1
|
Kobayashi Y, Tomoshige S, Imakado K, Sekino Y, Koganezawa N, Shirao T, Diniz GB, Miyamoto T, Saito Y. Ciliary GPCR-based transcriptome as a key regulator of cilia length control. FASEB Bioadv 2021; 3:744-767. [PMID: 34485842 PMCID: PMC8409570 DOI: 10.1096/fba.2021-00029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/28/2022] Open
Abstract
The primary cilium is a plasma membrane-protruding sensory organelle that efficiently conveys signaling cascades in a highly ordered microenvironment. Its signaling is mediated, in part, by a limited set of GPCRs preferentially enriched in the cilium membrane. This includes melanin-concentrating hormone (MCH) receptor 1 (MCHR1), which plays a role in feeding and mood. In addition to its receptor composition, the length of the cilium is a characteristic parameter that is implicated in its function. We previously found that MCH can dynamically shorten cilia length via the Gi/o and Akt pathways in both MCHR1-expressing hTERT-RPE1 cells (hRPE1 cells) and rat hippocampal neurons. However, the detailed mechanisms by which MCH regulates cilia length through ciliary MCHR1 remains unclear. In this study, we aimed to determine the transcriptome changes in MCHR1-expressing hRPE1 cells in response to MCH to identify the target molecules involved in cilia length regulation via MCHR1 activation. RNA sequencing analysis of ciliated cells subjected to MCH treatment showed upregulation of 424 genes and downregulation of 112 genes compared with static control cells. Validation by quantitative real-time PCR, knocking down, and CRISPR/Cas9-mediated knockout technology identified a molecule, PDZ and LIM domain-containing protein 5 (PDLIM5). Thus, it was considered as the most significant key factor for MCHR1-mediated shortening of cilia length. Additional analyses revealed that the actin-binding protein alpha-actinin 1/4 is a crucial downstream target of the PDLIM5 signaling pathway that exerts an effect on MCHR1-induced cilia shortening. In the endogenous MCHR1-expressing hippocampus, transcriptional upregulation of PDLIM5 and actinin 1/4, following the application of MCH, was detected when the MCHR1-positive cilia were shortened. Together, our transcriptome study based on ciliary MCHR1 function uncovered a novel and important regulatory step underlying cilia length control. These results will potentially serve as a basis for understanding the mechanism underlying the development of obesity and mood disorders.
Collapse
Affiliation(s)
- Yuki Kobayashi
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
| | - Sakura Tomoshige
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
| | - Kosuke Imakado
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
| | - Yuko Sekino
- Endowed Laboratory of Human Cell‐Based Drug DiscoveryGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Noriko Koganezawa
- Department of Neurobiology and BehaviorGraduate School of MedicineGunma UniversityMaebashiJapan
| | - Tomoaki Shirao
- Department of Neurobiology and BehaviorGraduate School of MedicineGunma UniversityMaebashiJapan
- AlzMed, Inc.TokyoJapan
| | - Giovanne B. Diniz
- California National Primate Research CenterUniversity of CaliforniaDavisCAUSA
| | - Tatsuo Miyamoto
- Department of Genetics and Cell BiologyResearch Institute for Radiation Biology and MedicineHiroshima UniversityHiroshimaJapan
| | - Yumiko Saito
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
| |
Collapse
|
2
|
Koganezawa N, Sekino Y, Kawakami H, Fuchino H, Kawahara N, Shirao T. NMDA receptor-dependent and -independent effects of natural compounds and crude drugs on synaptic states as revealed by drebrin imaging analysis. Eur J Neurosci 2021; 53:3548-3560. [PMID: 33851450 PMCID: PMC8365428 DOI: 10.1111/ejn.15231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/13/2021] [Accepted: 04/09/2021] [Indexed: 12/28/2022]
Abstract
Effective drugs that can cure cognitive impairments remain elusive. Because synaptic dysfunction has been correlated with cognitive impairments, drug development to target synaptic dysfunction is important. Recently, natural compounds and crude drugs have emerged as potential therapeutic agents for cognitive disorders. However, their effects on synaptic function remain unclear, because of lack of evaluation system with high reproducibility. We have recently developed highly reproducible in vitro high-content imaging analysis system for evaluation of synaptic function using drebrin as a marker for synaptic states. Therefore, we aimed to examine the direct effects of well-known natural compounds and crude drugs on synaptic states using this system. Rat hippocampal neurons were treated using natural compounds (nobiletin, diosgenin and tenuifolin) and crude drugs (Uncaria Hook [UH], Bezoar Bovis [BB], Coptis Rhizome [CR], Phellodendron Bark [PB] and Polygala Root [PR]). Immunocytochemical analysis was performed, and dendrite lengths and drebrin cluster densities were automatically quantified. We found that diosgenin, tenuifolin, CR, PB and PR decreased drebrin cluster densities, and the effects of PB and PR were partially dependent on N-methyl-D-aspartic acid-type glutamate receptors (NMDARs). Nobiletin and UH did not show any effects, whereas low-dose BB treatment increased drebrin cluster densities. Our results showed that diosgenin, tenuifolin, BB, CR, PB and PR appeared to directly change synaptic states. Particularly, the NMDAR dependency of PB and PR appears to affect synaptic plasticity.
