1
|
Tsurumi Y, Morimoto K, Masuda A, Lee JM, Mon H, Kusakabe T. Production of norovirus VLPs of the nine representative genotypes widely distributed in Japan using the silkworm-baculovirus expression vector system. J Virol Methods 2024; 331:115038. [PMID: 39374900 DOI: 10.1016/j.jviromet.2024.115038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024]
Abstract
Norovirus (NoV) is one of the major causes of acute viral gastroenteritis in humans. Genetic variation is abundant, and prevalent genotypes vary from year to year and region to region. Since NoVs are difficult to amplify in cultured cells, genome RNA-free virus-like particles (VLPs) that mimic the capsid structure of the virus are promising vaccine candidates for the prevention of NoVs infection, and the development of multivalent VLP vaccines is required to prevent NoV infection in a wide range of genotypes. In this study, we attempted to produce NoV VLPs of the top nine genotypes that have a history of epidemics in Japan using the silkworm-baculovirus expression vector system (silkworm-BEVS), which has a proven track record in the mass production of recombinant proteins. In silkworm pupae infected with recombinant baculoviruses constructed to express VP1s, the major protein that forms VLP, the NoV VP1 protein was expressed in large amounts. Most genotypes of VP1 accumulated in the cytoplasm as soluble proteins, but solubility was reduced for that of two genotypes. VP1s of five genotypes could be purified in large quantities (>0.9 mg per pupa) by a two-step purification process, and gel filtration chromatography analysis confirmed the formation of VLPs. This study demonstrates the utility of silkworm-BEVS in producing NoV VLPs of multiple genotypes and provides the basis for the development of a multivalent vaccine against genetically diverse NoV infections.
Collapse
Affiliation(s)
- Yuto Tsurumi
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Keisuke Morimoto
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akitsu Masuda
- Laboratory of Creative Science for Insect Industries, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jae Man Lee
- Laboratory of Creative Science for Insect Industries, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroaki Mon
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
2
|
Atochina-Vasserman EN, Lindesmith LC, Mirabelli C, Ona NA, Reagan EK, Brewer-Jensen PD, Mercado-Lopez X, Shahnawaz H, Meshanni JA, Baboo I, Mallory ML, Zweigart MR, May SR, Mui BL, Tam YK, Wobus CE, Baric RS, Weissman D. Bivalent norovirus mRNA vaccine elicits cellular and humoral responses protecting human enteroids from GII.4 infection. NPJ Vaccines 2024; 9:182. [PMID: 39353926 PMCID: PMC11445234 DOI: 10.1038/s41541-024-00976-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
Nucleoside-modified mRNA-LNP vaccines have revolutionized vaccine development against infectious pathogens due to their ability to elicit potent humoral and cellular immune responses. In this article, we present the results of the first norovirus vaccine candidate employing mRNA-LNP platform technology. The mRNA-LNP bivalent vaccine encoding the major capsid protein VP1 from GI.1 and GII.4 of human norovirus, generated high levels of neutralizing antibodies, robust cellular responses, and effectively protected human enteroids from infection by the most prevalent genotype (GII.4). These results serve as a proof of concept, demonstrating that a modified-nucleoside mRNA-LNP vaccine based on norovirus VP1 sequences can stimulate an immunogenic response in vivo and generates neutralizing antibodies capable of preventing viral infection in models of human gastrointestinal tract infection.
