1
|
Orian JM, Maxwell DL, Lim VJT. Active Induction of a Multiple Sclerosis-Like Disease in Common Laboratory Mouse Strains. Methods Mol Biol 2024; 2746:179-200. [PMID: 38070090 DOI: 10.1007/978-1-0716-3585-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a neuroinflammatory disease with facets in common with multiple sclerosis (MS). It is induced in susceptible mammalian species, with rodents as the preferred hosts, and has been used for decades as a model to investigate the immunopathogenesis of MS as well as for preclinical evaluation of candidate MS therapeutics. Most commonly, EAE is generated by active immunization with central nervous system (CNS) antigens, such as whole CNS homogenate, myelin proteins, or peptides derived from these proteins. However, EAE actually represents a spectrum of diseases in which specific combinations of host/CNS antigen exhibit defined clinical profiles, each associated with unique immunological and pathological features. Similar to MS, EAE is a complex disease where development and progression are also modulated by environmental factors; therefore, the establishment of any given EAE variant can be challenging and requires careful optimization. Here, we describe protocols for three EAE variants, successfully generated in our laboratory, and provide additional information as to how to maintain their unique features and reproducibility.
Collapse
Affiliation(s)
- Jacqueline M Orian
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia.
| | - Dain L Maxwell
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Vernise J T Lim
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
2
|
Swan J, Boyer S, Westlund K, Bengtsson C, Nordahl G, Törnqvist E. Decreased levels of discomfort in repeatedly handled mice during experimental procedures, assessed by facial expressions. Front Behav Neurosci 2023; 17:1109886. [PMID: 36873771 PMCID: PMC9978997 DOI: 10.3389/fnbeh.2023.1109886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Mice are the most commonly used laboratory animal, yet there are limited studies which investigate the effects of repeated handling on their welfare and scientific outcomes. Furthermore, simple methods to evaluate distress in mice are lacking, and specialized behavioral or biochemical tests are often required. Here, two groups of CD1 mice were exposed to either traditional laboratory handling methods or a training protocol with cup lifting for 3 and 5 weeks. The training protocol was designed to habituate the mice to the procedures involved in subcutaneous injection, e.g., removal from the cage, skin pinch. This protocol was followed by two common research procedures: subcutaneous injection and tail vein blood sampling. Two training sessions and the procedures (subcutaneous injection and blood sampling) were video recorded. The mouse facial expressions were then scored, focusing on the ear and eye categories of the mouse grimace scale. Using this assessment method, trained mice expressed less distress than the control mice during subcutaneous injection. Mice trained for subcutaneous injection also had reduced facial scores during blood sampling. We found a clear sex difference as female mice responded to training faster than the male mice, they also had lower facial scores than the male mice when trained. The ear score appeared to be a more sensitive measure of distress than the eye score, which may be more indicative of pain. In conclusion, training is an important refinement method to reduce distress in mice during common laboratory procedures and this can best be assessed using the ear score of the mouse grimace scale.
Collapse
Affiliation(s)
- Julia Swan
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Scott Boyer
- Chemotargets SL, Barcelona, Spain.,Global Safety Assessment, AstraZeneca R&D, Södertälje, Sweden
| | | | - Camilla Bengtsson
- Global Safety Assessment, AstraZeneca R&D, Södertälje, Sweden.,Independant Consultant, Strömsund, Sweden
| | | | - Elin Törnqvist
- Global Safety Assessment, AstraZeneca R&D, Södertälje, Sweden.,Department of Animal Health and Antimicrobial Strategies, Swedish National Veterinary Institute (SVA), Uppsala, Sweden.,Institute of Environmental Medicine, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
3
|
Ondek K, Nasirishargh A, Dayton JR, Nuño MA, Cruz-Orengo L. Strain and sex differences in somatosensation and sociability during experimental autoimmune encephalomyelitis. Brain Behav Immun Health 2021; 14:100262. [PMID: 34589768 PMCID: PMC8474462 DOI: 10.1016/j.bbih.2021.100262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 12/01/2022] Open
Abstract
Multiple Sclerosis (MS) is an immune-mediated disease that results in major locomotor deficits. However, recent studies have revealed that fatigue, slow processing speed, and memory impairment are the top variables impacting employment status for MS patients. These suggest that cognitive effects may have a greater impact on productivity, lifestyle, and quality of life than do disease-related motor deficits. However, these debilitating non-locomotive effects have been largely overlooked in rodent models of the disease, such as experimental autoimmune encephalomyelitis (EAE). We hypothesized that murine EAE can also be used to assess non-locomotive dysfunctions (mood, sociability, muscle strength, and balance), as well as potential biases in these dysfunctions due to sex and/or strain. We actively immunized male and female C57BL/6 (B6) and SJL mice for EAE and evaluated their performance on the Deacon's weight grip test, Kondziela's inverted screen test, Hall's rope grip test, manual von Frey test for somatic nociception, and a three-chamber social preference paradigm. We hypothesized that EAE progression is associated with changes in muscle strength, balance, pain, and sociability and that these variations are linked to sex and/or strain. Our results indicate that strain but not sex influenced differences in muscle strength and balance during EAE, and both sex and strain have an impact on mechanical nociception, regardless of EAE disease status. Furthermore, both sex and strain had complex effects on differences in sociability. In conclusion, testing these additional modalities during EAE helps to unveil other signs and symptoms that could be used to determine the efficacy of a drug or treatment in the modulation of a MS-like behavior.
