1
|
Pugsley MK, Winters BR, Koshman YE, Authier S, Foley CM, Hayes ES, Curtis MJ. Innovative approaches to cardiovascular safety pharmacology assessment. J Pharmacol Toxicol Methods 2024; 128:107533. [PMID: 38945308 DOI: 10.1016/j.vascn.2024.107533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
This editorial prefaces the annual themed issue on safety pharmacology (SP) methods which has been published since 2004 in the Journal of Pharmacological and Toxicological Methods (JPTM). Here we highlight content derived from the 2023 Safety Pharmacology Society (SPS) meeting held in Brussels, Belgium. The meeting generated 138 abstracts, reproduced in the current volume of JPTM. As in prior years, the manuscripts reflect various areas of innovation in SP including in silico modeling of stroke volume, cardiac output and systemic vascular resistance, computational approaches that compare drug-induced proarrhythmic sensitivity of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), an evaluation of the utility of the corrected J-Tpeak and Tpeak-to-Tend parameters from the ECG as potential proarrhythmia biomarkers, and the applicability of nonclinical concentration-QTc (C-QTc) modeling of data derived from the conduct of the in vivo QTc study as a component of the core battery of safety pharmacology studies.
Collapse
Affiliation(s)
- Michael K Pugsley
- Toxicology & Safety Pharmacology, Cytokinetics, South San Francisco, CA 94080, United States of America.
| | - Brett R Winters
- Toxicology & Safety Pharmacology, Cytokinetics, South San Francisco, CA 94080, United States of America
| | - Yevgeniya E Koshman
- Safety Pharmacology, Abbvie, North Chicago, IL 60064, United States of America
| | - Simon Authier
- Charles River Laboratories, Laval, QC H7V 4B3, Canada
| | - C Michael Foley
- Safety Pharmacology, Abbvie, North Chicago, IL 60064, United States of America
| | - Eric S Hayes
- BioCurate Pty Ltd, Carlton, Victoria 3053, Australia
| | - Michael J Curtis
- Cardiovascular Division, King's College London, Rayne Institute, St Thomas' Hospital, London SE17EH, UK
| |
Collapse
|
2
|
Pugsley MK, Koshman YE, Foley CM, Winters BR, Authier S, Curtis MJ. Safety pharmacology 2023 and implementation of the ICH E14/S7B Q&A guidance document. J Pharmacol Toxicol Methods 2023; 123:107300. [PMID: 37524151 DOI: 10.1016/j.vascn.2023.107300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
This editorial prefaces the annual themed issue on safety pharmacology (SP) methods published since 2004 in the Journal of Pharmacological and Toxicological Methods (JPTM). We highlight here the content derived from the recent 2022 Safety Pharmacology Society (SPS) and Canadian Society of Pharmacology and Therapeutics (CSPT) joint meeting held in Montreal, Quebec, Canada. The meeting also generated 179 abstracts (reproduced in the current volume of JPTM). As in previous years the manuscripts reflect various areas of innovation in SP including a comparison of the sensitivity of cross-over and parallel study designs for QTc assessment, use of human-induced pluripotent stem cell (hi-PSC) neuronal cell preparations for use in neuropharmacological safety screening, and hiPSC derived cardiac myocytes in assessing inotropic adversity. With respect to the latter, we anticipate the emergence of a large data set of positive and negative controls that will test whether the imperative to miniaturize, humanize and create a high throughput process is offset by any loss of precision and accuracy.
Collapse
Affiliation(s)
- Michael K Pugsley
- Toxicology & Safety Pharmacology, Cytokinetics, South San Francisco, CA 94080, USA.
| | | | | | - Brett R Winters
- Toxicology & Safety Pharmacology, Cytokinetics, South San Francisco, CA 94080, USA
| | - Simon Authier
- Charles River Laboratories, Laval, QC H7V 4B3, Canada
| | - Michael J Curtis
- Cardiovascular Division, King's College London, Rayne Institute, St Thomas' Hospital, London SE17EH, UK
| |
Collapse
|
3
|
Pugsley M, Authier S, Koerner J, Redfern W, Markgraf C, Brabham T, Correll K, Soloviev M, Botchway A, Engwall M, Traebert M, Valentin JP, Mow T, Greiter-Wilke A, Leishman D, Vargas H. An overview of the safety pharmacology society strategic plan. J Pharmacol Toxicol Methods 2018; 93:35-45. [DOI: 10.1016/j.vascn.2018.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/07/2018] [Indexed: 10/18/2022]
|
4
|
Abstract
Professor Gerhard Zbinden recognized in the 1970s that the standards of the day for testing new candidate drugs in preclinical toxicity studies failed to identify acute pharmacodynamic adverse events that had the potential to harm participants in clinical trials. From his vision emerged the field of safety pharmacology, formally defined in the International Conference on Harmonization (ICH) S7A guidelines as "those studies that investigate the potential undesirable pharmacodynamic effects of a substance on physiological functions in relation to exposure in the therapeutic range and above." Initially, evaluations of small-molecule pharmacodynamic safety utilized efficacy models and were an ancillary responsibility of discovery scientists. However, over time, the relationship of these studies to overall safety was reflected by the regulatory agencies who, in directing the practice of safety pharmacology through guidance documents, prompted transition of responsibility to drug safety departments (e.g., toxicology). Events that have further shaped the field over the past 15 years include the ICH S7B guidance, evolution of molecular technologies leading to identification of new therapeutic targets with uncertain toxicities, introduction of data collection using more sophisticated and refined technologies, and utilization of transgenic animal models probing critical scientific questions regarding novel targets of toxicity. The collapse of the worldwide economy in the latter half of the first decade of the twenty-first century, continuing high rates of compound attrition during clinical development and post-approval and sharply increasing costs of drug development have led to significant strategy changes, contraction of the size of pharmaceutical organizations, and refocusing of therapeutic areas of investigation. With these changes has come movement away from dedicated internal safety pharmacology capability to utilization of capabilities within external contract research organizations. This movement has created the opportunity for the safety pharmacology discipline to come "full circle" and return to the drug discovery arena (target identification through clinical candidate selection) to contribute to the mitigation of the high rate of candidate drug failure through better compound selection decision making. Finally, the changing focus of science and losses in didactic training of scientists in whole animal physiology and pharmacology have revealed a serious gap in the future availability of qualified individuals to apply the principles of safety pharmacology in support of drug discovery and development. This is a significant deficiency that at present is only partially met with academic and professional society programs advancing a minimal level of training. In summary, with the exception that the future availability of suitably trained scientists is a critical need for the field that remains to be effectively addressed, the prospects for the future of safety pharmacology are hopeful and promising, and challenging for those individuals who want to assume this responsibility. What began in the early part of the new millennium as a relatively simple model of testing to assure the safety of Phase I clinical subjects and patients from acute deleterious effects on life-supporting organ systems has grown with experience and time to a science that mobilizes the principles of cellular and molecular biology and attempts to predict acute adverse events and those associated with long-term treatment. These challenges call for scientists with a broad range of in-depth scientific knowledge and an ability to adapt to a dynamic and forever changing industry. Identifying individuals who will serve today and training those who will serve in the future will fall to all of us who are committed to this important field of science.
