1
|
Wang Y, Lai Y, Fan X, Zhao Y. Macrophage migration inhibitory factor is vital for inflammatory properties and survival of peripheral blood leukocytes via enhancing mitochondrial function in Ctenopharyngodon idellus. FISH & SHELLFISH IMMUNOLOGY 2022; 131:518-526. [PMID: 36272522 DOI: 10.1016/j.fsi.2022.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic protein implicated in a broad spectrum of inflammatory and proliferative disorders. The gene sequence of grass carp (Ctenopharyngodon idella) was identified and the expression level of it was regulated by cadmium exposure in our previous study. To further clarify the immune-regulatory activity of grass carp MIF, MIF was over-expressed and interfered in grass carp peripheral blood leukocytes via transfection of plasmids pcDNA3.1-MIF-EGFP and pLKO.1-shRNA-EGFP-puro, respectively. Subsequently, survival, phagocytic capacity, mitochondrial function and cytokine production of the transfected leukocytes were assayed. The results shown that grass carp MIF was necessary for leukocyte survival, because it enhanced leukocyte viability and inhibited cell apoptosis, while MIF interference disrupted the cell viability and induced leukocyte apoptosis. The effect might benefit from improved mitochondrial function as evidenced by increased ATP production, which was due to maintained mitochondrial trans-membrane potential. In addition, MIF is essential for neutral red uptake into leukocyte, and it provoked chemokine monocyte chemotactic protein-1 (MCP-1), pro-inflammatory cytokine tumor necrosis factor-alpha (TNFα), interleukin 1β (IL1β), interleukin 6 (IL6), interleukin 8 (IL8), and suppressed anti-inflammatory cytokine interleukin 10 (IL10) production. These results indicated that grass carp MIF played a vital role in regulating inflammatory properties and survival of peripheral blood leukocytes.
Collapse
Affiliation(s)
- Yilin Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province, College of Animal and Veterinary Science, Southwest Minzu University, Chengdu, 610041, PR China
| | - Yaling Lai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province, College of Animal and Veterinary Science, Southwest Minzu University, Chengdu, 610041, PR China
| | - Xianyang Fan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province, College of Animal and Veterinary Science, Southwest Minzu University, Chengdu, 610041, PR China
| | - Yanying Zhao
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province, College of Animal and Veterinary Science, Southwest Minzu University, Chengdu, 610041, PR China.
| |
Collapse
|
2
|
Zhang Z, Hu X, Diao Q, Zhang P, Wu Y, Cao Z, Zhou Y, Liu C, Sun Y. Macrophage migration inhibitory factor (MIF) of golden pompano (Trachinotus ovatus) is involved in the antibacterial immune response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 133:104445. [PMID: 35588935 DOI: 10.1016/j.dci.2022.104445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine with a unique structure involved in immune regulation and inflammation. In the present study, we identified a MIF from Trachinotus ovatus (golden pompano) and analyzed its function. TroMIF shares high homology (58.26%-94.78%) with the other known MIF sequences of vertebrates. TroMIF is most closely related to large yellow croaker (Larimichthys crocea). The expression of TroMIF was most abundant in the liver and head kidney, and was significantly up-regulated after Edwardsiella tarda infection. The subcellular localization of TroMIF was mostly distributed in the cytoplasm. In vitro results revealed that the recombinant protein rTroMIF could inhibit the migration of head kidney lymphocytes (HKLs) and macrophages (HKMs) and enhance the phagocytic activity of HKMs. As a pro-inflammatory cytokine, rTroMIF could increase the expression levels of some pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin 1-beta (IL-1β), IL-6, IL-8, and interferon-gamma (IFN-γ) and decrease the expression of IL-10. The rTroMIF was proved to have enzymatic redox activity in vitro. Furthermore, overexpression of TroMIF in the head kidney cell line of golden pompano could significantly enhance its ability to resist E. tarda infection from 1 h to 4 h. The knockdown of TroMIF expression induced a significant increase in the number of bacteria after E. tarda infection at 1, 2, and 4 hpi. Our results suggest that TroMIF is an essential effector of the innate immune system and plays a pivotal role in antibacterial immunity.