Collapse
Affiliation(s)
- Katelynn Ondek
- University of California, Davis. Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Aida Nasirishargh
- University of California, Davis. Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Jacquelyn R. Dayton
- University of California, Davis. Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Miriam A. Nuño
- University of California, Davis. Department of Public Health, Division of Biostatistics, School of Medicine, Public Health/Medical Sciences Bldg. 1-C, Davis, CA 95616, USA
| | - Lillian Cruz-Orengo
- University of California, Davis. Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| |
Collapse
|
4
|
Aharoni R, Globerman R, Eilam R, Brenner O, Arnon R. Titration of myelin oligodendrocyte glycoprotein (MOG) - Induced experimental autoimmune encephalomyelitis (EAE) model. J Neurosci Methods 2020; 351:108999. [PMID: 33189793 DOI: 10.1016/j.jneumeth.2020.108999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/22/2020] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Experimental autoimmune encephalomyelitis (EAE) induced by the myelin oligodendrocyte glycoprotein (MOG) peptide 35-55, is a widely used multiple sclerosis (MS) model. Unlike the spontaneous occurrence of MS, in EAE, external immunization with the MOG peptide (200-300 µg/mouse), emulsified in adjuvant enriched with Mycobacterium Tuberculosis (MT) H37Ra (100-500 µg mouse), and pertussis toxin (PTx, 200-500 ng/mouse) injections, are applied, which heavily boosts the immune system. NEW METHOD A detailed and systematic titration of the MOG 35-55 EAE induction protocol in C57BL/6 mice reveals the minimal doses of the MOG 35-55 peptide, MT H37Ra, and PTx, required for disease manifestation. RESULTS The amounts of MOG 35-55 peptide, MT H37Ra, and PTx can be drastically reduced from the standard protocol, to level of 5 µg MOG, 25 µg MT H37Ra, and 50 ng PTx, without affecting the clinical manifestations. The titrated protocols induced a high disease incidence and a consistent robust disease course, with full histopathological characteristics of the MOG model, inflammation, demyelination and axonal damage. COMPARISON WITH EXISTING METHODS Similar disease incidences, day of symptoms appearance, maximal clinical score, and histopathology were obtained for the standard and the titrated protocols. CONCLUSIONS Reducing the reagent dosages used for EAE induction, without attenuating the disease, can give a truer and less artificial perspective of MS. We propose an improved protocol for this extensively used model, with high disease incidence, a consistent robust course, and characteristic histological manifestations, which may be more sensitive for testing therapeutic modalities, cost-effective, and less distressing to the animals.
Collapse
Affiliation(s)
- Rina Aharoni
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel.
| | - Renana Globerman
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Raya Eilam
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, Israel
| | - Ori Brenner
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, Israel
| | - Ruth Arnon
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
5
|
Abstract
Clinical myelin diseases, and our best experimental approximations, are complex entities in which demyelination and remyelination proceed unpredictably and concurrently. These features can make it difficult to identify mechanistic details. Toxin-based models offer lesions with predictable spatiotemporal patterns and relatively discrete phases of damage and repair: a simpler system to study the relevant biology and how this can be manipulated. Here, we discuss the most widely used toxin-based models, with a focus on lysolecithin, ethidium bromide, and cuprizone. This includes an overview of their respective mechanisms, strengths, and limitations and step-by-step protocols for their use.
