1
|
Mosmann TR, McMichael AJ, LeVert A, McCauley JW, Almond JW. Opportunities and challenges for T cell-based influenza vaccines. Nat Rev Immunol 2024; 24:736-752. [PMID: 38698082 DOI: 10.1038/s41577-024-01030-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 05/05/2024]
Abstract
Vaccination remains our main defence against influenza, which causes substantial annual mortality and poses a serious pandemic threat. Influenza virus evades immunity by rapidly changing its surface antigens but, even when the vaccine is well matched to the current circulating virus strains, influenza vaccines are not as effective as many other vaccines. Influenza vaccine development has traditionally focused on the induction of protective antibodies, but there is mounting evidence that T cell responses are also protective against influenza. Thus, future vaccines designed to promote both broad T cell effector functions and antibodies may provide enhanced protection. As we discuss, such vaccines present several challenges that require new strategic and economic considerations. Vaccine-induced T cells relevant to protection may reside in the lungs or lymphoid tissues, requiring more invasive assays to assess the immunogenicity of vaccine candidates. T cell functions may contain and resolve infection rather than completely prevent infection and early illness, requiring vaccine effectiveness to be assessed based on the prevention of severe disease and death rather than symptomatic infection. It can be complex and costly to measure T cell responses and infrequent clinical outcomes, and thus innovations in clinical trial design are needed for economic reasons. Nevertheless, the goal of more effective influenza vaccines justifies renewed and intensive efforts.
Collapse
Affiliation(s)
- Tim R Mosmann
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Andrew J McMichael
- Centre for Immuno-Oncology, Old Road Campus Research Building, University of Oxford, Oxford, UK
| | | | | | - Jeffrey W Almond
- The Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Zhu C, Jiao S, Xu W. CD8 + Trms against malaria liver-stage: prospects and challenges. Front Immunol 2024; 15:1344941. [PMID: 38318178 PMCID: PMC10839007 DOI: 10.3389/fimmu.2024.1344941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Attenuated sporozoites provide a valuable model for exploring protective immunity against the malarial liver stage, guiding the design of highly efficient vaccines to prevent malaria infection. Liver tissue-resident CD8+ T cells (CD8+ Trm cells) are considered the host front-line defense against malaria and are crucial to developing prime-trap/target strategies for pre-erythrocytic stage vaccine immunization. However, the spatiotemporal regulatory mechanism of the generation of liver CD8+ Trm cells and their responses to sporozoite challenge, as well as the protective antigens they recognize remain largely unknown. Here, we discuss the knowledge gap regarding liver CD8+ Trm cell formation and the potential strategies to identify predominant protective antigens expressed in the exoerythrocytic stage, which is essential for high-efficacy malaria subunit pre-erythrocytic vaccine designation.
Collapse
Affiliation(s)
- Chengyu Zhu
- The School of Medicine, Chongqing University, Chongqing, China
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shiming Jiao
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wenyue Xu
- The School of Medicine, Chongqing University, Chongqing, China
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
3
|
Parmaksız S, Pekcan M, Özkul A, Türkmen E, Rivero-Arredondo V, Ontiveros-Padilla L, Forbes N, Perrie Y, López-Macías C, Şenel S. In vivo evaluation of new adjuvant systems based on combination of Salmonella Typhi porins with particulate systems: Liposomes versus polymeric particles. Int J Pharm 2023; 648:123568. [PMID: 37925042 DOI: 10.1016/j.ijpharm.2023.123568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
Subunit vaccines that have weak immunogenic activity require adjuvant systems for enhancedcellular and long-acting humoral immune responses. Both lipid-based and polymeric-based particulate adjuvants have been widely investigated to induce the desired immune responses against the subunit vaccines. The adjuvant efficacy of these particulate adjuvants depends upon their physicochemical properties such as particle size, surface charge, shape and their composition. Previously, we showed in vitro effect of adjuvant systems based on combination of chitosan and Salmonella Typhi porins in microparticle or nanoparticle form, which were spherical with positive surface charge. In the present study, we have further developed an adjuvant system based on combination of porins with liposomes (cationic and neutral) and investigated the adjuvant effect of both the liposomal and polymeric systems in BALB/c mice using a model antigen, ovalbumin. Humoral immune responses were determined following priming and booster dose at 15-day intervals. In overall, IgM and IgG levels were induced in the presence of both the liposomal and polymeric adjuvant systems indicating the positive impact of combination with porins. The highest IgM levels were obtained on Day 8, and liposomal adjuvant systems were found to elicit significantly higher IgM levels compared to polymeric systems. IgG levels were increased significantly after booster, particularly more profound with the micro-sized polymeric system when compared to cationic liposomal system with nano-size. Our results demonstrated that the developed particulate systems are promising both as an adjuvant and delivery system, providing enhanced immune responses against subunit antigens, and have the potential for long-term protection.
