1
|
Fang Y, Chen X, Sun Z, Yan X, Shi L, Jin C. Discovery and investigation of the truncation of the (GGGGS)n linker and its effect on the productivity of bispecific antibodies expressed in mammalian cells. Bioprocess Biosyst Eng 2025; 48:159-170. [PMID: 39488806 DOI: 10.1007/s00449-024-03100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
Protein engineering is a powerful tool for designing or modifying therapeutic proteins for enhanced efficacy, increased safety, reduced immunogenicity, and improved delivery. Fusion proteins are an important group of therapeutic compounds that often require an ideal linker to combine diverse domains to fulfill the desired function. GGGGS [(G4S)n] linkers are commonly used during the engineering of proteins because of their flexibility and resistance to proteases. However, unexpected truncation was observed in the linker of a bispecific antibody, which presented challenges in terms of production and quality. In this work, a bispecific antibody containing 5*G4S was investigated, and the truncation position of the linkers was confirmed. Our investigation revealed that codon optimization, which can overcome the negative influence of a high repetition rate and high GC content in the (G4S)n linker, may reduce the truncation rate from 5-10% to 1-5%. Moreover, the probability of truncation when a shortened 3* or 4*G4S linker was used was much lower than that when a 5*G4S linker was used in mammalian cells. In the case of expressing a bispecific antibody, the bioactivity and purity of the product containing a shorter G4S linker were further investigated and are discussed.
Collapse
Affiliation(s)
- Yan Fang
- Department of Chemistry Manufacturing and Controls, Shanghai Qilu Pharmaceutical R&D Center Limited, 576 Libing Road, Shanghai, 310115, China.
| | - Xi Chen
- Department of Chemistry Manufacturing and Controls, Shanghai Qilu Pharmaceutical R&D Center Limited, 576 Libing Road, Shanghai, 310115, China
| | - Zhen Sun
- Department of Chemistry Manufacturing and Controls, Shanghai Qilu Pharmaceutical R&D Center Limited, 576 Libing Road, Shanghai, 310115, China
| | - Xiaodan Yan
- Department of Chemistry Manufacturing and Controls, Shanghai Qilu Pharmaceutical R&D Center Limited, 576 Libing Road, Shanghai, 310115, China
| | - Lani Shi
- Department of Chemistry Manufacturing and Controls, Shanghai Qilu Pharmaceutical R&D Center Limited, 576 Libing Road, Shanghai, 310115, China
| | - Congcong Jin
- Department of Chemistry Manufacturing and Controls, Shanghai Qilu Pharmaceutical R&D Center Limited, 576 Libing Road, Shanghai, 310115, China
| |
Collapse
|
2
|
Feng L, Gao YY, Sun M, Li ZB, Zhang Q, Yang J, Qiao C, Jin H, Feng HS, Xian YH, Qi J, Gao GF, Liu WJ, Gao FS. The Parallel Presentation of Two Functional CTL Epitopes Derived from the O and Asia 1 Serotypes of Foot-and-Mouth Disease Virus and Swine SLA-2*HB01: Implications for Universal Vaccine Development. Cells 2022; 11:cells11244017. [PMID: 36552780 PMCID: PMC9777387 DOI: 10.3390/cells11244017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) poses a significant threat to the livestock industry. Through their recognition of the conserved epitopes presented by the swine leukocyte antigen (SLA), T cells play a pivotal role in the antiviral immunity of pigs. Herein, based on the peptide binding motif of SLA-2*HB01, from an original SLA-2 allele, a series of functional T-cell epitopes derived from the dominant antigen VP1 of FMDV with high binding capacity to SLA-2 were identified. Two parallel peptides, Hu64 and As64, from the O and Asia I serotypes, respectively, were both crystallized with SLA-2*HB01. Compared to SLA-1 and SLA-3, the SLA-2 structures showed the flexibility of residues in the P4, P6, and P8 positions and in their potential interface with TCR. Notably, the peptides Hu64 and As64 adopted quite similar overall conformation when bound to SLA-2*HB01. Hu64 has two different conformations, a more stable 'chair' conformation and an unstable 'boat' conformation observed in the two molecules of one asymmetric unit, whereas only a single 'chair' conformation was observed for As64. Both Hu64 and As64 could induce similar dominant T-cell activities. Our interdisciplinary study establishes a basis for the in-depth interpretation of the peptide presentation of SLA-I, which can be used toward the development of universal vaccines.