Collapse
Affiliation(s)
- Noriko Koganezawa
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yuko Sekino
- Endowed Laboratory of Human Cell-Based Drug Discovery, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Hitomi Kawakami
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Japan
| | - Hiroyuki Fuchino
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Japan
| | - Nobuo Kawahara
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Japan
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Japan.,AlzMed, Inc, Bunkyo-ku, Japan
| |
Collapse
|
3
|
Chaji D, Venkatesh VS, Shirao T, Day DJ, Ellenbroek BA. Genetic Knockout of the Serotonin Reuptake Transporter Results in the Reduction of Dendritic Spines in In vitro Rat Cortical Neuronal Culture. J Mol Neurosci 2021; 71:2210-2218. [PMID: 33403594 DOI: 10.1007/s12031-020-01764-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/19/2020] [Indexed: 12/27/2022]
Abstract
Dysregulation of the serotonergic system has been reported to have a significant role in several neurological disorders including depression, autism and substance abuse disorders. Changes in the expression of the serotonin transporter (SERT) through polymorphisms in the regulatory regions of the SERT gene have been associated, but not yet been conclusively linked to, neuropsychiatric disorders. In turn, dendritic spine structure and function are critical for neuronal function and the disruption of dendritic spine formation at glutamatergic synapses is a hallmark of several neuropsychiatric disorders. To understand the effect of SERT depletion on dendritic spine formation, neuronal cultures were established from the cortex of postnatal day 0-1 SERT knockout (KO) rats. Cortical neurons were subsequently allowed to mature to 21 days in vitro, and dendritic spine density was assessed using immunocytochemical co-labelling of drebrin and microtubule associated protein 2. Genetic knockout of the SERT had a gene-dose effect on dendritic spine densities of cortical neurons. The results of this paper implicate SERT function with the formation of dendritic spines at glutamatergic synapses, thereby offering insight into the aetiology of several neuropathologies.
Collapse
Affiliation(s)
- Daniel Chaji
- School of Psychology, Behavioural Neurogenetics Group, Victoria University of Wellington, Kelburn, Wellington, New Zealand.,School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, New Zealand
| | - Varun S Venkatesh
- School of Psychology, Behavioural Neurogenetics Group, Victoria University of Wellington, Kelburn, Wellington, New Zealand.,School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, New Zealand.,Department of Medicine, Austin Health, University of Melbourne, Heidelberg, VIC, Australia
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Graduate School of Medicine, Gunma University, Maebashi, 371-8511, Japan
| | - Darren J Day
- School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, New Zealand
| | - Bart A Ellenbroek
- School of Psychology, Behavioural Neurogenetics Group, Victoria University of Wellington, Kelburn, Wellington, New Zealand.
| |
Collapse
|
4
|
Kobayashi Y, Okada T, Miki D, Sekino Y, Koganezawa N, Shirao T, Diniz GB, Saito Y. Properties of primary cilia in melanin-concentrating hormone receptor 1-bearing hippocampal neurons in vivo and in vitro. Neurochem Int 2020; 142:104902. [PMID: 33197527 DOI: 10.1016/j.neuint.2020.104902] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 12/31/2022]
Abstract
The primary cilium is a solitary organelle that organizes a sensitive signaling hub in a highly ordered microenvironment. Cilia are plastic structures, changing their length in response to bioactive substances, and ciliary length may be regulated to ensure efficient signaling capacity. Mammalian brain neurons possess primary cilia that are enriched in a set of G protein-coupled receptors (GPCRs), including the feeding-related melanin-concentrating hormone (MCH) receptor 1 (MCHR1). We previously demonstrated a novel biological phenomenon, ciliary MCHR1-mediated cilia length shortening through Gi/o and Akt signaling, using a simple cell culture model of human retinal pigmented epithelial RPE1 cells exogenously expressing MCHR1. In the present study, we characterized the properties of endogenous MCHR1-expressing primary cilia in hippocampal neurons in rodents. Using cultured dissociated rat hippocampal neurons in vitro, we showed that MCH triggered cilia length reduction involved in MCHR1-Gi/o and -Akt signaling. In rat hippocampal slice cultures with preservation of the cytoarchitecture and cell populations, ciliary MCHR1 was abundantly located in the CA1 and CA3 regions, but not in the dentate gyrus. Notably, treatment of slice cultures with MCH induced Gi/o- and Akt-dependent cilia shortening in the CA1 region without influencing cilia length in the CA3 region. Regarding the in vivo mouse brain, we observed higher levels of ciliary MCHR1 in the CA1 and CA3 regions as well as in slice cultures. In the starved state mice, a marked increase in MCH mRNA expression was detected in the lateral hypothalamus. Furthermore, MCHR1-positive cilia length in the hippocampal CA1 region was significantly shortened in fasted mice compared with fed mice. The present findings focused on the hippocampus provide a potential approach to investigate how MCHR1-driven cilia shortening regulates neuronal activity and physiological function toward feeding and memory tasks.
