1
|
Končurat A, Sukalić T. Listeriosis: Characteristics, Occurrence in Domestic Animals, Public Health Significance, Surveillance and Control. Microorganisms 2024; 12:2055. [PMID: 39458364 PMCID: PMC11510258 DOI: 10.3390/microorganisms12102055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Listeriosis is a dangerous zoonosis caused by bacteria of the genus Listeria, with Listeria monocytogenes (LM) being the most pathogenic species. Listeria monocytogenes has been detected in various animal species and in humans, and its ability to evolve from an environmental saprophyte to a powerful intracellular pathogen is driven by the invasion mechanisms and virulence factors that enable cell invasion, replication and cell-to-cell spread. Key regulatory systems, including positive regulatory factor A (PrfA) and the stress-responsive sigma factor σB, control the expression of virulence genes and facilitate invasion of host cells. Listeriosis poses a significant threat to cattle, sheep and goat herds, leading to abortions, septicemia and meningoencephalitis, and ruminants are important reservoirs for Listeria, facilitating transmission to humans. Other Listeria species such as Listeria ivanovii and Listeria innocua can also cause disease in ruminants. Resilience of LM in food processing environments makes it an important foodborne pathogen that is frequently transmitted through contaminated meat and dairy products, with contamination often occurring along the food production chain. In humans, listeriosis primarily affects immunocompromised individuals, pregnant women and the elderly and leads to severe conditions, such as meningitis, septicemia and spontaneous abortion. Possible treatment requires antibiotics that penetrate the blood-brain barrier. Despite the relatively low antimicrobial resistance, multidrug-resistant LM strains have been detected in animals, food and the environment. Controlling and monitoring the disease at the herd level, along with adopting a One Health approach, are crucial to protect human and animal health and to minimize the potential negative impacts on the environment.
Collapse
Affiliation(s)
| | - Tomislav Sukalić
- Animal Disease Diagnostics Laboratory, Regional Department Križevci, Croatian Veterinary Institute, 48260 Križevci, Croatia;
| |
Collapse
|
2
|
Gana J, Gcebe N, Moerane R, Ngoshe YB, Tshuma T, Moabelo K, Adesiyun AA. A comparative study on the occurrence, genetic characteristics, and factors associated with the distribution of Listeria species on cattle farms and beef abattoirs in Gauteng Province, South Africa. Trop Anim Health Prod 2024; 56:88. [PMID: 38409615 PMCID: PMC10896870 DOI: 10.1007/s11250-024-03934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
These cross-sectional studies reported the occurrence, genetic characteristics, and factors associated with the distribution of Listeria species on cattle farms and beef abattoirs in Gauteng Province, South Africa. A total of 328 samples (faeces, feeds, silage, and drinking water) were collected from 23 cattle farms (communal, cow-calf, and feedlot), and 262 samples (faeces, carcass swabs, and effluents) from 8 beef abattoirs (low throughput and high throughput) were processed using standard bacteriological and molecular methods to detect Listeria species. The factors associated with the prevalence of Listeria species were investigated, and multiplex polymerase chain reaction (mPCR) was used to determine Listeria species, the pathogenic serogroups, and the carriage of eight virulence-associated genes by Listeria monocytogenes. The overall prevalence of Listeria species in cattle farms was 14.6%, comprising Listeria innocua (11.3%), Listeria monocytogenes (3.4%), Listeria welshimeri (0.0%) compared with 11.1%, comprising Listeria innocua (5.7%), Listeria monocytogenes (4.6%), Listeria welshimeri (0.8%) for beef abattoirs. Of the three variables (area, type of farm/abattoir, and sample type) investigated, only the sample types at abattoirs had a significant (P < 0.001) effect on the prevalence of L. innocua and L. welshimeri. The frequency of distribution of the serogroups based on 11 L. monocytogenes isolated from farms was 72.7% and 27.3% for the serogroup 1/2a-3a and 4b-4d-4e, respectively, while for the 12 L. monocytogenes isolates recovered from abattoirs, it was 25%, 8.3%, 50% and 16.7% for the serogroup 1/2a-3a, 1/2b-3b, 1/2c-3c, and 4b-4d-4e respectively (P < 0.05). All (100%) isolates of L. monocytogenes from the farms and abattoirs were positive for seven virulence genes (hlyA, inlB, plcA, iap, inlA, inlC, and inlJ). The clinical and food safety significance of the findings cannot be ignored.
Collapse
Affiliation(s)
- J Gana
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa
- Department of Agricultural Education, Federal College of Education, P.M.B. 39, Kontagora, Niger State, Nigeria
| | - N Gcebe
- Bacteriology Department, Onderstepoort Veterinary Research, Agricultural Research Council, Pretoria, South Africa
| | - R Moerane
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa
| | - Y B Ngoshe
- Epidemiology Section, Department of Production Animal Studies, Epidemiology Section, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa
| | - T Tshuma
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa
| | - K Moabelo
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa
| | - A A Adesiyun
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa.