Collapse
Affiliation(s)
- Zhengshi Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Xiucong Hu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China
| | - Qianying Diao
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Panpan Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Ying Wu
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Chunsheng Liu
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China.
| |
Collapse
|
3
|
The sea bass Dicentrarchus labrax as a marine model species in immunology: Insights from basic and applied research. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
The cytokine MIF controls daily rhythms of symbiont nutrition in an animal-bacterial association. Proc Natl Acad Sci U S A 2020; 117:27578-27586. [PMID: 33067391 DOI: 10.1073/pnas.2016864117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The recent recognition that many symbioses exhibit daily rhythms has encouraged research into the partner dialogue that drives these biological oscillations. Here we characterized the pivotal role of the versatile cytokine macrophage migration inhibitory factor (MIF) in regulating a metabolic rhythm in the model light-organ symbiosis between Euprymna scolopes and Vibrio fischeri As the juvenile host matures, it develops complex daily rhythms characterized by profound changes in the association, from gene expression to behavior. One such rhythm is a diurnal shift in symbiont metabolism triggered by the periodic provision of a specific nutrient by the mature host: each night the symbionts catabolize chitin released from hemocytes (phagocytic immune cells) that traffic into the light-organ crypts, where the population of V. fischeri cells resides. Nocturnal migration of these macrophage-like cells, together with identification of an E. scolopes MIF (EsMIF) in the light-organ transcriptome, led us to ask whether EsMIF might be the gatekeeper controlling the periodic movement of the hemocytes. Western blots, ELISAs, and confocal immunocytochemistry showed EsMIF was at highest abundance in the light organ. Its concentration there was lowest at night, when hemocytes entered the crypts. EsMIF inhibited migration of isolated hemocytes, whereas exported bacterial products, including peptidoglycan derivatives and secreted chitin catabolites, induced migration. These results provide evidence that the nocturnal decrease in EsMIF concentration permits the hemocytes to be drawn into the crypts, delivering chitin. This nutritional function for a cytokine offers the basis for the diurnal rhythms underlying a dynamic symbiotic conversation.
Collapse
|
5
|
Wu Y, Yang D, Lin Y, Zhao Y. Identification and immunologic property of macrophage migration inhibitory factor (MIF) in grass carp (Ctenopharynogodon idella). FISH & SHELLFISH IMMUNOLOGY 2020; 104:489-496. [PMID: 32580004 DOI: 10.1016/j.fsi.2020.05.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine, plays an important regulatory role in the activation of T cells induced by mitogenic or antigenic stimuli. However, the immunologic property of MIF in freshwater fish is limitedly known by now. In the present study, MIF gene was identified in grass carp. Bioinformatics analysis revealed that the molecular weight of grass carp MIF protein was 12.377 kDa and it could also bind to CD74. MIF gene was predominantly expressed in immune tissues including spleen and head kidney, then liver, skin, gill, intestine and blood, while a relative low level expression in heart, brain, fat and red muscle. The predicted receptor and tissues distribution of MIF implied the immunologic activity of grass carp MIF. Then grass carp MIF antigen and the polyclonal antibodies against it were prepared. Using cadmium as an immunosuppressive agent, MIF expression in spleen and head kidney was depressed in a dose-dependent manner with cadmium consumption. On the same time, white blood cell count decrease displayed a similar pattern with MIF expression, which suggested a possible positive correlation between MIF and white blood cell count. Thereafter, MIF enhanced the viability of grass carp peripheral blood leukocytes and inhibited cell apoptosis with depressed reactive oxygen species production in vitro. In addition, recombinant grass carp MIF promoted tumor necrosis factor-alpha (TNF-α), interleukin 1β (IL1β) and interleukin 6 (IL6) secretion from peripheral blood leukocytes. These results indicated the immunologic property of grass carp MIF.