Collapse
Affiliation(s)
- Lei Feng
- Department of Bioengineering, College of Life and Health, Dalian University, Dalian 116622, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Yong-Yu Gao
- Department of Bioengineering, College of Life and Health, Dalian University, Dalian 116622, China
- College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Mingwei Sun
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Zi-Bin Li
- Department of Bioengineering, College of Life and Health, Dalian University, Dalian 116622, China
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Qiang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Jie Yang
- Department of Bioengineering, College of Life and Health, Dalian University, Dalian 116622, China
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Cui Qiao
- Department of Bioengineering, College of Life and Health, Dalian University, Dalian 116622, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Hang Jin
- Department of Bioengineering, College of Life and Health, Dalian University, Dalian 116622, China
| | - Hong-Sheng Feng
- Department of Bioengineering, College of Life and Health, Dalian University, Dalian 116622, China
| | - Yu-Han Xian
- Department of Bioengineering, College of Life and Health, Dalian University, Dalian 116622, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - George F. Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Correspondence: (G.F.G.); (W.J.L.); (F.-S.G.)
| | - William J. Liu
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Correspondence: (G.F.G.); (W.J.L.); (F.-S.G.)
| | - Feng-Shan Gao
- Department of Bioengineering, College of Life and Health, Dalian University, Dalian 116622, China
- Correspondence: (G.F.G.); (W.J.L.); (F.-S.G.)
| |
Collapse
|
3
|
Gao FS, Zhai XX, Jiang P, Zhang Q, Gao H, Li ZB, Han Y, Yang J, Zhang ZH. Identification of two novel foot-and-mouth disease virus cytotoxic T lymphocyte epitopes that can bind six SLA-I proteins. Gene 2018; 653:91-101. [PMID: 29432828 DOI: 10.1016/j.gene.2018.02.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 01/24/2018] [Accepted: 02/08/2018] [Indexed: 10/18/2022]
Abstract
Currently available vaccines from inactivated foot-and-mouth disease virus (FMDV) only protect animals by inducing neutralizing antibodies. A vaccine that contains cytotoxic T lymphocytes (CTL) epitopes to induce strong CTL responses might protect animals more effectively. Herein, we used swine leukocyte antigen class I (SLAI) proteins derived from six different strains of domestic pigs to screen and identify shared FMDV CTL epitopes. Four potential FMDV CTL epitopes (Q01, Q02, AS3, and QA4) were confirmed by mass spectrometry. We also determined the antigenicity of these epitopes to elicit cell-mediated immunoresponse by the ELISPOT and CTL assays. Among the four peptides, Q01 and QA4 were found to bind all six SLA-I proteins with strong affinity and elicit significant activity of CTL (P < 0.01). We conclude that Q01 and QA4 peptides are novel shared epitopes that can be recognized by all six SLA-I molecules on representative CTLs.
Collapse
Affiliation(s)
- Feng-Shan Gao
- Department of Bioengineering, College of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, PR China.
| | - Xiao-Xin Zhai
- Department of Bioengineering, College of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, PR China
| | - Ping Jiang
- Department of Bioengineering, College of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, PR China
| | - Qiang Zhang
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzou, Gansu 730046, PR China
| | - Hua Gao
- Department of Bioengineering, College of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, PR China
| | - Zi-Bin Li
- Department of Bioengineering, College of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, PR China; Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, PR China
| | - Yong Han
- Department of Bioengineering, College of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, PR China
| | - Jie Yang
- Department of Bioengineering, College of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, PR China
| | - Zong-Hui Zhang
- Department of Bioengineering, College of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, PR China
| |
Collapse
|
4
|
Gao C, He X, Quan J, Jiang Q, Lin H, Chen H, Qu L. Specificity Characterization of SLA Class I Molecules Binding to Swine-Origin Viral Cytotoxic T Lymphocyte Epitope Peptides in Vitro. Front Microbiol 2017; 8:2524. [PMID: 29326671 PMCID: PMC5741678 DOI: 10.3389/fmicb.2017.02524] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/05/2017] [Indexed: 02/03/2023] Open
Abstract
Swine leukocyte antigen (SLA) class I molecules play a crucial role in generating specific cellular immune responses against viruses and other intracellular pathogens. They mainly bind and present antigens of intracellular origin to circulating MHC I-restricted cytotoxic T lymphocytes (CTLs). Binding of an appropriate epitope to an SLA class I molecule is the single most selective event in antigen presentation and the first step in the killing of infected cells by CD8+ CTLs. Moreover, the antigen epitopes are strictly restricted to specific SLA molecules. In this study, we constructed SLA class I complexes in vitro comprising viral epitope peptides, the extracellular region of the SLA-1 molecules, and β2-microglobulin (β2m) using splicing overlap extension polymerase chain reaction (SOE-PCR). The protein complexes were induced and expressed in an Escherichia coli prokaryotic expression system and subsequently purified and refolded. Specific binding of seven SLA-1 proteins to one classical swine fever virus (CSFV) and four porcine reproductive and respiratory syndrome virus (PRRSV) epitope peptides was detected by enzyme-linked immunosorbent assay (ELISA)-based method. The SLA-1∗13:01, SLA-1∗11:10, and SLA-1∗11:01:02 proteins were able to bind specifically to different CTL epitopes of CSFV and PRRSV and the MHC restrictions of the five epitopes were identified. The fixed combination of Asn151Val152 residues was identified as the potentially key amino acid residues influencing the binding of viral several CTL epitope peptides to SLA-1∗13:01 and SLA-1∗04:01:01 proteins. The more flexible pocket E in the SLA-1∗13:01 protein might have fewer steric limitations and therefore be able to accommodate more residues of viral CTL epitope peptides, and may thus play a critical biochemical role in determining the peptide-binding motif of SLA-1∗13:01. Characterization of the binding specificity of peptides to SLA class I molecules provides an important basis for epitope studies of infectious diseases in swine, and for the rational development of novel porcine vaccines, as well as for detailed studies of CTL responses in pigs used as animal models.