Collapse
Affiliation(s)
- Elena N Atochina-Vasserman
- Institue for RNA Innovation, the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Lisa C Lindesmith
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Carmen Mirabelli
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Nathan A Ona
- Institue for RNA Innovation, the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Erin K Reagan
- Institue for RNA Innovation, the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Paul D Brewer-Jensen
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xiomara Mercado-Lopez
- Institue for RNA Innovation, the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Hamna Shahnawaz
- Institue for RNA Innovation, the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jaclynn A Meshanni
- Institue for RNA Innovation, the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ishana Baboo
- Institue for RNA Innovation, the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Michael L Mallory
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark R Zweigart
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samantha R May
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Ying K Tam
- Acuitas Therapeutics Inc, Vancouver, B.C., Canada
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Drew Weissman
- Institue for RNA Innovation, the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
3
|
Hasso-Agopsowicz M, Sparrow E, Cameron AM, Sati H, Srikantiah P, Gottlieb S, Bentsi-Enchill A, Le Doare K, Hamel M, Giersing BK, Hausdorff WP. The role of vaccines in reducing antimicrobial resistance: A review of potential impact of vaccines on AMR and insights across 16 vaccines and pathogens. Vaccine 2024; 42:S1-S8. [PMID: 38876836 DOI: 10.1016/j.vaccine.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/01/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
In 2019, an estimated 4.95 million deaths were linked to antimicrobial resistance (AMR). Vaccines can prevent many of these deaths by averting both drug-sensitive and resistant infections, reducing antibiotic usage, and lowering the likelihood of developing resistance genes. However, their role in mitigating AMR is currently underutilized. This article builds upon previous research that utilizes Vaccine Value Profiles-tools that assess the health, socioeconomic, and societal impact of pathogens-to inform vaccine development. We analyze the effects of 16 pathogens, covered by Vaccine Value Profiles, on AMR, and explore how vaccines could reduce AMR. The article also provides insights into vaccine development and usage. Vaccines are crucial in lessening the impact of infectious diseases and curbing the development of AMR. To fully realize their potential, vaccines must be more prominently featured in the overall strategy to combat AMR. This requires ongoing investment in research and development of new vaccines and the implementation of additional prevention and control measures to address this global threat effectively.
Collapse
Affiliation(s)
- Mateusz Hasso-Agopsowicz
- Vaccine Product & Delivery Research, Department of Immunization, Vaccines & Biologicals, World Health Organization, Geneva, Switzerland.
| | - Erin Sparrow
- Vaccine Product & Delivery Research, Department of Immunization, Vaccines & Biologicals, World Health Organization, Geneva, Switzerland
| | - Alexandra Meagan Cameron
- Global Coordination and Partnership (GCP), Antimicrobial Resistance Division, World Health Organization, Geneva, Switzerland
| | - Hatim Sati
- Global Coordination and Partnership (GCP), Antimicrobial Resistance Division, World Health Organization, Geneva, Switzerland
| | | | - Sami Gottlieb
- Department of Sexual and Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| | - Adwoa Bentsi-Enchill
- Vaccine Product & Delivery Research, Department of Immunization, Vaccines & Biologicals, World Health Organization, Geneva, Switzerland
| | | | - Mary Hamel
- Vaccine Product & Delivery Research, Department of Immunization, Vaccines & Biologicals, World Health Organization, Geneva, Switzerland
| | - Birgitte K Giersing
- Vaccine Product & Delivery Research, Department of Immunization, Vaccines & Biologicals, World Health Organization, Geneva, Switzerland
| | - William P Hausdorff
- Center for Vaccine Access and Innovation, PATH, WA DC, USA; Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
4
|
Liu Y, Li Q, Shao H, Mao Y, Liu L, Yi D, Duan Z, Lv H, Cen S. CX-6258 hydrochloride hydrate: A potential non-nucleoside inhibitor targeting the RNA-dependent RNA polymerase of norovirus. Virology 2024; 595:110088. [PMID: 38643657 DOI: 10.1016/j.virol.2024.110088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/13/2024] [Accepted: 04/12/2024] [Indexed: 04/23/2024]
Abstract
Human norovirus (HuNoV), a primary cause of non-bacterial gastroenteritis, currently lacks approved treatment. RdRp is vital for virus replication, making it an attractive target for therapeutic intervention. By application of structure-based virtual screening procedure, we present CX-6258 hydrochloride hydrate as a potent RdRp non-nucleoside inhibitor, effectively inhibiting HuNoV RdRp activity with an IC50 of 3.61 μM. Importantly, this compound inhibits viral replication in cell culture, with an EC50 of 0.88 μM. In vitro binding assay validate that CX-6258 hydrochloride hydrate binds to RdRp through interaction with the "B-site" binding pocket. Interestingly, CX-6258-contacting residues such as R392, Q439, and Q414 are highly conserved among major norovirus GI and GII variants, suggesting that it may be a general inhibitor of norovirus RdRp. Given that CX-6258 hydrochloride hydrate is already utilized as an orally efficacious pan-Pim kinase inhibitor, it may serve as a potential lead compound in the effort to control HuNoV infections.