Collapse
Affiliation(s)
- Yinghuan Wu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, College of Life Science and Technology, Southwest Minzu University, Chengdu, 610041, PR China
| | - Danru Yang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, College of Life Science and Technology, Southwest Minzu University, Chengdu, 610041, PR China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, College of Life Science and Technology, Southwest Minzu University, Chengdu, 610041, PR China
| | - Yanying Zhao
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, College of Life Science and Technology, Southwest Minzu University, Chengdu, 610041, PR China.
| |
Collapse
|
6
|
Xu F, Shi YH, Chen J. Characterization and immunologic functions of the macrophage migration inhibitory factor from Japanese sea bass, Lateolabrax japonicus. FISH & SHELLFISH IMMUNOLOGY 2019; 86:947-955. [PMID: 30586634 DOI: 10.1016/j.fsi.2018.12.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/16/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a cytokine playing critical roles in inflammatory and immune responses. However, its functions have not been well studied in fish. In this study, we identified a MIF molecule from Japanese sea bass (Lateolabrax japonicus; LjMIF). Multiple sequence alignment showed that LjMIF has the typical structural features of MIFs. Phylogenetic tree analysis revealed that LjMIF is most closely related to the yellowfin tuna (Thunnus albacares), large yellow croaker (Larimichthys crocea), and red drum (Sciaenops ocellatus) homologs. Constitutive mRNA expression of LjMIF was detected in all tested tissues, with the highest level in the liver. Upon Vibro harveyi infection, LjMIF transcripts were altered in the tested tissues, including the liver, spleen, and head kidney. Subsequently, we prepared recombinant LjMIF (rLjMIF) and the corresponding antibody (anti-LjMIF). The in vitro study showed that rLjMIF inhibited the trafficking of Japanese sea bass monocytes/macrophages (MO/MΦ) and lymphocytes, but not of neutrophils, while anti-LjMIF had the opposite effect. rLjMIF also enhanced phagocytosis and intracellular killing of V. harveyi by MO/MΦ, while anti-LjMIF only inhibited phagocytosis by MO/MΦ. The in vivo study showed that rLjMIF aggravated the course of V. harveyi infection in Japanese sea bass, but anti-LjMIF increased the survival rate of the fish and decreased the bacterial burden. In conclusion, our observation revealed that LjMIF is closely involved in the immune responses of Japanese sea bass for combating V. harveyi infection.
Collapse
Affiliation(s)
- Feng Xu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Yu-Hong Shi
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
7
|
Sparkes A, De Baetselier P, Roelants K, De Trez C, Magez S, Van Ginderachter JA, Raes G, Bucala R, Stijlemans B. Reprint of: The non-mammalian MIF superfamily. Immunobiology 2017; 222:858-867. [PMID: 28552269 DOI: 10.1016/j.imbio.2017.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/03/2016] [Accepted: 10/10/2016] [Indexed: 01/31/2023]
Abstract
Macrophage migration inhibitory factor (MIF) was first described as a cytokine 50 years ago, and emerged in mammals as a pleiotropic protein with pro-inflammatory, chemotactic, and growth-promoting activities. In addition, MIF has gained substantial attention as a pivotal upstream mediator of innate and adaptive immune responses and with pathologic roles in several diseases. Of less importance in mammals is an intrinsic but non-physiologic enzymatic activity that points to MIF's evolution from an ancient defense molecule. Therefore, it is not surprising that mif-like genes also have been found across a range of different organisms including bacteria, plants, protozoa, helminths, molluscs, arthropods, fish, amphibians and birds. While Genebank analysis identifying mif-like genes across species is extensive, contained herein is an overview of the non-mammalian MIF-like proteins that have been most well studied experimentally. For many of these organisms, MIF contributes to an innate defense system or plays a role in development. For parasitic organisms however, MIF appears to function as a virulence factor aiding in the establishment or persistence of infection by modulating the host immune response. Consequently, a combined targeting of both parasitic and host MIF could lead to more effective treatment strategies for parasitic diseases of socioeconomic importance.