Collapse
Affiliation(s)
- Caixia Gao
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiwen He
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jinqiang Quan
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qian Jiang
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Huan Lin
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyan Chen
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Liandong Qu
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
5
|
Gao C, Quan J, Jiang X, Li C, Lu X, Chen H. Swine Leukocyte Antigen Diversity in Canadian Specific Pathogen-Free Yorkshire and Landrace Pigs. Front Immunol 2017; 8:282. [PMID: 28360911 PMCID: PMC5350106 DOI: 10.3389/fimmu.2017.00282] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/28/2017] [Indexed: 01/09/2023] Open
Abstract
The highly polymorphic swine major histocompatibility complex (MHC), termed swine leukocyte antigen (SLA), is associated with different levels of immunologic responses to infectious diseases, vaccines, and transplantation. Pig breeds with known SLA haplotypes are important genetic resources for biomedical research. Canadian Yorkshire and Landrace pigs represent the current specific pathogen-free (SPF) breeding stock maintained in the isolation environment at the Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences. In this study, we identified 61 alleles at five polymorphic SLA loci (SLA-1, SLA-2, SLA-3, DRB1, and DQB1) representing 17 class I haplotypes and 11 class II haplotypes using reverse transcription-polymerase chain reaction (RT-PCR) sequence-based typing and PCR-sequence specific primers methods in 367 Canadian SPF Yorkshire and Landrace pigs. The official designation of the alleles has been assigned by the SLA Nomenclature Committee of the International Society for Animal Genetics and released in updated Immuno Polymorphism Database-MHC SLA sequence database [Release 2.0.0.3 (2016-11-03)]. The submissions confirmed some unassigned alleles and standardized nomenclatures of many previously unconfirmed alleles in the GenBank database. Three class I haplotypes, Hp-37.0, 63.0, and 73.0, appeared to be novel and have not previously been reported in other pig populations. One crossover within the class I region and two between class I and class II regions were observed, resulting in three new recombinant haplotypes. The presence of the duplicated SLA-1 locus was confirmed in three class I haplotypes Hp-28.0, Hp-35.0, and Hp-63.0. Furthermore, we also analyzed the functional diversities of 19 identified frequent SLA class I molecules in this study and confirmed the existence of four supertypes using the MHCcluster method. These results will be useful for studying the adaptive immune response and immunological phenotypic differences in pigs, screening potential T-cell epitopes, and further developing the more effective vaccines.
Collapse
Affiliation(s)
- Caixia Gao
- Laboratory Animal and Comparative Medicine Team, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS) , Harbin , China
| | - Jinqiang Quan
- Laboratory Animal and Comparative Medicine Team, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS) , Harbin , China
| | - Xinjie Jiang
- Laboratory Animal and Comparative Medicine Team, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS) , Harbin , China
| | - Changwen Li
- Laboratory Animal and Comparative Medicine Team, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS) , Harbin , China
| | - Xiaoye Lu
- Laboratory Animal and Comparative Medicine Team, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS) , Harbin , China
| | - Hongyan Chen
- Laboratory Animal and Comparative Medicine Team, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS) , Harbin , China
| |
Collapse
|
6
|
Gao C, Jiang Q, Guo D, Liu J, Han L, Qu L. Characterization of swine leukocyte antigen (SLA) polymorphism by sequence-based and PCR-SSP methods in Chinese Bama miniature pigs. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:87-96. [PMID: 24560654 DOI: 10.1016/j.dci.2014.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/11/2014] [Accepted: 02/11/2014] [Indexed: 06/03/2023]
Abstract
The highly polymorphic swine leukocyte antigen (SLA) genes have been repeatedly shown to influence swine immune traits, disease resistance, vaccine responsiveness and tumour penetrance. Analysis of the SLA diversity in as many pig breeds as possible is important to clarify the relationships between SLA genes and diseases or traits, and develop these pigs as valuable animal models for biomedical research. The Chinese Bama miniature pig breed is an economically significant breed that is available at several research institutions in China. In this study, we identified a total of 32 alleles at five polymorphic SLA loci (SLA-1, SLA-3, SLA-2, DRB1 and DQB1) representing nine class I and seven class II haplotypes using the reverse transcription polymerase chain reaction (RT-PCR) sequence-based typing (SBT) method. The possible functional sites of the SLA genes were predicted and analyzed by comparison with those of the human and mouse. Based on the sequence information, we subsequently developed a rapid PCR-based typing assay using sequence-specific primers (PCR-SSP) to efficiently follow the SLA types of the progeny. In the studied cohort (2n = 562), the most prevalent Haplotype Hp-35.6 (SLA-1(∗)1201, SLA-1(∗)1301-SLA-3(∗)0502-SLA-2(∗)1001-DRB1(∗)0501-DQB1(∗)0801) was identified in 182 Bama pigs with a frequency of 32.38%. The presence of the duplicated SLA-1 locus was confirmed in five of the class I haplotypes. Moreover, we identified two crossovers within the class I region and one between the class I and class II regions, which corresponded to recombination frequencies of 0.36% and 0.18%, respectively. The information of this study is essential for an understanding of the SLA allelic architecture and diversity, and it will be helpful for studying the adaptive immune response and further developing the more effective vaccines in the context of SLA specificities.