- Department of Paraclinical Sciences, School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago.
| |
Collapse
|
3
|
Wei X, Hassen A, McWilliams K, Pietrzen K, Chung T, Acevedo MM, Chandross-Cohen T, Dudley EG, Vipham J, Mamo H, Tessema TS, Zewdu A, Kovac J. Genomic characterization of Listeria monocytogenes and Listeria innocua isolated from milk and dairy samples in Ethiopia. BMC Genom Data 2024; 25:12. [PMID: 38297216 PMCID: PMC10829315 DOI: 10.1186/s12863-024-01195-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/19/2024] [Indexed: 02/02/2024] Open
Abstract
Listeriosis caused by Listeria monocytogenes often poses a significant threat to vulnerable populations. Dairy products have been implicated in outbreaks of listeriosis worldwide. In Ethiopia, studies have identified Listeria spp. and L. monocytogenes in various dairy products, but the genetic diversity and phylogenetic relationships of these bacteria remain largely unknown in the low- and middle-income countries. Therefore, we conducted whole-genome sequencing on 15 L. monocytogenes and 55 L. innocua isolates obtained from different levels of the dairy supply chains across three regions in Ethiopia. Genomes were assembled and used for MLST genotyping and single nucleotide polymorphism (SNP) analysis to infer phylogenetic relationships. We identified a total of 3 L. monocytogenes (i.e., 2, 145, and 18) and 12 L. innocua (i.e., 1489, 1619, 603, 537, 1010, 3186, 492, 3007, 1087, 474, 1008, and 637) MLST sequence types among the studied isolates. Some of these sequence types showed region-specific occurrence, while others were broadly distributed across regions. Through high-quality SNP analysis, we found that among 13 L. monocytogenes identified as ST 2, 11 of them were highly similar with low genetic variation, differing by only 1 to 10 SNPs, suggesting potential selection in the dairy food supply chain. The L. innocua isolates also exhibited low intra-ST genetic variation with only 0-10 SNP differences, except for the ST 1619, which displayed a greater diversity.
Collapse
Affiliation(s)
- Xiaoyuan Wei
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Anwar Hassen
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences New Graduate Building, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
- College of Veterinary Medicine, Haramaya University, P.O. Box 138, Dire Dawa, Ethiopia
| | - Karen McWilliams
- Michigan Department of Agriculture and Rural Development Laboratory, East Lansing, MI, 48823, USA
| | - Karen Pietrzen
- Michigan Department of Agriculture and Rural Development Laboratory, East Lansing, MI, 48823, USA
| | - Taejung Chung
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | | | - Tyler Chandross-Cohen
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Edward G Dudley
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jessie Vipham
- Department of Animal Science and Industry, Kansas State University, Manhattan, KS, 66506, USA
| | - Hassen Mamo
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences New Graduate Building, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Tesfaye Sisay Tessema
- Institute of Biotechnology, Addis Ababa University, P.O. Box 1176, New Graduate Building, Addis Ababa, Ethiopia
| | - Ashagrie Zewdu
- Center for Food Science and Nutrition, College of Natural Sciences, Addis Ababa University, P.O. Box 1176, New Graduate Building, Addis Ababa, Ethiopia
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
4
|
Gana J, Gcebe N, Pierneef RE, Chen Y, Moerane R, Adesiyun AA. Genomic Characterization of Listeria innocua Isolates Recovered from Cattle Farms, Beef Abattoirs, and Retail Outlets in Gauteng Province, South Africa. Pathogens 2023; 12:1062. [PMID: 37624022 PMCID: PMC10457781 DOI: 10.3390/pathogens12081062] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Whole-genome sequencing (WGS) was used for the genomic characterization of one hundred and ten strains of Listeria innocua (L. innocua) isolated from twenty-three cattle farms, eight beef abattoirs, and forty-eight retail outlets in Gauteng province, South Africa. In silico multilocus sequence typing (MLST) was used to identify the isolates' sequence types (STs). BLAST-based analyses were used to identify antimicrobial and virulence genes. The study also linked the detection of the genes to the origin (industries and types of samples) of the L. innocua isolates. The study detected 14 STs, 13 resistance genes, and 23 virulence genes. Of the 14 STs detected, ST637 (26.4%), ST448 (20%), 537 (13.6%), and 1085 (12.7%) were predominant, and the frequency varied significantly (p < 0.05). All 110 isolates of L. innocua were carriers of one or more antimicrobial resistance genes, with resistance genes lin (100%), fosX (100%), and tet(M) (30%) being the most frequently detected (p < 0.05). Of the 23 virulence genes recognized, 13 (clpC, clpE, clpP, hbp1, svpA, hbp2, iap/cwhA, lap, lpeA, lplA1, lspA, oatA, pdgA, and prsA2) were found in all 110 isolates of L. innocua. Overall, diversity and significant differences were detected in the frequencies of STs, resistance, and virulence genes according to the origins (source and sample type) of the L. innocua isolates. This, being the first genomic characterization of L. innocua recovered from the three levels/industries (farm, abattoir, and retail) of the beef production system in South Africa, provides data on the organism's distribution and potential food safety implications.
Collapse
Affiliation(s)
- James Gana
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa; (J.G.); (R.M.)
- Agricultural Education, Federal College of Education, Kontagora 923101, Nigeria
| | - Nomakorinte Gcebe
- Bacteriology Department, Onderstepoort Veterinary Research, Agricultural Research Council, Pretoria 0110, South Africa;
| | - Rian Ewald Pierneef
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0001, South Africa;
- Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria 0001, South Africa
- Microbiome@UP, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Pretoria 0001, South Africa
| | - Yi Chen
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, 5001 Campus Dr. Room 4E-007/Mailstop HFS-710, College Park, MD 20740, USA;
| | - Rebone Moerane
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa; (J.G.); (R.M.)
| | - Abiodun Adewale Adesiyun
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa; (J.G.); (R.M.)
- School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, St. Augustine 685509, Trinidad and Tobago
| |
Collapse
|