Collapse
Affiliation(s)
- Amanda Sparkes
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Patrick De Baetselier
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Kim Roelants
- Amphibian Evolution Lab, Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; VIB Structural Biology Research Center, Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; VIB Structural Biology Research Center, Brussels, Belgium; Laboratory for Biomedical Research, Ghent University Global Campus, Yeonsu-Gu, Incheon, South Korea
| | - Jo A Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Geert Raes
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Benoît Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB-UGent Center for Inflammation Research, Ghent, Belgium.
| |
Collapse
|
8
|
Sparkes A, De Baetselier P, Roelants K, De Trez C, Magez S, Van Ginderachter JA, Raes G, Bucala R, Stijlemans B. The non-mammalian MIF superfamily. Immunobiology 2017; 222:473-482. [PMID: 27780588 PMCID: PMC5293613 DOI: 10.1016/j.imbio.2016.10.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/03/2016] [Accepted: 10/10/2016] [Indexed: 01/09/2023]
Abstract
Macrophage migration inhibitory factor (MIF) was first described as a cytokine 50 years ago, and emerged in mammals as a pleiotropic protein with pro-inflammatory, chemotactic, and growth-promoting activities. In addition, MIF has gained substantial attention as a pivotal upstream mediator of innate and adaptive immune responses and with pathologic roles in several diseases. Of less importance in mammals is an intrinsic but non-physiologic enzymatic activity that points to MIF's evolution from an ancient defense molecule. Therefore, it is not surprising that mif-like genes also have been found across a range of different organisms including bacteria, plants, protozoa, helminths, molluscs, arthropods, fish, amphibians and birds. While Genebank analysis identifying mif-like genes across species is extensive, contained herein is an overview of the non-mammalian MIF-like proteins that have been most well studied experimentally. For many of these organisms, MIF contributes to an innate defense system or plays a role in development. For parasitic organisms however, MIF appears to function as a virulence factor aiding in the establishment or persistence of infection by modulating the host immune response. Consequently, a combined targeting of both parasitic and host MIF could lead to more effective treatment strategies for parasitic diseases of socioeconomic importance.
Collapse
Affiliation(s)
- Amanda Sparkes
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Gent, Belgium
| | - Patrick De Baetselier
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Gent, Belgium
| | - Kim Roelants
- Amphibian Evolution Lab, Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; VIB Structural Biology Research Center, Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; VIB Structural Biology Research Center, Brussels, Belgium; Laboratory for Biomedical Research, Ghent University Global Campus, Yeonsu-Gu, Incheon, South Korea
| | - Jo A Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Gent, Belgium
| | - Geert Raes
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Gent, Belgium
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Benoît Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Gent, Belgium.
| |
Collapse
|
9
|
Romero A, Novoa B, Figueras A. Cell mediated immune response of the Mediterranean sea urchin Paracentrotus lividus after PAMPs stimulation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 62:29-38. [PMID: 27113124 DOI: 10.1016/j.dci.2016.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 06/05/2023]
Abstract
The Mediterranean sea urchin (Paracentrotus lividus) is of great ecological and economic importance for the European aquaculture. Yet, most of the studies regarding echinoderm's immunological defense mechanisms reported so far have used the sea urchin Strongylocentrotus purpuratus as a model, and information on the immunological defense mechanisms of Paracentrotus lividus and other sea urchins, is scarce. To remedy this gap in information, in this study, flow cytometry was used to evaluate several cellular immune mechanisms, such as phagocytosis, cell cooperation, and ROS production in P. lividus coelomocytes after PAMP stimulation. Two cell populations were described. Of the two, the amoeboid-phagocytes were responsible for the phagocytosis and ROS production. Cooperation between amoeboid-phagocytes and non-adherent cells resulted in an increased phagocytic response. Stimulation with several PAMPs modified the phagocytic activity and the production of ROS. The premise that the coelomocytes were activated by the bacterial components was confirmed by the expression levels of two cell mediated immune genes: LPS-Induced TNF-alpha Factor (LITAF) and macrophage migration inhibitory factor (MIF). These results have helped us understand the cellular immune mechanisms in P. lividus and their modulation after PAMP stimulation.
Collapse
Affiliation(s)
- A Romero
- Marine Research Institute, CSIC, Eduardo Cabello 6, 36208 Vigo, Spain.
| | - B Novoa
- Marine Research Institute, CSIC, Eduardo Cabello 6, 36208 Vigo, Spain.
| | - A Figueras
- Marine Research Institute, CSIC, Eduardo Cabello 6, 36208 Vigo, Spain.