Collapse
Affiliation(s)
- Caixia Gao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin 150001, China
| | - Qian Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin 150001, China
| | - Dongchun Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin 150001, China
| | - Jiasen Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin 150001, China
| | - Lingxia Han
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin 150001, China
| | - Liandong Qu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin 150001, China.
| |
Collapse
|
7
|
Liao YC, Lin HH, Lin CH, Chung WB. Identification of cytotoxic T lymphocyte epitopes on swine viruses: multi-epitope design for universal T cell vaccine. PLoS One 2013; 8:e84443. [PMID: 24358361 PMCID: PMC3866179 DOI: 10.1371/journal.pone.0084443] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/22/2013] [Indexed: 01/19/2023] Open
Abstract
Classical swine fever (CSF), foot-and-mouth disease (FMD) and porcine reproductive and respiratory syndrome (PRRS) are the primary diseases affecting the pig industry globally. Vaccine induced CD8+ T cell-mediated immune response might be long-lived and cross-serotype and thus deserve further attention. Although large panels of synthetic overlapping peptides spanning the entire length of the polyproteins of a virus facilitate the detection of cytotoxic T lymphocyte (CTL) epitopes, it is an exceedingly costly and cumbersome approach. Alternatively, computational predictions have been proven to be of satisfactory accuracy and are easily performed. Such a method enables the systematic identification of genome-wide CTL epitopes by incorporating epitope prediction tools in analyzing large numbers of viral sequences. In this study, we have implemented an integrated bioinformatics pipeline for the identification of CTL epitopes of swine viruses including the CSF virus (CSFV), FMD virus (FMDV) and PRRS virus (PRRSV) and assembled these epitopes on a web resource to facilitate vaccine design. Identification of epitopes for cross protections to different subtypes of virus are also reported in this study and may be useful for the development of a universal vaccine against such viral infections among the swine population. The CTL epitopes identified in this study have been evaluated in silico and possibly provide more and wider protection in compared to traditional single-reference vaccine design. The web resource is free and open to all users through http://sb.nhri.org.tw/ICES.
Collapse
Affiliation(s)
- Yu-Chieh Liao
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- * E-mail:
| | - Hsin-Hung Lin
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Chieh-Hua Lin
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen-Bin Chung
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
8
|
Immunogenicity of two FMDV nonameric peptides encapsulated in liposomes in mice and the protective efficacy in guinea pigs. PLoS One 2013; 8:e68658. [PMID: 23874709 PMCID: PMC3706604 DOI: 10.1371/journal.pone.0068658] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 05/31/2013] [Indexed: 11/18/2022] Open
Abstract
It has been predicted that nonameric peptides I (VP126–34, RRQHTDVSF), II (VP1157–165, RTLPTSFNY) and III (VP145–53, KEQVNVLDL) from the VP1 capsid protein of the foot-and-mouth disease virus (FMDV) are T cell epitopes. To investigate whether these peptides have immunological activity, BALB/c mice were immunized with peptide I, II or III conjugated with immunostimulating complexes (ISCOMs). A cytotoxic T lymphocyte assay was used to evaluate the cytotoxic activity induced by peptides along with by measuring peptide-specific T-cell proliferation and CD8+ T lymphocyte numbers in whole blood and interferon (IFN)-γ production in peripheral blood mononuclear cells induced by peptides. To further identify the protective efficacy of peptides, an FMDV challenge assay was done in guinea pigs. Peptides I and II stimulated significant increases in T-cell proliferation, CD8+ T lymphocytes, and IFN-γ secretion and cytotoxic activity compared to controls. The FMDV challenge assay indicated peptides I and II can protect over 60% of animals from virus attack. The results demonstrate that peptides I and II encapsulated in liposomes should be CTL epitopes of FMDV and can protect animals from virus attack to some extent.
