1
|
Arbouche N, Kintz P, Zagdoun C, Gheddar L, Raul JS, Ameline A. Determination of 3-MeO-PCP in human blood and urine in a fatal intoxication case, with a specific focus on metabolites identification. Forensic Sci Res 2021; 6:208-214. [PMID: 34868712 PMCID: PMC8635592 DOI: 10.1080/20961790.2021.1928821] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
3-Methoxyphencyclidine (3-MeO-PCP) is a new psychoactive substance that belongs to the phencyclidines family, first identified in Europe in 2012. This drug presents a stronger binding to N-methyl-D-aspartate (NMDA) receptors when compared to phencyclidine, which results in more potent effects, even at low concentrations. Very few articles have been published regarding 3-MeO-PCP in forensic toxicology. In this paper, the authors present a fatal 3-MeO-PCP intoxication case. In addition to the detection of the parent drug, metabolites were investigated in urine and, for the first time in the scientific literature, in blood. 3-MeO-PCP and its metabolites were quantitated by liquid chromatography-tandem mass spectrometry system (LC-MS/MS). Identification was confirmed by liquid chromatography-high resolution mass spectrometry (LC-HRMS). 3-MeO-PCP tested positive in femoral blood (3 525 ng/mL) and urine (7 384 ng/mL). The femoral blood concentration was higher than the fatal concentrations range already reported in the literature (from 50 to 3 200 ng/mL). 3-MeO-PCP metabolites, including O-demethyl-3-MeO-PCP, piperidine-OH-3-MeO-PCP, O-demethyl-piperidine-di-OH-3-MeO-PCP and piperidine-di-OH-3-MeO-PCP, were detected in blood. In addition, two new metabolites, O-demethyl-piperidine-OH-3-MeO-PCP and O-demethyl-cyclohexyl-OH, were identified in both blood and urine. Unfortunately, due to the lack of reference material on the market, it was not possible to measure the concentration of these metabolites. However, the ratios between the metabolites and the parent drug were useful to estimate their analytical response and prevalence. At this time, considering the low ratios (<1) between metabolites and parent drug, metabolites testing does not seem useful to increase the detection window of the drug.
Collapse
Affiliation(s)
| | - Pascal Kintz
- Institut de Médecine Légale, Strasbourg, France.,X-Pertise Consulting, Mittelhausbergen, France
| | - Cecile Zagdoun
- Unité Médico-Judiciaire, Hôpital Emile Muller, Mulhouse, France
| | | | | | | |
Collapse
|
2
|
Togo K, Fukusumi H, Shofuda T, Ohnishi H, Yamazaki H, Hayashi MK, Kawasaki N, Takei N, Nakazawa T, Saito Y, Baba K, Hashimoto H, Sekino Y, Shirao T, Mochizuki H, Kanemura Y. Postsynaptic structure formation of human iPS cell-derived neurons takes longer than presynaptic formation during neural differentiation in vitro. Mol Brain 2021; 14:149. [PMID: 34629097 PMCID: PMC8504131 DOI: 10.1186/s13041-021-00851-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 09/04/2021] [Indexed: 11/10/2022] Open
Abstract
The generation of mature synaptic structures using neurons differentiated from human-induced pluripotent stem cells (hiPSC-neurons) is expected to be applied to physiological studies of synapses in human cells and to pathological studies of diseases that cause abnormal synaptic function. Although it has been reported that synapses themselves change from an immature to a mature state as neurons mature, there are few reports that clearly show when and how human stem cell-derived neurons change to mature synaptic structures. This study was designed to elucidate the synapse formation process of hiPSC-neurons. We propagated hiPSC-derived neural progenitor cells (hiPSC-NPCs) that expressed localized markers of the ventral hindbrain as neurospheres by dual SMAD inhibition and then differentiated them into hiPSC-neurons in vitro. After 49 days