| |
Collapse
|
10
|
Picchietti S, Abelli L, Guerra L, Randelli E, Proietti Serafini F, Belardinelli MC, Buonocore F, Bernini C, Fausto AM, Scapigliati G. MHC II-β chain gene expression studies define the regional organization of the thymus in the developing bony fish Dicentrarchus labrax (L.). FISH & SHELLFISH IMMUNOLOGY 2015; 42:483-493. [PMID: 25475077 DOI: 10.1016/j.fsi.2014.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/06/2014] [Accepted: 11/12/2014] [Indexed: 06/04/2023]
Abstract
MHC II-β chain gene transcripts were quantified by real-time PCR and localised by in situ hybridization in the developing thymus of the teleost Dicentrarchus labrax, regarding the specialization of the thymic compartments. MHC II-β expression significantly rose when the first lymphoid colonization of the thymus occurred, thereafter increased further when the organ progressively developed cortex and medulla regions. The evolving patterns of MHC II-β expression provided anatomical insights into some mechanisms of thymocyte selection. Among the stromal cells transcribing MHC II-β, scattered cortical epithelial cells appeared likely involved in the positive selection, while those abundant in the cortico-medullary border and medulla in the negative selection. These latter most represent dendritic cells, based on typical localization and phenotype. These findings provide further proofs that efficient mechanisms leading to maturation of naïve T cells are operative in teleosts, strongly reminiscent of the models conserved in more evolved gnathostomes.
Collapse
Affiliation(s)
- S Picchietti
- Dep. for Innovation in Biological, Agro-food and Forest Systems, Tuscia University, Viterbo, Italy
| | - L Abelli
- Dep. Life Sciences & Biotechnology, University of Ferrara, Via Borsari 46, Ferrara 441241, Italy.
| | - L Guerra
- Dep. for Innovation in Biological, Agro-food and Forest Systems, Tuscia University, Viterbo, Italy
| | - E Randelli
- Dep. for Innovation in Biological, Agro-food and Forest Systems, Tuscia University, Viterbo, Italy
| | - F Proietti Serafini
- Dep. for Innovation in Biological, Agro-food and Forest Systems, Tuscia University, Viterbo, Italy
| | - M C Belardinelli
- Dep. for Innovation in Biological, Agro-food and Forest Systems, Tuscia University, Viterbo, Italy
| | - F Buonocore
- Dep. for Innovation in Biological, Agro-food and Forest Systems, Tuscia University, Viterbo, Italy
| | - C Bernini
- Dep. for Innovation in Biological, Agro-food and Forest Systems, Tuscia University, Viterbo, Italy
| | - A M Fausto
- Dep. for Innovation in Biological, Agro-food and Forest Systems, Tuscia University, Viterbo, Italy
| | - G Scapigliati
- Dep. for Innovation in Biological, Agro-food and Forest Systems, Tuscia University, Viterbo, Italy
| |
Collapse
|
11
|
Fang Y, Jiang K, Zhang F, Sun M, Hu J, Ma L. Macrophage migration inhibitory factor in mud crab Scylla paramamosain: Molecular cloning, expression profiles in various tissues and under Vibrio challenge. Mol Biol 2013. [DOI: 10.1134/s0026893313040031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Oh M, Kasthuri SR, Wan Q, Bathige SDNK, Whang I, Lim BS, Jung HB, Oh MJ, Jung SJ, Kim SY, Lee J. Characterization of MIF family proteins: MIF and DDT from rock bream, Oplegnathus fasciatus. FISH & SHELLFISH IMMUNOLOGY 2013; 35:458-468. [PMID: 23688964 DOI: 10.1016/j.fsi.2013.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 04/05/2013] [Accepted: 05/05/2013] [Indexed: 06/02/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic molecule playing vital roles in various signaling cascades, including cell proliferation, and activation of immune responses against infections. It is well known as a pivotal regulator of innate immunity. In this study, we have rescued and characterized two members of the MIF family, macrophage migration inhibitory factor (OfMIF) and D-Dopachrome tautomerase (OfDDT) from rock bream, Oplegnathus fasciatus. The deduced OfMIF and OfDDT protein sequences revealed the presence of the catalytic oxidoreductase (CXXC), motif. They also possessed highly conserved proline (P(2)) and lysine residues (K(33)), responsible for their isomerase and tautomerase functions. Rock bream MIF and DDT homologues shared higher identity with fish homologues and also with mammals and occupied a distinct position in the phylogenetic tree, depicting their evolutionary conservation. The spatial expression analysis revealed the highest expression of both OfMIF and OfDDT in liver, while portraying constitutive expression in other tissues. The recombinant proteins purified using the Escherichia coli system revealed potent oxidoreductase activity against insulin with both dithiothreitol and glutathione as reducing agents. Stimulation of rock bream head kidney cells with recombinant OfMIF and OfDDT proteins induced the expression of proinflammatory cytokines like tumor necrosis factor alpha (TNF-α), interleukin-8 (IL-8) and interleukin-1β (IL-1β). These results together suggest their involvement in rock bream immune defense and this study on the novel MIF family member DDT from rock bream will pave the way for further studies of this homologue in other teleosts and delineate its multiple functions.