Collapse
|
9
|
Wen D, Foley SF, Hronowski XL, Gu S, Meier W. Discovery and Investigation of O-Xylosylation in Engineered Proteins Containing a (GGGGS)n Linker. Anal Chem 2013; 85:4805-12. [DOI: 10.1021/ac400596g] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Dingyi Wen
- Analytical Biochemistry, Department
of Biologics Drug
Discovery, Biogen Idec, 12 Cambridge Center,
Cambridge, Massachusetts 02142, United States
| | - Susan F. Foley
- Analytical Biochemistry, Department
of Biologics Drug
Discovery, Biogen Idec, 12 Cambridge Center,
Cambridge, Massachusetts 02142, United States
| | - Xiaoping L. Hronowski
- Analytical Biochemistry, Department
of Biologics Drug
Discovery, Biogen Idec, 12 Cambridge Center,
Cambridge, Massachusetts 02142, United States
| | - Sheng Gu
- Analytical Biochemistry, Department
of Biologics Drug
Discovery, Biogen Idec, 12 Cambridge Center,
Cambridge, Massachusetts 02142, United States
| | - Werner Meier
- Analytical Biochemistry, Department
of Biologics Drug
Discovery, Biogen Idec, 12 Cambridge Center,
Cambridge, Massachusetts 02142, United States
| |
Collapse
|
10
|
|
11
|
Gao FS, Bai J, Gong XJ, Zhang XH, Zhang WJ, Guo D, Zhang S. Analyzing the genetic characteristics and function of the swine leukocyte antigen 2 gene in a Chinese inbreed of pigs. Microbiol Immunol 2012; 56:208-15. [PMID: 22233465 DOI: 10.1111/j.1348-0421.2012.00427.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
To study the genetic characteristics and function of swine leukocyte antigen (SLA) class I from the Hebao pig, a rare inbreed in China, a pair of primers was designed to amplify the SLA-2 gene (SLA-2-HB) and then the genetic characteristics of the gene were analyzed. The 3D homology modeling was used to analyze the structure and function of SLA-2-HB proteins. After cloning, sequencing and computer analysis, four SLA-2-HB alleles were found, all of 1119 bp. Sites 3-1097 were an open reading frame encoding 364 amino acids with two sets of intra-chain disulfide bonds comprising four cysteines situated in sites 125, 188, 227 and 283. By alignment of SLA-2-HB sequences with other SLA-2 alleles in the IPD database, 11 key variable amino acid sites were found in the extracellular domain of the SLA-2-HB alleles at sites 23(F), 24(I), 43(A), 44(K), 50(Q), 73(N), 95(I), 114(R), 155(G), 156(E) and 216(S), which could be used to differentiate other SLA-2 alleles. The 3D homology modeling demonstrated that the eight of 11 key variable amino acid sites were all in antigenic binding groove of SLA-2-HB proteins. The amino acid identities between SLA-2-HB and other SLA-2, SLA-1 and SLA-3 alleles were 86.2-97.0%, 85.0-93.9% and 83.3-88.6%, respectively. The phylogenetic tree of SLA-2-HB showed that it was relatively independent of the other SLA-2 genes. Furthermore, the SLA-2-HB alleles were similar to HLA-B15 and HLA-A2 functional domains and preserved some functional sites of HLA-A2. It was concluded that SLA-2-HB are novel alleles of SLA-2 and that the Hebao pig might have evolved independently in China.
Collapse
Affiliation(s)
- Feng-Shan Gao
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Dalian University, Dalian, China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Gao FS, Bai J, Zhang Q, Xu CB, Li Y. Construction of multiple recombinant SLA-I proteins by linking heavy chains and light chains in vitro and analyzing their secondary and 3-dimensional structures. Gene 2012; 502:147-53. [PMID: 22555023 DOI: 10.1016/j.gene.2012.04.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/05/2012] [Accepted: 04/17/2012] [Indexed: 10/28/2022]
Abstract
Six breeds of swine were used to study the structure of swine leukocyte antigen class I (SLA-I). SLA-I complexes were produced by linking SLA-2 genes and β(2)m genes via a linker encoding a 15 amino acid glycine-rich sequence, (G4S)3, using splicing overlap extension (SOE)-PCR in vitro. The six recombinant SLA-2-linker-β(2)m genes were each inserted into p2X vectors and their expression induced in Escherichia coli TB1. The expressed proteins were detected by SDS-PAGE and western blotting. The maltose binding protein (MBP)-SLA-I fusion proteins were purified by amylose affinity chromatography followed by cleavage with factor Xa and separation of the SLA-I protein monomers from the MBP using a DEAE Ceramic Hyper D F column. The purified SLA-I monomers were detected by circular dichroism (CD) spectroscopy and the 3-dimensional (3D) structure of the constructed single-chain SLA-I molecules were analyzed by homology modeling. Recombinant SLA-2-Linker-β(2)m was successfully amplified from all six breeds of swine by SOE-PCR and expressed as fusion proteins of 84.1 kDa in pMAL-p2X, followed by confirmation by western blotting. After purification and cleavage of the MBP-SLA-I fusion proteins, SLA-I monomeric proteins of 41.6 kDa were separated. CD spectroscopy demonstrated that the SLA-I monomers had an α-helical structure, and the average α-helix, β-sheet, turn and random coil contents were 21.6%, 37.9%, 15.0% and 25.5%, respectively. Homology modeling of recombinant single-chain SLA-I molecules showed that the heavy chain and light chain constituted SLA-I complex with an open antigenic peptide-binding groove. It was concluded that the expressed SLA-I proteins in pMAL-p2X folded correctly and could be used to bind and screen nonameric peptides in vitro.
