1
|
Postneonatal Mortality and Liver Changes in Cloned Pigs Associated with Human Tumor Necrosis Factor Receptor I-Fc and Human Heme Oxygenase-1 Overexpression. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5276576. [PMID: 28503569 PMCID: PMC5414503 DOI: 10.1155/2017/5276576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 03/27/2017] [Indexed: 12/24/2022]
Abstract
Soluble human tumor necrosis factor (shTNFRI-Fc) and human heme oxygenase 1 (hHO-1) are key regulators for protection against oxidative and inflammatory injury for xenotransplantation. Somatic cells with more than 10 copy numbers of shTNFRI-Fc and hHO-1 were employed in somatic cell nuclear transfer to generate cloned pigs, thereby resulting in seven cloned piglets. However, produced piglets were all dead within 24 hours after birth. Obviously, postnatal death with liver apoptosis was reported in the higher copy number of shTNFRI-Fc and hHO-1 piglets. In liver, the transcript levels of ferritin heavy chain, light chain, transferrin, and inducible nitric oxide synthase were significantly highly expressed compared to those of lower copy number of shTNFRI-Fc and hHO-1 piglets (P < 0.05). Also, H2O2 contents were increased, and superoxide dismutase was significantly lower in the higher copy number of shTNFRI-Fc and hHO-1 piglets (P < 0.05). These results indicate that TNFRI-Fc and hHO-1 overexpression may apparently induce free iron in the liver and exert oxidative stress by enhancing reactive oxygen species production and block normal postneonatal liver metabolism.
Collapse
|
2
|
Lee HS, Lee JG, Yeom HJ, Chung YS, Kang B, Hurh S, Cho B, Park H, Hwang JI, Park JB, Ahn C, Kim SJ, Yang J. The Introduction of Human Heme Oxygenase-1 and Soluble Tumor Necrosis Factor-α Receptor Type I With Human IgG1 Fc in Porcine Islets Prolongs Islet Xenograft Survival in Humanized Mice. Am J Transplant 2016; 16:44-57. [PMID: 26430779 DOI: 10.1111/ajt.13467] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/05/2015] [Accepted: 07/22/2015] [Indexed: 02/06/2023]
Abstract
Apoptosis during engraftment and inflammation induce poor islet xenograft survival. We aimed to determine whether overexpression of human heme oxygenase-1 (HO-1) or soluble tumor necrosis factor-α receptor type I with human IgG1 Fc (sTNF-αR-Fc) in porcine islets could improve islet xenograft survival. Adult porcine islets were transduced with adenovirus containing human HO-1, sTNF-αR-Fc, sTNF-αR-Fc/HO-1 or green fluorescent protein (control). Humanized mice were generated by injecting human cord blood-derived CD34(+) stem cells into NOD-scid-IL-2Rγ(null) mice. Both HO-1 and sTNF-αR-Fc reduced islet apoptosis under in vitro hypoxia or cytokine stimuli and suppressed RANTES induction without compromising insulin secretion. Introduction of either gene into islets prolonged islet xenograft survival in pig-to-humanized mice transplantation. The sTNF-αR-Fc/HO-1 group showed the best glucose tolerance. Target genes were successfully expressed in islet xenografts. Perigraft infiltration of macrophages and T cells was suppressed with decreased expression of RANTES, tumor necrosis factor-α and IL-6 in treatment groups; however, frequency of pig-specific interferon-γ-producing T cells was not decreased, and humoral response was not significant in any group. Early apoptosis of islet cells was suppressed in the treatment groups. In conclusion, overexpression of HO-1 or sTNF-αR-Fc in porcine islets improved islet xenograft survival by suppressing both apoptosis and inflammation. HO-1 or sTNF-αR-Fc transgenic pigs have potential for islet xenotransplantation.