Collapse
|
5
|
Reprint of "Safety pharmacology in 2014: New focus on non-cardiac methods and models". J Pharmacol Toxicol Methods 2014; 70:199-203. [PMID: 25467811 DOI: 10.1016/j.vascn.2014.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 11/20/2022]
Abstract
"What do you know about Safety Pharmacology?" This is the question that was asked in 2000 with the inception of the Safety Pharmacology Society (SPS). There is now a widespread awareness of the role of safety pharmacology in drug discovery and increasing awareness among the wider community of methods and models used in the assessment of the core battery required set of safety studies. However, safety pharmacology does not stop with core battery studies. New methods are intensively sought in order to achieve a swifter and more reliable assessment of adverse effect liability. The dynamics of the discipline and method expansion are reflected in the content of this issue of the Journal of Pharmacological and Toxicological Methods (JPTM). We are into the second decade of publishing on safety pharmacology methods and models, reflected by the annual themed issue in JPTM, and on willingness of investigators to embrace new technologies and methodologies. This years' themed issue is derived from the annual Safety Pharmacology Society (SPS) meeting, held in Rotterdam, The Netherlands, in 2013.
Collapse
|
6
|
Pugsley MK, Dalton JA, Authier S, Curtis MJ. Safety pharmacology in 2014: new focus on non-cardiac methods and models. J Pharmacol Toxicol Methods 2014; 70:170-4. [PMID: 25128820 DOI: 10.1016/j.vascn.2014.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 08/06/2014] [Accepted: 08/06/2014] [Indexed: 12/11/2022]
Abstract
"What do you know about Safety Pharmacology?" This is the question that was asked in 2000 with the inception of the Safety Pharmacology Society (SPS). There is now a widespread awareness of the role of safety pharmacology in drug discovery and increasing awareness among the wider community of methods and models used in the assessment of the core battery required set of safety studies. However, safety pharmacology does not stop with core battery studies. New methods are intensively sought in order to achieve a swifter and more reliable assessment of adverse effect liability. The dynamics of the discipline and method expansion are reflected in the content of this issue of the Journal of Pharmacological and Toxicological Methods (JPTM). We are into the second decade of publishing on safety pharmacology methods and models, reflected by the annual themed issue in JPTM, and on willingness of investigators to embrace new technologies and methodologies. This years' themed issue is derived from the annual Safety Pharmacology Society (SPS) meeting, held in Rotterdam, The Netherlands, in 2013.
Collapse
Affiliation(s)
- Michael K Pugsley
- Drug Safety Sciences, Janssen Research & Development, LLC., 1000 Route 202 South, Raritan, NJ, 00869, USA.
| | - Jill A Dalton
- Safety Pharmacology, MPI Research, Inc., 54943 North Main St., Mattawan, MI 49071-9399, USA
| | - Simon Authier
- CiToxLAB Research Inc., 445 Armand Frappier, Laval, QC H7V 4B3, Canada
| | - Michael J Curtis
- Cardiovascular Division, Rayne Institute, St Thomas' Hospital, London SE17EH, UK
| |
Collapse
|
7
|
McGivern JV, Ebert AD. Exploiting pluripotent stem cell technology for drug discovery, screening, safety, and toxicology assessments. Adv Drug Deliv Rev 2014; 69-70:170-8. [PMID: 24309014 DOI: 10.1016/j.addr.2013.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/11/2013] [Accepted: 11/24/2013] [Indexed: 02/06/2023]
Abstract
In order for the pharmaceutical industry to maintain a constant flow of novel drugs and therapeutics into the clinic, compounds must be thoroughly validated for safety and efficacy in multiple biological and biochemical systems. Pluripotent stem cells, because of their ability to develop into any cell type in the body and recapitulate human disease, may be an important cellular system to add to the drug development repertoire. This review will discuss some of the benefits of using pluripotent stem cells for drug discovery and safety studies as well as some of the recent applications of stem cells in drug screening studies. We will also address some of the hurdles that need to be overcome in order to make stem cell-based approaches an efficient and effective tool in the quest to produce clinically successful drug compounds.
Collapse
|