Collapse
Affiliation(s)
- Feng-shan Gao
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, PR China.
| | | | | | | | | |
Collapse
|
13
|
Gao FS, Bai J, Zhang XH, Zhang WJ, Guo D, Zhang S. Molecular characteristics of the SLA-2 gene from Chinese Hebao pigs. RUSS J GENET+ 2012. [DOI: 10.1134/s1022795412010073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Ye L, Zi C, Pan ZY, Zhu J, Du ZD, Zhu GQ, Huang XG, Bao WB, Wu SL. Investigation of the relationship between SLA-1 and SLA-3 gene expression and susceptibility to Escherichia coli F18 in post-weaning pigs. Comp Immunol Microbiol Infect Dis 2012; 35:23-30. [PMID: 22019298 DOI: 10.1016/j.cimid.2011.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 09/24/2011] [Accepted: 09/27/2011] [Indexed: 11/18/2022]
Abstract
Porcine post-weaning diarrhea and edema disease are principally caused by Escherichia coli strains that produce F18 adhesin. FUT1 genotyping and receptor binding studies divided piglets into E. coli F18-resistant and -sensitive groups, and the roles of SLA-1 and SLA-3 were investigated. SLA-1 and SLA-3 expression was detected in 11 pig tissues, with higher levels of SLA-1 in lung, immune tissues and gastrointestinal tract, and higher levels of SLA-3 also in lung and lymphoid tissues. Both genes were expressed higher in F18-resistant piglets, and their expression was positively correlated in different tissues; a negative correlation was observed in some tissues of F18-sensitive group, particularly in lung and lymphatic samples. Gene ontology and pathway analyses showed that SLA-1 and SLA-3 were involved in 37 biological processes, including nine pathways related to immune functions. These observations help to elucidate the relationship between SLA class I genes and E. coli F18-related porcine gastrointestinal tract diseases.
Collapse
Affiliation(s)
- L Ye
- College of Animal Science and Technology, Yangzhou University, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Expression of a novel dual-functional protein--the antimicrobial peptide LL-37 fused with human acidic fibroblast growth factor in Escherichia coli. Protein Expr Purif 2011; 81:119-125. [PMID: 21963769 DOI: 10.1016/j.pep.2011.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 09/14/2011] [Accepted: 09/16/2011] [Indexed: 01/14/2023]
Abstract
Human acidic fibroblast growth factor (haFGF) stimulates repair of delayed healing which still remains a tremendously world-wide issue. However, most of the patients with delayed healings have to face another creeping problem - microbial infection, which is one of the most frequent complications that still lead to wound healing failure. LL-37/hCAP-18 is the only cathelicidin-derived antimicrobial peptide found in human with a wide range of antimicrobial activities. In the present study, a novel hybrid protein combining LL-37 with haFGF was designed. The DNA sequence encoding recombination fusion protein LL-37-haFGF was subcloned into the pET-21b vector for protein expression in Escherichia coli strain BL21 (DE3). The recombinant protein was expressed as a His-tagged protein and purified using a combination of Ni affinity and CM-Sepharose chromatography at a purity of 95.43% as detected by RP-HPLC and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Antimicrobial activity assays showed that the purified LL-37-haFGF had improved antimicrobial activities in vitro compared with LL-37. Methylthiazoletetrazolium (MTT) assay showed that the purified LL-37-haFGF also had a distinct mitogenic activity in NIH 3T3 cells. These data suggests the recombinant protein LL-37-haFGF has pharmaceutical potential for applications in wound healing.