Collapse
|
6
|
Herrmann K, Flecknell P. The Application of Humane Endpoints and Humane Killing Methods in Animal Research Proposals: A Retrospective Review. Altern Lab Anim 2018; 46:317-333. [DOI: 10.1177/026119291804600606] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Refinement refers to the use of methods that help to minimise animal suffering in the laboratory. Research in this area has increased significantly over the past two decades. However, the extent to which refinements are applied in practice is uncertain. To provide an indication of the implementation and awareness of refinements, we reviewed the experimental techniques for 684 surgical interventions described in 506 animal research applications sent to the German competent authorities for approval in 2010. In this paper, we describe and discuss the appropriateness of the proposed humane endpoints and killing methods. We found that, when the investigators included humane endpoints in their application, these were often lacking in detail and/or were to be implemented at a late stage of suffering. In addition, the choice of method to kill the animals could be improved in the majority of the applications. We provide recommendations for future improvements, based on the recent literature. To ensure scientific rigour, avoid needless animal suffering and enable an accurate harm–benefit analysis, animal researchers have to be knowledgeable about refinement methods and apply them effectively. To assess compliance and ensure that only those studies in which potential benefits outweigh the harms are carried out, reviews such as ours — as well as retrospective assessments of actual harms and benefits — should be conducted widely and regularly, and the findings should be published.
Collapse
Affiliation(s)
- Kathrin Herrmann
- Freie Universität Berlin, Department of Veterinary Medicine, Institute of Pharmacology and Toxicology, Berlin, Germany
| | - Paul Flecknell
- Newcastle University, The Medical School, Comparative Biology Centre, Newcastle upon Tyne, UK
| |
Collapse
|
7
|
Beneficial effects of oral administration of C-Phycocyanin and Phycocyanobilin in rodent models of experimental autoimmune encephalomyelitis. Life Sci 2018; 194:130-138. [DOI: 10.1016/j.lfs.2017.12.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/20/2017] [Accepted: 12/23/2017] [Indexed: 01/03/2023]
|
8
|
Saul L, Besusso D, Mellanby RJ. LPS-matured CD11c+ bone marrow-derived dendritic cells can initiate autoimmune pathology with minimal injection site inflammation. Lab Anim 2017; 51:292-300. [PMID: 27488372 PMCID: PMC5431364 DOI: 10.1177/0023677216663584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The pathogenesis of human autoimmune disorders is incompletely understood. This has led to the development of numerous murine models in which the pathogenesis of autoimmunity can be probed and the efficacy of novel therapies can be tested. One of the most widely-used murine models of autoimmunity is experimental autoimmune encephalomyelitis (EAE). To induce autoimmune pathology, mice are often immunized with an autoantigen alongside an adjuvant, typically complete Freund's adjuvant (CFA). Unfortunately, CFA causes significant inflammation at the site of administration. Despite the well-recognized complication of injection site inflammation, CFA with autoantigen immunization is widely used to induce central nervous system autoimmunity. We performed a literature review which allowed us to estimate that over 10,000 mice were immunized with CFA in published EAE studies in 2013. In this study, we demonstrated that subcutaneously administered myelin basic protein (MBP)-pulsed CD11c+ bone marrow-derived dendritic cells (BMDC) were as effective at inducing EAE as subcutaneously administered MBP plus CFA. Importantly, we also discovered that the CD11c+ BMDC caused significantly less injection site inflammation than MBP plus CFA immunization. This study demonstrated that the use of CD11c+ BMDC can enable the development of autopathogenic T-cells to be studied in vivo without the unwanted side-effects of long-lasting injection site inflammation. This model represents a significant refinement to existing EAE models and may lead to the improvement of the welfare of experimental mice used to study the development of autoimmunity in vivo.