Collapse
Affiliation(s)
- Minyoung Oh
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Qiu R, Li J, Xiao ZZ, Sun L. Macrophage migration inhibitory factor of Sciaenops ocellatus regulates immune cell trafficking and is involved in pathogen-induced immune response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 40:232-239. [PMID: 23545285 DOI: 10.1016/j.dci.2013.03.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/18/2013] [Accepted: 03/22/2013] [Indexed: 06/02/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a multi-functional cytokine involved in immunoregulation and inflammation. In this study, we examined the expression and biological function of a MIF, SoMIF, from red drum Sciaenops ocellatus. SoMIF is composed of 115 residues and shares 85-99% overall sequence identities with the MIF of a number of teleost. SoMIF expression was detected in a wide range of tissues and upregulated by bacterial and viral infection in a time-dependent manner. In head kidney (HK) leukocytes, pathogen infection induced SoMIF expression, and the expressed SoMIF was secreted into the extracellular milieu. Recombinant SoMIF (rSoMIF) purified from Escherichia coli inhibited the migration of both HK monocytes and lymphocytes, and this inhibitory effect was abolished by the presence of anti-rSoMIF antibodies. When rSoMIF was administered into red drum, it stimulated the production of reactive oxygen species in HK monocytes both in the presence and absence of pathogen infection. In vivo infection study showed that compared to untreated fish, fish pre-treated with rSoMIF before bacterial infection exhibited significantly lower bacterial loads in blood, kidney, spleen, and liver. Taken together, these results indicate that SoMIF is a secreted protein that regulates immune cell trafficking and is involved in pathogen-induced immune response.
Collapse
Affiliation(s)
- Reng Qiu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Graduate University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | | | | | | |
Collapse
|
14
|
CD3γ/δ in sea bass (Dicentrarchus labrax): Molecular characterization and expression analysis. RESULTS IN IMMUNOLOGY 2011; 1:31-5. [PMID: 24371550 DOI: 10.1016/j.rinim.2011.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 08/25/2011] [Accepted: 08/25/2011] [Indexed: 11/24/2022]
Abstract
The CD3 complex is the common marker on the surface of both αβ and γδ T cells and is essential for formation of the T-cell receptor complex and for T-cell activation. In this paper, we report the gene cloning and molecular characterization of a CD3γ/δ homologue in sea bass (Dicentrarchus labrax), the analysis of transcription levels in lymphoid and non-lymphoid organs and the gene regulation after in vitro stimulation with LPS and PHA. Four cysteine residues in the extracellular domain, involved in the constitution of immunoglobulin-like domain, are present in sea bass CD3γ/δ sequence and they are conserved both in number and position from mammals to teleost sequences. Similar to other known CD3γ/δs, in sea bass CD3γ/δ there is also a conserved immunoreceptor tyrosine-based activation ITAM motif that could be responsible for its individual signal transduction capacity. The real time RT-PCR basal analysis shows the highest level of CD3γ/δ mRNA in thymus, followed by peripheral blood leucocytes, spleen, gills, gut, liver, head kidney, brain and muscle. The expression analysis under stimuli condition reveals a significant decrease of CD3γ/δ expression after LPS stimulation and a significant increase after PHA-L stimulation, in agreement with mammals results. In conclusion, these data allow us to affirm that sea bass CD3γ/δ can be used as a T cell marker and will help in adding new insight on the immune response mechanisms of sea bass.
Collapse
|