of in vitro differentiation, hiPSC-neurons significantly expressed pre- and postsynaptic markers at both the transcript and protein levels. However, the expression of postsynaptic markers was lower than in normal human or normal rat brain tissues, and immunostaining analysis showed that it was relatively modest and was lower than that of presynaptic markers and that its localization in synaptic structures was insufficient. Neurophysiological analysis using a microelectrode array also revealed that no synaptic activity was generated on hiPSC-neurons at 49 days of differentiation. Analysis of subtype markers by immunostaining revealed that most hiPSC-neurons expressed vesicular glutamate transporter 2 (VGLUT2). The presence or absence of NGF, which is required for the survival of cholinergic neurons, had no effect on their cell fractionation. These results suggest that during the synaptogenesis of hiPSC-neurons, the formation of presynaptic structures is not the only requirement for the formation of postsynaptic structures and that the mRNA expression of postsynaptic markers does not correlate with the formation of their mature structures. Technically, we also confirmed a certain level of robustness and reproducibility of our neuronal differentiation method in a multicenter setting, which will be helpful for future research. Synapse formation with mature postsynaptic structures will remain an interesting issue for stem cell-derived neurons, and the present method can be used to obtain early and stable quality neuronal cultures from hiPSC-NPCs.
Collapse
Affiliation(s)
- Kazuyuki Togo
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.,Division of Stem Cell Research, Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Osaka, 540-0006, Japan
| | - Hayato Fukusumi
- Division of Stem Cell Research, Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Osaka, 540-0006, Japan
| | - Tomoko Shofuda
- Division of Stem Cell Research, Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Osaka, 540-0006, Japan
| | - Hiroshi Ohnishi
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Gunma, 371-8514, Japan
| | - Hiroyuki Yamazaki
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan.,Faculty of Social Welfare, Gunma University of Health and Welfare, Maebashi, Gunma, 371-0823, Japan
| | - Mariko Kato Hayashi
- School of Medicine, International University of Health and Welfare, Narita, Chiba, 286-8686, Japan.,Department of Food Science and Nutrition, Faculty of Food and Health Sciences, Showa Women's University, Setagaya-ku, Tokyo, 154-8533, Japan
| | - Nana Kawasaki
- Laboratory of Biopharmaceutical and Regenerative Sciences, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, 230-0045, Japan
| | - Nobuyuki Takei
- Department of Brain Tumor Biology, Brain Research Institute, Niigata University, Niigata, Niigata, 951-8585, Japan
| | - Takanobu Nakazawa
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.,Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Yumiko Saito
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8521, Japan
| | - Kousuke Baba
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, 565-0871, Japan.,Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Osaka, 565-0871, Japan.,Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan.,Department of Molecular Pharmaceutical Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuko Sekino
- Endowed Laboratory of Human Cell-Based Drug Discovery, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yonehiro Kanemura
- Division of Regenerative Medicine, Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, 2-1-14 Hoenzaka, Chuo-ku, Osaka, Osaka, 540-0006, Japan. .,Department of Neurosurgery, National Hospital Organization Osaka National Hospital, Osaka, Osaka, 540-0006, Japan.
