1
|
Development of an inhibiting antibody against equine interleukin 5 to treat insect bite hypersensitivity of horses. Sci Rep 2023; 13:4029. [PMID: 36899044 PMCID: PMC10000358 DOI: 10.1038/s41598-023-31173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Insect bite hypersensitivity (IBH) is the most common allergic skin disease of horses. It is caused by insect bites of the Culicoides spp. which mediate a type I/IVb allergy with strong involvement of eosinophil cells. No specific treatment option is available so far. One concept could be the use of a therapeutic antibody targeting equine interleukin 5, the main activator and regulator of eosinophils. Therefore, antibodies were selected by phage display using the naïve human antibody gene libraries HAL9/10, tested in a cellular in vitro inhibition assay and subjected to an in vitro affinity maturation. In total, 28 antibodies were selected by phage display out of which eleven have been found to be inhibiting in the final format as chimeric immunoglobulin G with equine constant domains. The two most promising candidates were further improved by in vitro affinity maturation up to factor 2.5 regarding their binding activity and up to factor 2.0 regarding their inhibition effect. The final antibody named NOL226-2-D10 showed a strong inhibition of the interleukin 5 binding to its receptor (IC50 = 4 nM). Furthermore, a nanomolar binding activity (EC50 = 8.8 nM), stable behavior and satisfactory producibility were demonstrated. This antibody is an excellent candidate for in vivo studies for the treatment of equine IBH.
Collapse
|
2
|
Manso TC, Groenner-Penna M, Minozzo JC, Antunes BC, Ippolito GC, Molina F, Felicori LF. Next-generation sequencing reveals new insights about gene usage and CDR-H3 composition in the horse antibody repertoire. Mol Immunol 2018; 105:251-259. [PMID: 30562645 DOI: 10.1016/j.molimm.2018.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/11/2018] [Accepted: 11/30/2018] [Indexed: 12/26/2022]
Abstract
Horse serum antibodies have been used for greater than a century for the treatment and prophylaxis of infectious diseases and envenomations. Little is known, however, about the immunogenetic diversity that produces horse serum antibodies. Here, we employed next-generation sequencing for a first-in-kind comprehensive analysis of the equine B-cell repertoire. Nearly 45,000 and 30,000 clonotypes were obtained for the heavy-chain (IGH) and lambda light-chain (IGL) loci, respectively. We observed skewed use of the common subgroups IGHV2 (92.49%) and IGLV8 (82.50%), consistent with previous reports, but also novel use of the rare genes IGHV6S1 and IGLV4S2. CDR-H3 amino acid composition revealed different amino acid patterns at positions 106 and 116 compared to human, rabbit, and mouse, suggesting that an extended conformation predominates among horse CDR-H3 loops. Our analysis provides new insights regarding the mechanisms employed to generate antibody diversity in the horse, and could be applicable to the optimized design of synthetic antibodies intended for future therapeutic use.
Collapse
Affiliation(s)
- Taciana Conceição Manso
- Laboratory of Synthetic Biology and Biomimetics, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas - ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Michele Groenner-Penna
- Laboratory of Synthetic Biology and Biomimetics, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas - ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - João Carlos Minozzo
- Production and Research Centre of Immunobiological Products, Department of Health of the State of Paraná, Piraquara 83302-200, Brazil
| | - Bruno Cesar Antunes
- Production and Research Centre of Immunobiological Products, Department of Health of the State of Paraná, Piraquara 83302-200, Brazil
| | - Gregory C Ippolito
- Department of Molecular Biosciences, The University of Texas at Austin, 100 E. 24th Street, Stop A5000, Austin, TX, 78712, USA
| | | | - Liza F Felicori
- Laboratory of Synthetic Biology and Biomimetics, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas - ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
3
|
Transcriptome analysis of immune genes in peripheral blood mononuclear cells of young foals and adult horses. PLoS One 2018; 13:e0202646. [PMID: 30183726 PMCID: PMC6124769 DOI: 10.1371/journal.pone.0202646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 08/07/2018] [Indexed: 12/14/2022] Open
Abstract