Collapse
Affiliation(s)
- Yang Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Quanjie Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Huihan Shao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yang Mao
- Ningbo Prefectural Center for Disease Control and Prevention, Ningbo, 315010, China
| | - Lufei Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Dongrong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Zhaojun Duan
- Institute for Viral Disease Control & Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Huiqing Lv
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, China.
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; CAMS Key Laboratory of Antiviral Drug Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
5
|
White RG, Menzies NA, Portnoy A, Clark RA, Toscano CM, Weller C, Tufet Bayona M, Silal SP, Karron RA, Lee JS, Excler JL, Lauer JA, Giersing B, Lambach P, Hutubessy R, Jit M. The Full Value of Vaccine Assessments Concept-Current Opportunities and Recommendations. Vaccines (Basel) 2024; 12:435. [PMID: 38675817 PMCID: PMC11053419 DOI: 10.3390/vaccines12040435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
For vaccine development and adoption decisions, the 'Full Value of Vaccine Assessment' (FVVA) framework has been proposed by the WHO to expand the range of evidence available to support the prioritization of candidate vaccines for investment and eventual uptake by low- and middle-income countries. Recent applications of the FVVA framework have already shown benefits. Building on the success of these applications, we see important new opportunities to maximize the future utility of FVVAs to country and global stakeholders and provide a proof-of-concept for analyses in other areas of disease control and prevention. These opportunities include the following: (1) FVVA producers should aim to create evidence that explicitly meets the needs of multiple key FVVA consumers, (2) the WHO and other key stakeholders should develop standardized methodologies for FVVAs, as well as guidance for how different stakeholders can explicitly reflect their values within the FVVA framework, and (3) the WHO should convene experts to further develop and prioritize the research agenda for outcomes and benefits relevant to the FVVA and elucidate methodological approaches and opportunities for standardization not only for less well-established benefits, but also for any relevant research gaps. We encourage FVVA stakeholders to engage with these opportunities.
Collapse
Affiliation(s)
- Richard G. White
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (R.A.C.); (M.J.)
| | - Nicolas A. Menzies
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
- Center for Health Decision Science, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
| | - Allison Portnoy
- Center for Health Decision Science, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
- Department of Global Health, Boston University School of Public Health, Boston, MA 02118, USA
| | - Rebecca A. Clark
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (R.A.C.); (M.J.)
| | - Cristiana M. Toscano
- Department of Collective Health, Institute for Tropical Medicine and Public Health, Federal University of Goiás (UFG), Goiânia 74690-900, Brazil;
| | | | | | - Sheetal Prakash Silal
- Modelling and Simulation Hub, Africa, Department of Statistical Sciences, University of Cape Town, Cape Town 7701, South Africa;
- Centre for Global Health, Nuffield Department of Medicine, Oxford University, Oxford OX3 7BN, UK
| | - Ruth A. Karron
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Jung-Seok Lee
- Policy and Economic Research Department, International Vaccine Institute, Seoul 08826, Republic of Korea;
| | | | - Jeremy A. Lauer
- Department of Management Science, Strathclyde Business School, Strathclyde University, Glasgow G1 1XQ, UK;
| | - Birgitte Giersing
- Immunization, Vaccines and Biologicals Department, WHO, 1211 Geneva, Switzerland; (B.G.); (P.L.); (R.H.)
| | - Philipp Lambach
- Immunization, Vaccines and Biologicals Department, WHO, 1211 Geneva, Switzerland; (B.G.); (P.L.); (R.H.)
| | - Raymond Hutubessy
- Immunization, Vaccines and Biologicals Department, WHO, 1211 Geneva, Switzerland; (B.G.); (P.L.); (R.H.)
| | - Mark Jit
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (R.A.C.); (M.J.)
