1
|
Pathogenesis and inflammatory response in experimental caprine mastitis due to Staphylococcus chromogenes. Microb Pathog 2018; 116:146-152. [PMID: 29360565 DOI: 10.1016/j.micpath.2018.01.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 01/16/2018] [Accepted: 01/19/2018] [Indexed: 01/12/2023]
Abstract
Coagulase-negative staphylococci (CNS) are the most frequently isolated bacteria in cases of subclinical mastitis in dairy cows. CNS species may differ in their pathogenicity, but very little is known about their virulence factors or their immune response in intramammary infections. To our knowledge, no experimental studies into the mastitis pathogenesis caused by CNS have been described in lactating goats. The aim of this study was to induce an experimentally Staphylococcus chromogenes mastitis in lactating goats aimed at verifying if the model can be used to evaluate the inflammatory response, the dynamics of infection and the pathological findings within the first hours of intramammary inoculation. Six Saanen goats in mid-lactation were inoculated with 1 × 107 colony forming units of S. chromogenes. Bacterial growth peaked in milk from the challenged right halves of the mammary glands (RMG) at 4 h post inoculation (PI). Shedding of viable bacteria showed a marked decrease at 12 h PI. An increase in mean somatic cell counts was observed in the milk samples from 8 h PI onwards. Mild clinical signs were evoked by intramammary inoculation. Staphylococcus chromogenes could be isolated in tissue from all RMG. Histological examination of specimens of the RMG and lymph nodes of the goats showed an increased inflammatory response throughout the experiment with respect to control halves. In conclusion, the experimental inoculation of S. chromogenes in lactating goats is capable of eliciting an inflammatory response and capable of causing pathological changes. This research represents a preliminary study for a better knowledge of the mastitis pathogenesis caused by S. chromogenes.
Collapse
|
2
|
Eriksson S, Jonas E, Rydhmer L, Röcklinsberg H. Invited review: Breeding and ethical perspectives on genetically modified and genome edited cattle. J Dairy Sci 2017; 101:1-17. [PMID: 29102147 DOI: 10.3168/jds.2017-12962] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/29/2017] [Indexed: 12/12/2022]
Abstract
The hot topic of genetic modification and genome editing is sometimes presented as a rapid solution to various problems in the field of animal breeding and genetics. These technologies hold potential for future use in agriculture but we need to be aware of difficulties in large-scale application and integration in breeding schemes. In this review, we discuss applications of both classical genetic modifications (GM) using vectors and genome editing in dairy cattle breeding. We use an interdisciplinary approach considering both ethical and animal breeding perspectives. Decisions on how to make use of these techniques need to be made based not only on what is possible, but on what is reasonable to do. Principles of animal integrity, naturalness, risk perception, and animal welfare issues are examples of ethically relevant factors to consider. These factors also influence public perception and decisions about regulations by authorities. We need to acknowledge that we lack complete understanding of the genetic background of complex traits. It may be difficult, therefore, to predict the full effect of certain modifications in large-scale breeding programs. We present 2 potential applications: genome editing to dispense with dehorning, and insertion of human genes in bovine genomes to improve udder health as an example of classical GM. Both of these cases could be seen as beneficial for animal welfare but they differ in other aspects. In the former case, a genetic variant already present within the species is introduced, whereas in the latter case, transgenic animals are generated-this difference may influence how society regards the applications. We underline that the use of GM, as well as genome editing, of farm animals such as cattle is not independent of the context, and should be considered as part of an entire process, including, for example, the assisted reproduction technology that needs to be used. We propose that breeding organizations and breeding companies should take an active role in ethical discussions about the use of these techniques and thereby signal to society that these questions are being responsibly addressed.
Collapse
Affiliation(s)
- S Eriksson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden.
| | - E Jonas
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - L Rydhmer
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - H Röcklinsberg
- Department of Animal Environment and Health, 75007 Uppsala, Sweden
| |
Collapse
|
3
|
Sharma N, Huynh DL, Kim SW, Ghosh M, Sodhi SS, Singh AK, Kim NE, Lee SJ, Hussain K, Oh SJ, Jeong DK. A PiggyBac mediated approach for lactoferricin gene transfer in bovine mammary epithelial stem cells for management of bovine mastitis. Oncotarget 2017; 8:104272-104285. [PMID: 29262639 PMCID: PMC5732805 DOI: 10.18632/oncotarget.22210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/21/2017] [Indexed: 12/31/2022] Open
Abstract
The antibacterial and anti-inflammatory properties of lactoferricin have been ascribed to its ability to sequester essential iron. The objective of the study was to clone bovine lactoferricin (LFcinB) gene into PiggyBac Transposon vector, expression study in the bovine mammary epithelial stem cells (bMESCs) and also to determine the antimicrobial property of recombinant LFcinB against bovine mastitis-causing organisms. The PiggyBac-LFcinB was transfected into bMESCs by electroporation and a three fold of LFcinB secretion was observed in the transfected bMESCs medium by ELISA assay. Furthermore, the assessment of antimicrobial activity against mastitis causing pathogens Staphylococcus aureus and Escherichia coli demonstrated convincing evidence to prove strong antibacterial activity of LFcinB with 14.0±1.0 mm and 18.0±1.5 mm zone of inhibition against both organisms, respectively. The present study provides the convincing evidence to suggest the potential of PiggyBac transposon system to transfer antibacterial peptide into bMESCs or cow mammary gland and also pave the way to use bovine mammary gland as the bioreactors. Simultaneously, it also suggest toward commercial utilization of LFcinB bioreactor system in pharmaceutical industry.