During the neonatal period, the ability to generate immune effector and memory responses to vaccines or pathogens is often questioned. This study was undertaken to obtain a global view of the natural differences in the expression of immune genes early in life. Our hypothesis was that transcriptome analyses of peripheral blood mononuclear cells (PBMCs) of foals (on day 1 and day 42 after birth) and adult horses would show differential gene expression profiles that characterize natural immune processes. Gene ontology enrichment analysis provided assessment of biological processes affected by age, and a list of 897 genes with ≥2 fold higher (p<0.01) expression in day 42 when compared to day 1 foal samples. Up-regulated genes included B cell and T cell receptor diversity genes; DNA replication enzymes; natural killer cell receptors; granzyme B and perforin; complement receptors; immunomodulatory receptors; cell adhesion molecules; and cytokines/chemokines and their receptors. The list of 1,383 genes that had higher (p<0.01) expression on day 1 when compared to day 42 foal samples was populated by genes with roles in innate immunity such as antimicrobial proteins; pathogen recognition receptors; cytokines/chemokines and their receptors; cell adhesion molecules; co-stimulatory molecules; and T cell receptor delta chain. Within the 742 genes with increased expression between day 42 foal and adult samples, B cell immunity was the main biological process (p = 2.4E-04). Novel data on markedly low (p<0.0001) TLR3 gene expression, and high (p≤0.01) expression of IL27, IL13RA1, IREM-1, SIRL-1, and SIRPα on day 1 compared to day 42 foal samples point out potential mechanisms of increased susceptibility to pathogens in early life. The results portray a progression from innate immune gene expression predominance early in life to adaptive immune gene expression increasing with age with a putative overlay of immune suppressing genes in the neonatal phase. These results provide insight to the unique attributes of the equine neonatal and young immune system, and offer many avenues of future investigation.
Collapse
|
4
|
Martin J, Ponstingl H, Lefranc MP, Archer J, Sargan D, Bradley A. Comprehensive annotation and evolutionary insights into the canine (Canis lupus familiaris) antigen receptor loci. Immunogenetics 2017; 70:223-236. [PMID: 28924718 PMCID: PMC5871656 DOI: 10.1007/s00251-017-1028-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/12/2017] [Indexed: 12/11/2022]
Abstract
Dogs are an excellent model for human disease. For example, the treatment of canine lymphoma has been predictive of the human response to that treatment. However, an incomplete picture of canine (Canis lupus familiaris) immunoglobulin (IG) and T cell receptor (TR)-or antigen receptor (AR)-gene loci has restricted their utility. This work advances the annotation of the canine AR loci and looks into breed-specific features of the loci. Bioinformatic analysis of unbiased RNA sequence data was used to complete the annotation of the canine AR genes. This annotation was used to query 107 whole genome sequences from 19 breeds and identified over 5500 alleles across the 550 genes of the seven AR loci: the IG heavy, kappa, and lambda loci; and the TR alpha, beta, gamma, and delta loci. Of note was the discovery that half of the IGK variable (V) genes were located downstream of, and inverted with respect to, the rest of the locus. Analysis of the germline sequences of all the AR V genes identified greater conservation between dog and human than mouse with either. This work brings our understanding of the genetic diversity and expression of AR in dogs to the same completeness as that of mice and men, making it the third species to have all AR loci comprehensively and accurately annotated. The large number of germline sequences serves as a reference for future studies, and has allowed statistically powerful conclusions to be drawn on the pressures that have shaped these loci.
Collapse
Affiliation(s)
- Jolyon Martin
- Wellcome Trust Sanger Institute, Hinxton, UK.
- University of Cambridge, Cambridge, UK.
| | | | | | | | | | | |
Collapse
|
5
|
Mahmoud M, Yin T, Brügemann K, König S. Phenotypic, genetic, and single nucleotide polymorphism marker associations between calf diseases and subsequent performance and disease occurrences of first-lactation German Holstein cows. J Dairy Sci 2017; 100:2017-2031. [DOI: 10.3168/jds.2016-11767] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/13/2016] [Indexed: 12/28/2022]
|
6
|
Prieto JMB, Tallmadge RL, Felippe MJB. Developmental expression of B cell molecules in equine lymphoid tissues. Vet Immunol Immunopathol 2016; 183:60-71. [PMID: 28063478 DOI: 10.1016/j.vetimm.2016.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/23/2016] [Accepted: 12/12/2016] [Indexed: 01/01/2023]
Abstract
Identification and classification of B cell subpopulations has been shown to be challenging and inconsistent among different species. Our study tested aspects of ontogeny, phenotype, tissue distribution, and function of equine CD5hi B cells, which represented a greater proportion of B cells early in development and in the peritoneal cavity. CD5hi and CD5lo B cells differentially expressed B cell markers (CD2, CD21, IgM) measured using flow cytometry, but similar mRNA expression of signature genes (DGKA, FGL2, PAX5, IGHM, IL10) measured using quantitative RT-PCR. Sequencing lambda light chain segments revealed that CD5hi B cells generated diverse immunoglobulin repertoires, and more frequently bound to fluorescence-labeled phosphorylcholine. This study shows developmental characteristics and tissue distribution of a newly described subpopulation of B cells in the horse.