Collapse
Affiliation(s)
- Selin Parmaksız
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100 Ankara, Turkey
| | - Mert Pekcan
- Ankara University, Faculty of Veterinary Medicine, Department of Biochemistry, 06110 Ankara, Turkey
| | - Aykut Özkul
- Ankara University, Faculty of Veterinary Medicine, Department of Virology, Ankara University, 06110 Ankara, Turkey
| | - Ece Türkmen
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100 Ankara, Turkey
| | - Vanessa Rivero-Arredondo
- Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre "Siglo XXI", Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - Luis Ontiveros-Padilla
- Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre "Siglo XXI", Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - Neil Forbes
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, United Kingdom
| | - Yvonne Perrie
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, United Kingdom
| | - Constantino López-Macías
- Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre "Siglo XXI", Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - Sevda Şenel
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100 Ankara, Turkey.
| |
Collapse
|
4
|
Bradshaw JL, Cushen SC, Ricci CA, Tucker SM, Gardner JJ, Little JT, Osikoya O, Goulopoulou S. Gestational exposure to unmethylated CpG oligonucleotides dysregulates placental molecular clock network and fetoplacental growth dynamics, and disrupts maternal blood pressure circadian rhythms in rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532649. [PMID: 36993698 PMCID: PMC10055100 DOI: 10.1101/2023.03.14.532649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Bacterial infections and impaired mitochondrial DNA dynamics are associated with adverse pregnancy outcomes. Unmethylated cytosine-guanine dinucleotide (CpG) motifs are common in bacterial and mitochondrial DNA and act as potent immunostimulators. Here, we tested the hypothesis that exposure to CpG oligonucleotides (ODN) during pregnancy would disrupt blood pressure circadian rhythms and the placental molecular clock machinery, mediating aberrant fetoplacental growth dynamics. Rats were repeatedly treated with CpG ODN in the 3 rd trimester (gestational day, GD, 14, 16, 18) and euthanized on GD20 (near term) or with a single dose of CpG ODN and euthanized 4 hours after treatment on GD14. Hemodynamic circadian rhythms were analyzed via Lomb-Scargle periodogram analysis on 24-h raw data collected continuously via radiotelemetry. A p -value ≥ 0.05 indicates the absence of a circadian rhythm. Following the first treatment with CpG ODN, maternal systolic and diastolic blood pressure circadian rhythms were lost ( p ≥ 0.05). Blood pressure circadian rhythm was restored by GD16 and remained unaffected after the second treatment with CpG ODN ( p < 0.0001). Diastolic blood pressure circadian rhythm was again lost after the last treatment on GD18 ( p ≥ 0.05). CpG ODN increased placental expression of Per2 and Per3 and Tnfα ( p ≤ 0.05) and affected fetoplacental growth dynamics, such as reduced fetal and placental weights were disproportionately associated with increases in the number of resorptions in ODN-treated dams compared to controls. In conclusion, gestational exposure to unmethylated CpG DNA dysregulates placental molecular clock network and fetoplacental growth dynamics and disrupts blood pressure circadian rhythms.
Collapse
|
5
|
Zhou S, Luo Y, Lovell JF. Vaccine approaches for antigen capture by liposomes. Expert Rev Vaccines 2023; 22:1022-1040. [PMID: 37878481 PMCID: PMC10872528 DOI: 10.1080/14760584.2023.2274479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
INTRODUCTION Liposomes have been used as carriers for vaccine adjuvants and antigens due to their inherent biocompatibility and versatility as delivery vehicles. Two vial admixture of protein antigens with liposome-formulated immunostimulatory adjuvants has become a broadly used clinical vaccine preparation approach. Compared to freely soluble antigens, liposome-associated forms can enhance antigen delivery to antigen-presenting cells and co-deliver antigens with adjuvants, leading to improved vaccine efficacy. AREAS COVERED Several antigen-capture strategies for liposomal vaccines have been developed for proteins, peptides, and nucleic acids. Specific antigen delivery methodologies are discussed, including electrostatic adsorption, encapsulation inside the liposome aqueous core, and covalent and non-covalent antigen capture. EXPERT OPINION Several commercial vaccines include active lipid components, highlighting an increasingly prominent role of liposomes and lipid nanoparticles in vaccine development. Utilizing liposomes to associate antigens offers potential advantages, including antigen and adjuvant dose-sparing, co-delivery of antigen and adjuvant to immune cells, and enhanced immunogenicity. Antigen capture by liposomes has demonstrated feasibility in clinical testing. New antigen-capture techniques have been developed and appear to be of interest for vaccine development.
Collapse
Affiliation(s)
- Shiqi Zhou
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Yuan Luo
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|