Collapse
Affiliation(s)
- Yuki Kobayashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521, Japan
| | - Tomoya Okada
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521, Japan
| | - Daisuke Miki
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521, Japan
| | - Yuko Sekino
- Endowed Laboratory of Human Cell-Based Drug Discovery, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Noriko Koganezawa
- Department of Neurobiology and Behavior, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan; AlzMed,Inc., UT South Clinical Research Building, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8485, Japan
| | - Giovanne B Diniz
- Department of Neurosurgery, Yale School of Medicine, 310 Cedar St, New Haven, CT, 06520, USA
| | - Yumiko Saito
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521, Japan.
| |
Collapse
|
5
|
Kobayashi Y, Hamamoto A, Saito Y. Analysis of ciliary status via G-protein-coupled receptors localized on primary cilia. Microscopy (Oxf) 2020; 69:277-285. [PMID: 32627821 DOI: 10.1093/jmicro/dfaa035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/20/2020] [Accepted: 07/02/2020] [Indexed: 11/14/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) comprise the largest and most diverse cell surface receptor family, with more than 800 known GPCRs identified in the human genome. Binding of an extracellular cue to a GPCR results in intracellular G protein activation, after which a sequence of events, can be amplified and optimized by selective binding partners and downstream effectors in spatially discrete cellular environments. Because GPCRs are widely expressed in the body, they help to regulate an incredible range of physiological processes from sensation to growth to hormone responses. Indeed, it is estimated that ∼ 30% of all clinically approved drugs act by binding to GPCRs. The primary cilium is a sensory organelle composed of a microtubule axoneme that extends from the basal body. The ciliary membrane is highly enriched in specific signaling components, allowing the primary cilium to efficiently convey signaling cascades in a highly ordered microenvironment. Recent data demonstrated that a limited number of non-olfactory GPCRs, including somatostatin receptor 3 and melanin-concentrating hormone receptor 1 (MCHR1), are selectively localized to cilia on several mammalian cell types including neuronal cells. Utilizing cilia-specific cell biological and molecular biological approaches, evidence has accumulated to support the biological importance of ciliary GPCR signaling followed by cilia structural changes. Thus, cilia are now considered a unique sensory platform for integration of GPCR signaling toward juxtaposed cytoplasmic structures. Herein, we review ciliary GPCRs and focus on a novel role of MCHR1 in ciliary length control that will impact ciliary signaling capacity and neuronal function.
Collapse
Affiliation(s)
- Yuki Kobayashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Akie Hamamoto
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, Gifu 502-0857, Japan
| | - Yumiko Saito
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| |
Collapse
|
6
|
Methodological and technological advances in safety pharmacology - New or simply nuanced? J Pharmacol Toxicol Methods 2019; 99:106604. [PMID: 31254621 DOI: 10.1016/j.vascn.2019.106604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This editorial previews and summarizes the content of the current themed issue of J Pharm Tox Methods derived from the recent 2018 Annual Safety Pharmacology Society (SPS) meeting held in Washington, DC. The papers highlight improvements in methods and study endpoints used in non-clinical safety pharmacology (SP) to enhance clinical translatability. Articles cover areas including the SP assessment of oligonucleotides and gene therapy, core battery clinical translation case studies, next generation non-opiate pain management strategy, aspects of cardio-oncology that extend the traditional objectives of an SP assessment, real-world advanced imaging techniques used in preclinical safety, in silico approaches including mathematical modeling, machine learning, and bioinformatics and how secondary SP studies impact clinical trial interpretation and design. The meeting included scientific content from >190 abstracts (reproduced in the current volume of J Pharm Tox Methods).
Collapse
|