Collapse
Affiliation(s)
- J M B Prieto
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | - R L Tallmadge
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | - M J B Felippe
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
7
|
Battista JM, Tallmadge RL, Stokol T, Felippe MJB. Hematopoiesis in the equine fetal liver suggests immune preparedness. Immunogenetics 2014; 66:635-49. [PMID: 25179685 PMCID: PMC4198492 DOI: 10.1007/s00251-014-0799-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/19/2014] [Indexed: 01/26/2023]
Abstract
We investigated how the equine fetus prepares its pre-immune humoral repertoire for an imminent exposure to pathogens in the neonatal period, particularly how the primary hematopoietic organs are equipped to support B cell hematopoiesis and immunoglobulin (Ig) diversity. We demonstrated that the liver and the bone marrow at approximately 100 days of gestation (DG) are active sites of hematopoiesis based on the expression of signature messenger RNA (mRNA) (c-KIT, CD34, IL7R, CXCL12, IRF8, PU.1, PAX5, NOTCH1, GATA1, CEBPA) and protein markers (CD34, CD19, IgM, CD3, CD4, CD5, CD8, CD11b, CD172A) of hematopoietic development and leukocyte differentiation molecules, respectively. To verify Ig diversity achieved during the production of B cells, V(D)J segments were sequenced in primary lymphoid organs of the equine fetus and adult horse, revealing that similar heavy chain VDJ segments and CDR3 lengths were most frequently used independent of life stage. In contrast, different lambda light chain segments were predominant in equine fetal compared to adult stage, and surprisingly, the fetus had less restricted use of variable gene segments to construct the lambda chain. Fetal Igs also contained elements of sequence diversity, albeit to a smaller degree than that of the adult horse. Our data suggest that the B cells produced in the liver and bone marrow of the equine fetus generate a wide repertoire of pre-immune Igs for protection, and the more diverse use of different lambda variable gene segments in fetal life may provide the neonate an opportunity to respond to a wider range of antigens at birth.
Collapse
Affiliation(s)
- JM Battista
- Equine Immunology Lab, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA,
| | - RL Tallmadge
- Equine Immunology Lab, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA,
| | - T Stokol
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA,
| | - MJB Felippe
- Equine Immunology Lab, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
8
|
Tallmadge RL, Tseng CT, Felippe MJB. Diversity of immunoglobulin lambda light chain gene usage over developmental stages in the horse. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:171-179. [PMID: 24726757 PMCID: PMC4107094 DOI: 10.1016/j.dci.2014.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 06/03/2023]
Abstract
To further studies of neonatal immune responses to pathogens and vaccination, we investigated the dynamics of B lymphocyte development and immunoglobulin (Ig) gene diversity. Previously we demonstrated that equine fetal Ig VDJ sequences exhibit combinatorial and junctional diversity levels comparable to those of adult Ig VDJ sequences. Herein, RACE clones from fetal, neonatal, foal, and adult lymphoid tissue were assessed for Ig lambda light chain combinatorial, junctional, and sequence diversity. Remarkably, more lambda variable genes (IGLV) were used during fetal life than later stages and IGLV gene usage differed significantly with time, in contrast to the Ig heavy chain. Junctional diversity measured by CDR3L length was constant over time. Comparison of Ig lambda transcripts to germline revealed significant increases in nucleotide diversity over time, even during fetal life. These results suggest that the Ig lambda light chain provides an additional dimension of diversity to the equine Ig repertoire.
Collapse
Affiliation(s)
- Rebecca L Tallmadge
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States.
| | - Chia T Tseng
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| | - M Julia B Felippe
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| |
Collapse
|