| |
Collapse
|
6
|
Ushijima H, Hoque SA, Akari Y, Pham NTK, Phan T, Nishimura S, Kobayashi M, Sugita K, Okitsu S, Komoto S, Thongprachum A, Khamrin P, Maneekarn N, Hayakawa S. Molecular Evolution of GII.P31/GII.4_Sydney_2012 Norovirus over a Decade in a Clinic in Japan. Int J Mol Sci 2024; 25:3619. [PMID: 38612429 PMCID: PMC11011564 DOI: 10.3390/ijms25073619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Norovirus (NoV) genogroup II, polymerase type P31, capsid genotype 4, Sydney_2012 variant (GII.P31/GII.4_Sydney_2012) has been circulating at high levels for over a decade, raising the question of whether this strain is undergoing molecular alterations without demonstrating a substantial phylogenetic difference. Here, we applied next-generation sequencing to learn more about the genetic diversity of 14 GII.P31/GII.4_Sydney_2012 strains that caused epidemics in a specific region of Japan, with 12 from Kyoto and 2 from Shizuoka, between 2012 and 2022, with an emphasis on amino acid (aa) differences in all three ORFs. We found numerous notable aa alterations in antigenic locations in the capsid region (ORF2) as well as in other ORFs. In all three ORFs, earlier strains (2013-2016) remained phylogenetically distinct from later strains (2019-2022). This research is expected to shed light on the evolutionary properties of dominating GII.P31/GII.4_Sydney_2012 strains, which could provide useful information for viral diarrhea prevention and treatment.
Collapse
Affiliation(s)
- Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan
| | - Sheikh Ariful Hoque
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan
- Cell and Tissue Culture Laboratory, Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka 1000, Bangladesh
| | - Yuki Akari
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Ngan Thi Kim Pham
- College of Industrial Technology, Nihon University, Narashino, Chiba 275-8575, Japan;
| | - Tung Phan
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | - Kumiko Sugita
- Sugita Children Clinic, Ibaraki, Osaka 567-0035, Japan
| | - Shoko Okitsu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan
| | - Satoshi Komoto
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
- Center for Infectious Disease Research, Research Promotion Headquarters, Fujita Health University, Toyoake, Aichi 470-1192, Japan
- Division of One Health, Research Center for GLOBAL and LOCAL Infectious Diseases, Oita University, Yufu, Oita 879-5593, Japan
| | | | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine and Emerging and Re-Emerging Diarrheal Viruses Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine and Emerging and Re-Emerging Diarrheal Viruses Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan
| |
Collapse
|
7
|
Sarmento SK, de Andrade JDSR, Malta FC, Fialho AM, Mello MDS, Burlandy FM, Fumian TM. Norovirus Epidemiology and Genotype Circulation during the COVID-19 Pandemic in Brazil, 2019-2022. Pathogens 2023; 13:3. [PMID: 38276149 PMCID: PMC10818385 DOI: 10.3390/pathogens13010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Norovirus stands out as a leading cause of acute gastroenteritis (AGE) worldwide, affecting all age groups. In the present study, we investigated fecal samples from medically attended AGE patients received from nine Brazilian states, from 2019 to 2022, including the COVID-19 pandemic period. Norovirus GI and GII were detected and quantified using RT-qPCR, and norovirus-positive samples underwent genotyping through sequencing the ORF1/2 junction region. During the four-year period, norovirus prevalence was 37.2%, varying from 20.1% in 2020 to 55.4% in 2021. GII genotypes dominated, being detected in 92.9% of samples. GII-infected patients had significantly higher viral concentrations compared to GI-infected patients (median of 3.8 × 107 GC/g and 6.7 × 105 GC/g, respectively); and patients aged >12-24 months showed a higher median viral load (8 × 107 GC/g) compared to other age groups. Norovirus sequencing revealed 20 genotypes by phylogenetic analysis of RdRp and VP1 partial regions. GII.4 Sydney[P16] was the dominant genotype (57.3%), especially in 2019 and 2021, followed by GII.2[P16] (14.8%) and GII.6[P7] (6.3%). The intergenogroup recombinant genotype, GIX.1[GII.P15], was detected in five samples. Our study is the first to explore norovirus epidemiology and genotype distribution in Brazil during COVID-19, and contributes to understanding the epidemiological dynamics of norovirus and highlighting the importance of continuing to follow norovirus surveillance programs in Brazil.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tulio Machado Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21045-900, RJ, Brazil (F.M.B.)
| |
Collapse
|