| |
Collapse
|
3
|
Koganezawa N, Sekino Y, Kawakami H, Fuchino H, Kawahara N, Shirao T. NMDA receptor-dependent and -independent effects of natural compounds and crude drugs on synaptic states as revealed by drebrin imaging analysis. Eur J Neurosci 2021; 53:3548-3560. [PMID: 33851450 PMCID: PMC8365428 DOI: 10.1111/ejn.15231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/13/2021] [Accepted: 04/09/2021] [Indexed: 12/28/2022]
Abstract
Effective drugs that can cure cognitive impairments remain elusive. Because synaptic dysfunction has been correlated with cognitive impairments, drug development to target synaptic dysfunction is important. Recently, natural compounds and crude drugs have emerged as potential therapeutic agents for cognitive disorders. However, their effects on synaptic function remain unclear, because of lack of evaluation system with high reproducibility. We have recently developed highly reproducible in vitro high-content imaging analysis system for evaluation of synaptic function using drebrin as a marker for synaptic states. Therefore, we aimed to examine the direct effects of well-known natural compounds and crude drugs on synaptic states using this system. Rat hippocampal neurons were treated using natural compounds (nobiletin, diosgenin and tenuifolin) and crude drugs (Uncaria Hook [UH], Bezoar Bovis [BB], Coptis Rhizome [CR], Phellodendron Bark [PB] and Polygala Root [PR]). Immunocytochemical analysis was performed, and dendrite lengths and drebrin cluster densities were automatically quantified. We found that diosgenin, tenuifolin, CR, PB and PR decreased drebrin cluster densities, and the effects of PB and PR were partially dependent on N-methyl-D-aspartic acid-type glutamate receptors (NMDARs). Nobiletin and UH did not show any effects, whereas low-dose BB treatment increased drebrin cluster densities. Our results showed that diosgenin, tenuifolin, BB, CR, PB and PR appeared to directly change synaptic states. Particularly, the NMDAR dependency of PB and PR appears to affect synaptic plasticity.
Collapse
Affiliation(s)
- Noriko Koganezawa
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yuko Sekino
- Endowed Laboratory of Human Cell-Based Drug Discovery, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Hitomi Kawakami
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Japan
| | - Hiroyuki Fuchino
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Japan
| | - Nobuo Kawahara
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Japan
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Japan.,AlzMed, Inc, Bunkyo-ku, Japan
| |
Collapse
|
4
|
Chaji D, Venkatesh VS, Shirao T, Day DJ, Ellenbroek BA. Genetic Knockout of the Serotonin Reuptake Transporter Results in the Reduction of Dendritic Spines in In vitro Rat Cortical Neuronal Culture. J Mol Neurosci 2021; 71:2210-2218. [PMID: 33403594 DOI: 10.1007/s12031-020-01764-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/19/2020] [Indexed: 12/27/2022]
Abstract
Dysregulation of the serotonergic system has been reported to have a significant role in several neurological disorders including depression, autism and substance abuse disorders. Changes in the expression of the serotonin transporter (SERT) through polymorphisms in the regulatory regions of the SERT gene have been associated, but not yet been conclusively linked to, neuropsychiatric disorders. In turn, dendritic spine structure and function are critical for neuronal function and the disruption of dendritic spine formation at glutamatergic synapses is a hallmark of several neuropsychiatric disorders. To understand the effect of SERT depletion on dendritic spine formation, neuronal cultures were established from the cortex of postnatal day 0-1 SERT knockout (KO) rats. Cortical neurons were subsequently allowed to mature to 21 days in vitro, and dendritic spine density was assessed using immunocytochemical co-labelling of drebrin and microtubule associated protein 2. Genetic knockout of the SERT had a gene-dose effect on dendritic spine densities of cortical neurons. The results of this paper implicate SERT function with the formation of dendritic spines at glutamatergic synapses, thereby offering insight into the aetiology of several neuropathologies.
Collapse
Affiliation(s)
- Daniel Chaji
- School of Psychology, Behavioural Neurogenetics Group, Victoria University of Wellington, Kelburn, Wellington, New Zealand.,School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, New Zealand
| | - Varun S Venkatesh
- School of Psychology, Behavioural Neurogenetics Group, Victoria University of Wellington, Kelburn, Wellington, New Zealand.,School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, New Zealand.,Department of Medicine, Austin Health, University of Melbourne, Heidelberg, VIC, Australia
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Graduate School of Medicine, Gunma University, Maebashi, 371-8511, Japan
| | - Darren J Day
- School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, New Zealand
| | - Bart A Ellenbroek
- School of Psychology, Behavioural Neurogenetics Group, Victoria University of Wellington, Kelburn, Wellington, New Zealand.
| |
Collapse
|