Collapse
Affiliation(s)
- Louise Saul
- Medical Research Council/University of Edinburgh Centre for Inflammation Research and Centre for Multiple Sclerosis Research, Queen's Medical Research Institute, Edinburgh, UK
| | - Dario Besusso
- Medical Research Council/University of Edinburgh Centre for Inflammation Research and Centre for Multiple Sclerosis Research, Queen's Medical Research Institute, Edinburgh, UK
| | - Richard J Mellanby
- Medical Research Council/University of Edinburgh Centre for Inflammation Research and Centre for Multiple Sclerosis Research, Queen's Medical Research Institute, Edinburgh, UK
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, Division of Veterinary Clinical Studies, The University of Edinburgh, Hospital for Small Animals, Easter Bush Veterinary Centre, Roslin, Midlothian, UK
| |
Collapse
|
9
|
Fiander MD, Stifani N, Nichols M, Akay T, Robertson GS. Kinematic gait parameters are highly sensitive measures of motor deficits and spinal cord injury in mice subjected to experimental autoimmune encephalomyelitis. Behav Brain Res 2017; 317:95-108. [DOI: 10.1016/j.bbr.2016.09.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 12/13/2022]
|
10
|
Ormandy EH, Griffin G. Attitudes toward the use of Animals in Chronic versus Acute Pain Research: Results of a Web-based Forum. Altern Lab Anim 2016; 44:323-335. [DOI: 10.1177/026119291604400410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
When asked about the use of animals in biomedical research, people often state that the research is only acceptable if pain and distress are minimised. However, pain is caused when the aim is to study pain itself, resulting in unalleviated pain for many of the animals involved. Consequently, the use of animals in pain research is often considered contentious. To date, no research has explored people's views toward different types of animal-based pain research (e.g. chronic or acute pain). This study used a web-based survey to explore people's willingness to support the use of mice in chronic versus acute pain research. The majority of the participants opposed the use of mice for either chronic (68.3%) or acute (63.1%) pain research. There was no difference in the levels of support or opposition for chronic versus acute pain research. Unsupportive participants justified their opposition by focusing on the perceived lack of scientific merit, or the existence of non-animal alternatives. Supporters emphasised the potential benefits that could arise, with some stating that the benefits outweigh the costs. The majority of the participants were opposed to pain research involving mice, regardless of the nature and duration of the pain inflicted, or the perceived benefit of the research. A better understanding of public views toward animal use in pain research may provide a stronger foundation for the development of policy governing the use of animals in research where animals are likely to experience unalleviated pain.
Collapse
Affiliation(s)
- Elisabeth H. Ormandy
- The University of British Columbia, Animal Welfare Program, Vancouver, British Columbia, Canada
| | - Gilly Griffin
- Canadian Council on Animal Care, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Sheridan GK, Dev KK. Targeting S1P receptors in experimental autoimmune encephalomyelitis in mice improves early deficits in locomotor activity and increases ultrasonic vocalisations. Sci Rep 2014; 4:5051. [PMID: 24851861 PMCID: PMC4031479 DOI: 10.1038/srep05051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/06/2014] [Indexed: 12/31/2022] Open
Abstract
Fingolimod (FTY720) is an oral therapy for relapsing remitting multiple sclerosis (MS) and targets sphingosine 1-phosphate receptors (S1PRs). FTY720 also rescues animals from experimental autoimmune encephalomyelitis (EAE), an animal model of MS. The protective effects of FTY720 in EAE are primarily scored manually by examining weight loss and limb paralysis that begins around 10-12 days after immunisation. To our knowledge, pre-clinical effects of FTY720 on animal behaviour early in EAE have not been explored. Here, we developed an automated behaviour monitoring system to examine the early effects of FTY720 on subtle pre-symptomatic behaviour of mice induced with EAE. Our automated home-cage monitoring system (AHC-MS) enabled non-contact detection of movement and ultrasonic vocalisations (USVs) of mice induced with EAE, thus allowing detection of subtle changes in mouse behaviour before paralysis occurs. Mice receiving FTY720 emit longer USVs and display higher levels of motor activity than vehicle-treated EAE mice before clinical symptoms become apparent. Importantly, this study promotes the 3Rs ethics (replacement, reduction and refinement) in the EAE animal model and may also improve pre-screening of potentially novel MS therapies. In addition, this is the first report showing the early effects of FTY720 in EAE which underscores its protective effects.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Female
- Fingolimod Hydrochloride
- Immunosuppressive Agents/pharmacology
- Lysophospholipids/metabolism
- Mice
- Mice, Inbred C57BL
- Motor Activity/drug effects
- Motor Activity/physiology
- Propylene Glycols/pharmacology
- Receptors, Lysosphingolipid/antagonists & inhibitors
- Receptors, Lysosphingolipid/genetics
- Receptors, Lysosphingolipid/metabolism
- Sphingosine/analogs & derivatives
- Sphingosine/metabolism
- Sphingosine/pharmacology
- Vocalization, Animal/drug effects
- Vocalization, Animal/physiology
Collapse
Affiliation(s)
- Graham K. Sheridan
- Drug Development, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Current address: Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Kumlesh K. Dev
- Drug Development, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Abstract
Until the day comes when animals are no longer needed for research, refinement needs to be a priority for the scientific community
Collapse
Affiliation(s)
- Elliot Lilley
- Research Animals Department, Science Group Royal Society for the Prevention of Cruelty to Animals Wilberforce Way Southwater, Horsham West Sussex RH13 9RS, UK
| | | |
Collapse
|