Collapse
|
16
|
Liu XS, Wang YL, Zhang YG, Fang YZ, Pan L, Lu JL, Zhou P, Zhang ZW, Jiang ST. Identification of H-2d restricted T cell epitope of foot-and-mouth disease virus structural protein VP1. Virol J 2011; 8:426. [PMID: 21896206 PMCID: PMC3179754 DOI: 10.1186/1743-422x-8-426] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 09/07/2011] [Indexed: 12/05/2022] Open
Abstract
Background Foot-and-mouth disease (FMD) is a highly contagious and devastating disease affecting livestock that causes significant financial losses. Therefore, safer and more effective vaccines are required against Foot-and-mouth disease virus(FMDV). The purpose of this study is to screen and identify an H-2d restricted T cell epitope from the virus structural protein VP1, which is present with FMD. We therefore provide a method and basis for studying a specific FMDV T cell epitope. Results A codon-optimized expression method was adopted for effective expression of VP1 protein in colon bacillus. We used foot-and-mouth disease standard positive serum was used for Western blot detection of its immunogenicity. The VP1 protein was used for immunizing BALB/c mice, and spleen lymphocytes were isolated. Then, a common in vitro training stimulus was conducted for potential H-2Dd, H-2Kd and H-2Ld restricted T cell epitope on VP1 proteins that were predicted and synthesized by using a bioinformatics method. The H-2Kd restricted T cell epitope pK1 (AYHKGPFTRL) and the H-2Dd restricted T cell epitope pD7 (GFIMDRFVKI) were identified using lymphocyte proliferation assays and IFN-γ ELISPOT experiments. Conclusions The results of this study lay foundation for studying the FMDV immune process, vaccine development, among other things. These results also showed that, to identify viral T cell epitopes, the combined application of bioinformatics and molecular biology methods is effective.
Collapse
Affiliation(s)
- Xin-Sheng Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Crystal structure of swine major histocompatibility complex class I SLA-1 0401 and identification of 2009 pandemic swine-origin influenza A H1N1 virus cytotoxic T lymphocyte epitope peptides. J Virol 2011; 85:11709-24. [PMID: 21900158 DOI: 10.1128/jvi.05040-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The presentation of viral epitopes to cytotoxic T lymphocytes (CTLs) by swine leukocyte antigen class I (SLA I) is crucial for swine immunity. To illustrate the structural basis of swine CTL epitope presentation, the first SLA crystal structures, SLA-1 0401, complexed with peptides derived from either 2009 pandemic H1N1 (pH1N1) swine-origin influenza A virus (S-OIV(NW9); NSDTVGWSW) or Ebola virus (Ebola(AY9); ATAAATEAY) were determined in this study. The overall peptide-SLA-1 0401 structures resemble, as expected, the general conformations of other structure-solved peptide major histocompatibility complexes (pMHC). The major distinction of SLA-1 0401 is that Arg(156) has a "one-ballot veto" function in peptide binding, due to its flexible side chain. S-OIV(NW9) and Ebola(AY9) bind SLA-1 0401 with similar conformations but employ different water molecules to stabilize their binding. The side chain of P7 residues in both peptides is exposed, indicating that the epitopes are "featured" peptides presented by this SLA. Further analyses showed that SLA-1 0401 and human leukocyte antigen (HLA) class I HLA-A 0101 can present the same peptides, but in different conformations, demonstrating cross-species epitope presentation. CTL epitope peptides derived from 2009 pandemic S-OIV were screened and evaluated by the in vitro refolding method. Three peptides were identified as potential cross-species influenza virus (IV) CTL epitopes. The binding motif of SLA-1 0401 was proposed, and thermostabilities of key peptide-SLA-1 0401 complexes were analyzed by circular dichroism spectra. Our results not only provide the structural basis of peptide presentation by SLA I but also identify some IV CTL epitope peptides. These results will benefit both vaccine development and swine organ-based xenotransplantation.
Collapse
|
18
|
Development of a serotype colloidal gold strip using monoclonal antibody for rapid detection type Asia1 foot-and-mouth disease. Virol J 2011; 8:418. [PMID: 21880157 PMCID: PMC3183032 DOI: 10.1186/1743-422x-8-418] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 09/01/2011] [Indexed: 11/25/2022] Open
Abstract
Background In this study, we developed a rapid, one step colloid gold strip (CGS) capable of specifically detecting type Asia1 foot-and-mouth disease virus (FMDV). We have produced two monoclonal antibodies (mAb) to type Asia1 FMD (named 1B8 and 5E2). On the test strip, the purified 1B8 labelled with the colloidal gold was used as the detector, and the purified 5E2 and goat anti-mouse antibodies were wrapped onto nitrocellulose (NC) membranes as the test and the control line, respectively. The rapid colloidal gold stereotype diagnostic strip was housed in a plastic case. Results In specificity and sensitivity assay, there was no cross-reaction of the antigen with the other type of FMD and SVDV. The detection sensitivity was found to be as high as 10-5 dilution of Asia1/JSL/05 (1 × 107.2TCID50/50 μL). There was excellent agreement between the results obtained by CGS and reverse indirect hemagglutination assay (RIHA), and the agreement can reach to 98.75%. Conclusion We developed colloidal gold strips that have good qualities and does not require specialized equipment or technicians. This method provided a feasible, convenient, rapid, and effective for detecting type Asia1 FMDV in the fields.
