330, Thailand
| | - Indah Andi-Lolo
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA 98121, USA
| | - Renee Holt
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA 98121, USA
| | - Librada Fortuna
- BioNet-Asia Co., Ltd., 19 Soi Udomsuk 37, Sukhumvit 103 Road, Bangjak, Prakanong, Bangkok 10260, Thailand.
| | - Chawanee Kerdsomboon
- BioNet-Asia Co., Ltd., 19 Soi Udomsuk 37, Sukhumvit 103 Road, Bangjak, Prakanong, Bangkok 10260, Thailand
| | - Vilasinee Yuwaree
- BioNet-Asia Co., Ltd., 19 Soi Udomsuk 37, Sukhumvit 103 Road, Bangjak, Prakanong, Bangkok 10260, Thailand
| | - Souad Mansouri
- BioNet-Asia Co., Ltd., 19 Soi Udomsuk 37, Sukhumvit 103 Road, Bangjak, Prakanong, Bangkok 10260, Thailand
| | - Pham Hong Thai
- BioNet-Asia Co., Ltd., 19 Soi Udomsuk 37, Sukhumvit 103 Road, Bangjak, Prakanong, Bangkok 10260, Thailand
| | - Bruce L Innis
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA 98121, USA
| |
Collapse
|