Collapse
Affiliation(s)
- Neelesh Sharma
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea.,Division of Veterinary Medicine, Faculty of Veterinary Science & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Jammu, India
| | - Do Luong Huynh
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Sung Woo Kim
- Animal Genetic Resources Station, National Institute of Animal Science, Rural Development Administration, Namwon, Republic of Korea
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Simrinder Singh Sodhi
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Amit Kumar Singh
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Nam Eun Kim
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Sung Jin Lee
- Department of Animal Biotechnology, College of Animal Bioscience and Technology, Kangwon National University, Chuncheon, Republic of Korea
| | - Kafil Hussain
- Division of Veterinary Medicine, Faculty of Veterinary Science & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Jammu, India
| | - Sung Jong Oh
- National Institute of Animal Science, Wanju-gun, Republic of Korea
| | - Dong Kee Jeong
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
4
|
Cooper CA, Maga EA, Murray JD. Production of human lactoferrin and lysozyme in the milk of transgenic dairy animals: past, present, and future. Transgenic Res 2015; 24:605-14. [PMID: 26059245 DOI: 10.1007/s11248-015-9885-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 06/03/2015] [Indexed: 12/29/2022]
Abstract
Genetic engineering, which was first developed in the 1980s, allows for specific additions to animals' genomes that are not possible through conventional breeding. Using genetic engineering to improve agricultural animals was first suggested when the technology was in the early stages of development by Palmiter et al. (Nature 300:611-615, 1982). One of the first agricultural applications identified was generating transgenic dairy animals that could produce altered or novel proteins in their milk. Human milk contains high levels of antimicrobial proteins that are found in low concentrations in the milk of ruminants, including the antimicrobial proteins lactoferrin and lysozyme. Lactoferrin and lysozyme are both part of the innate immune system and are secreted in tears, mucus, and throughout the gastrointestinal (GI) tract. Due to their antimicrobial properties and abundance in human milk, multiple lines of transgenic dairy animals that produce either human lactoferrin or human lysozyme have been developed. The focus of this review is to catalogue the different lines of genetically engineered dairy animals that produce either recombinant lactoferrin or lysozyme that have been generated over the years as well as compare the wealth of research that has been done on the in vitro and in vivo effects of the milk they produce. While recent advances including the development of CRISPRs and TALENs have removed many of the technical barriers to predictable and efficient genetic engineering in agricultural species, there are still many political and regulatory hurdles before genetic engineering can be used in agriculture. It is important to consider the substantial amount of work that has been done thus far on well established lines of genetically engineered animals evaluating both the animals themselves and the products they yield to identify the most effective path forward for future research and acceptance of this technology.
Collapse
Affiliation(s)
- Caitlin A Cooper
- Department of Animal Science, University of California-Davis, 1 Shields Ave, Davis, CA, USA,
| | | | | |
Collapse
|
5
|
Pawlik A, Sender G, Sobczyńska M, Korwin-Kossakowska A, Lassa H, Oprządek J. Lactoferrin gene variants, their expression in the udder and mastitis susceptibility in dairy cattle. ANIMAL PRODUCTION SCIENCE 2015. [DOI: 10.1071/an13389] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Lactoferrin gene (LF) is regarded as one of the potential markers of mastitis susceptibility/resistance in dairy cattle. The study’s aim was therefore, to investigate the feasibility of two single nucleotide polymorphisms (SNP), placed in the 5′-flanking region and 3′-untranslated region of the LF gene, to serve as mastitis markers. The associations between these SNP and the expression of LF, both on mRNA and protein level, were estimated in the milk of Polish Holstein-Friesian cows. The relationships between polymorphisms and cows’ estimated breeding values (EBV) for somatic cell count were also calculated. It was shown that both polymorphisms have a significant impact on lactoferrin content in milk, and that LF+32 SNP is associated with the cow’s EBV for somatic cell count. No association between SNP chosen for the study and lactoferrin mRNA abundance in milk somatic cells was observed. We propose LF+32 SNP for a molecular marker of mastitis resistance in dairy cows.
Collapse
|
6
|
Laible G, Wei J, Wagner S. Improving livestock for agriculture - technological progress from random transgenesis to precision genome editing heralds a new era. Biotechnol J 2014; 10:109-20. [DOI: 10.1002/biot.201400193] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/04/2014] [Accepted: 11/24/2014] [Indexed: 12/17/2022]
|