Collapse
Affiliation(s)
- H-S Lee
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - J-G Lee
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - H J Yeom
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Y S Chung
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - B Kang
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - S Hurh
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - B Cho
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - H Park
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea.,Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - J I Hwang
- Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - J B Park
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea.,Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - C Ahn
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Transplantation Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - S J Kim
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea.,Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - J Yang
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Transplantation Center, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
3
|
Study on characteristics of chemokine CXCL10 gene cloned from cDNA expression library of Ujumqin sheep. BIOMED RESEARCH INTERNATIONAL 2013; 2013:217942. [PMID: 24187661 PMCID: PMC3804364 DOI: 10.1155/2013/217942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 08/26/2013] [Indexed: 01/20/2023]
Abstract
Chemokines were a major regulator of body's inflammatory and immune responses. In this study, the cDNA fragment of chemokine CXC ligand 10 (CXCL10) was cloned from the Ujumqin sheep ear marginal tissue cDNA expression library; the CXCL10 gene had 103 amino acids and a molecular weight of 11.47 kDa, and it shared a high homology among cattle, sheep, and goat, while a low homology compared with mouse. The CXCL10 protein had 4 conservative cysteine residues, located in 28, 30, 55, and 72 sites. The expression pattern and intracellular distribution of recombinant CXCL10 proteins in Ujumqin sheep fibroblast cells showed that there were green fluorescence signals both in cytoplasm and nucleolus after 24 h of transfection, the number of positive cells was increased with time, the peak level of fluorescence signal was reached after 48 h of transfection and the transfection efficiency was 33.3%; there was a significant decrease in fluorescence intensity after 72 h of transfection. Expression of recombinant CXCL10 gene in Escherichia coli had a time- and temperature-dependency on the amount of protein expression, and a small quantity of inducer was needed.
Collapse
|
4
|
Cho B, Koo OJ, Hwang JI, Kim H, Lee EM, Hurh S, Park SJ, Ro H, Yang J, Surh CD, d'Apice AJ, Lee BC, Ahn C. Generation of Soluble Human Tumor Necrosis Factor-α Receptor 1-Fc Transgenic Pig. Transplantation 2011; 92:139-47. [DOI: 10.1097/tp.0b013e3182215e7e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
5
|
Affiliation(s)
- Hwajung Kim
- Transplantation Research Institute, Seoul National University Medical Research Center, Seoul, Korea
| | - Jaeseog Yang
- Transplantation Center Seoul National, University Hospital, Transplantation Research Institute, Seoul National University Medical Research Center, Seoul, Korea
| | - Curie Ahn
- Division of Nephrology, Transplantation Research Institute, Seoul National University Medical Research Center, Seoul, Korea
| |
Collapse
|
6
|
Enderlin M, Kleinmann EV, Struyf S, Buracchi C, Vecchi A, Kinscherf R, Kiessling F, Paschek S, Sozzani S, Rommelaere J, Cornelis JJ, Van Damme J, Dinsart C. TNF-alpha and the IFN-gamma-inducible protein 10 (IP-10/CXCL-10) delivered by parvoviral vectors act in synergy to induce antitumor effects in mouse glioblastoma. Cancer Gene Ther 2008; 16:149-60. [PMID: 18670452 DOI: 10.1038/cgt.2008.62] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Interferon-gamma-inducible protein 10 is a potent chemoattractant for natural killer cells and activated T lymphocytes. It also displays angiostatic properties and some antitumor activity. Tumor necrosis factor-alpha (TNF-alpha) is a powerful immunomodulating cytokine with demonstrated tumoricidal activity in various tumor models and the ability to induce strong immune responses. This prompted us to evaluate the antitumor effects of recombinant parvoviruses designed to deliver IP-10 or TNF-alpha into a glioblastoma. When Gl261 murine glioma cells were infected in vitro with an IP-10- or TNF-alpha-transducing parvoviral vector and were subcutaneously implanted in mice, tumor growth was significantly delayed. Complete tumor regression was observed when the glioma cells were coinfected with both the vectors, demonstrating synergistic antitumor activity. In an established in vivo glioma model, however, repeated simultaneous peritumoral injection of the IP-10- and TNF-alpha-delivering parvoviruses failed to improve the therapeutic effect as compared with the use of a single cytokine-delivering vector. In this tumor model, cytokine-mediated immunostimulation, rather than inhibition of vascularization, is likely responsible for the therapeutic efficacy.
Collapse
Affiliation(s)
- M Enderlin
- Deutsches Krebsforschungszentrum, Infection and Cancer Program, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|