Collapse
|
19
|
Expression of the antimicrobial peptide cecropin fused with human lysozyme in Escherichia coli. Appl Microbiol Biotechnol 2010; 87:2169-76. [PMID: 20499232 DOI: 10.1007/s00253-010-2606-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 04/02/2010] [Accepted: 04/05/2010] [Indexed: 10/19/2022]
Abstract
Lysozyme is an abundant, cationic antimicrobial protein that plays an important role in host defense. It targets the beta (1-4) glycosidic bond between N-acetylglucosamine and N-acetylmuramic residues that make up peptidoglycan, making lysozyme highly active against Gram-positive bacteria. However, lysozyme alone is inactive against Gram-negative bacteria because it cannot reach the peptidoglycan layer. Cecropins are cationic molecules with a wide range of antimicrobial activities. The main target for these peptides is the cytoplasmic membrane. We resume that cecopin may disrupt the outer membrane, giving the enzyme access to the peptidoglycan in cell wall. So in the present study, novel hybrid protein combining Musca domestica cecropin (Mdc) with human lysozyme (Hly) was designed. The DNA sequence encoding recombination fusion protein Mdc-hly was cloned into the pET-32a vector for protein expression in Escherichia coli strain BL21 (DE3). The protein was expressed as a His-tagged fusion protein, and the Mdc-hly was released from the fusion by enterokinase cleavage and separated from the carrier thioredoxin. Antimicrobial activity assays showed that the recombinant fusion protein Mdc-hly has improved in vitro antimicrobial activity and action spectrum compared to Mdc and hly. Mdc-hly may have important potential application as a future safely administered human drug and food additive.
Collapse
|
20
|
Gao FS, Xu CB, Long YH, Xia C. Secondary structure and 3D homology modeling of swine leukocyte antigen class 2 (SLA-2) molecules. Immunobiology 2009; 214:475-82. [DOI: 10.1016/j.imbio.2008.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 10/30/2008] [Accepted: 11/09/2008] [Indexed: 11/29/2022]
|
21
|
Lunney JK, Ho CS, Wysocki M, Smith DM. Molecular genetics of the swine major histocompatibility complex, the SLA complex. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:362-374. [PMID: 18760302 DOI: 10.1016/j.dci.2008.07.002] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 07/10/2008] [Accepted: 07/13/2008] [Indexed: 05/26/2023]
Abstract
The swine major histocompatibility complex (MHC) or swine leukocyte antigen (SLA) complex is one of the most gene-dense regions in the swine genome. It consists of three major gene clusters, the SLA class I, class III and class II regions, that span approximately 1.1, 0.7 and 0.5Mb, respectively, making the swine MHC the smallest among mammalian MHC so far examined and the only one known to span the centromere. This review summarizes recent updates to the Immuno Polymorphism Database-MHC (IPD-MHC) website (http://www.ebi.ac.uk/ipd/mhc/sla/) which serves as the repository for maintaining a list of all SLA recognized genes and their allelic sequences. It reviews the expression of SLA proteins on cell subsets and their role in antigen presentation and regulating immune responses. It concludes by discussing the role of SLA genes in swine models of transplantation, xenotransplantation, cancer and allergy and in swine production traits and responses to infectious disease and vaccines.
Collapse
|
22
|
Cooke JN, Westover KM. Serotype-specific differences in antigenic regions of foot-and-mouth disease virus (FMDV): A comprehensive statistical analysis. INFECTION GENETICS AND EVOLUTION 2008; 8:855-63. [DOI: 10.1016/j.meegid.2008.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 08/11/2008] [Accepted: 08/15/2008] [Indexed: 10/21/2022]
|
23
|
Piriou-Guzylack L, Salmon H. Membrane markers of the immune cells in swine: an update. Vet Res 2008; 39:54. [PMID: 18638439 DOI: 10.1051/vetres:2008030] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 07/16/2008] [Indexed: 01/08/2023] Open
Abstract
Besides their breeding value, swine are increasingly used as biomedical models. As reported in three international swine clusters of differentiation (CD) workshops and in the animal homologue section of the last workshop for the determination of human leukocyte differentiation antigens (HLDA 8), characterisation of leukocyte surface antigens by monoclonal antibodies and other molecular studies have determined the cell lineages and blood leukocyte subsets implicated in the immune response, including cell adhesion molecules involved in cell trafficking. This review focusses on the current state of knowledge of porcine leukocyte differentiation and major histocompatibility complex (SLA) molecules. Examples of porcine particularities such as the double-positive T lymphocytes with the phenotype CD(4+)CD8(low) and CD(4-)CD8(low) alphabeta T cell subsets and the persistence of SLA class II after T-lymphocyte activation are illustrated, as well as the shared characteristics of the Artiodactyla group, such as the high proportion of gammadelta TcR (T cell receptor) T cells in blood and other lymphoid tissues. Furthermore, discrepancies between swine and humans, such as CD16 expression on dendritic cells and CD11b (wCD11R1) tissue distribution are outlined. The rapidly growing information should facilitate manipulation of the swine immune system towards improving disease control, and open new avenues for biomedical research using the pig as a model.
Collapse
|