1
|
Cangiano LR, Lamers K, Olmeda MF, Villot C, Hodgins DC, Mallard BA, Steele MA. Developmental adaptations of γδ T cells and B cells in blood and intestinal mucosa from birth until weaning in Holstein bull calves. J Dairy Sci 2024; 107:1734-1750. [PMID: 37806632 DOI: 10.3168/jds.2023-23943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023]
Abstract
This study aimed to characterize the development of systemic and colon tissue resident B and γδ T cells in newborn calves from birth until weaning. At birth, calves have limited capacity to initiate immune responses, and the immune system gradually matures over time. Gamma delta (γδ) T cells are an important lymphocyte subset in neonatal calves that confer protection and promote immune tolerance. A total of 36 newborn calves were enrolled in a longitudinal study to characterize how systemic and colon tissue resident B and γδ T cells develop from birth until weaning. Blood and colon biopsy samples were collected on d 2, 28, and 42 to determine the proportions of various B and γδ T cell subsets by flow cytometry. We classified γδ T cells into different functional subsets according to the level of expression intensity of the coreceptors WC1.1 (effector function) and WC1.2 (regulatory function). Furthermore, naive B cells were classified based on the expression IgM receptor, and activation state was determined based on expression of CD21 and CD32, 2 receptors with opposing signals involved in B cell activation in early life. Additional colon biopsy samples were used for 16S sequencing, and microbial diversity data are reported. At birth, γδ T cells were the most abundant lymphocyte population in blood, accounting for 58.5% of the lymphocyte pool, after which the proportions of these cells declined to 38.2% after weaning. The proportion of γδ T cells expressing WC1.1 decreased by 50% from d 2 to d 28, whereas no change was observed in the expression of WC1.2. In the colon, there was a 50% increase of γδ T cells after weaning and the proportion of WC1.2+ γδ T cells doubled from d 28 to 42. The proportion of IgM+ B lymphocytes in blood increased from 23.6% at birth to 30% after weaning, were the proportion of B cells expressing CD21 increased by 25%, while the proportion of B cells expressing CD32 decreased by 30%. While no changes were observed for the overall proportion of IgM+ B lymphocytes in the colon, there was a 6-fold increase in the proportion of CD21+ B cells from pre- (d 28) to postweaning (d 42). Microbial diversity increased from d 2 of life to 28 and declined abruptly after weaning. The reduction in microbial diversity during weaning was negatively correlated with the increase in all γδ T cell subsets and CD21+ B cells. These data suggest that developmental adaptations after birth coordinate expansion of γδ T cells to provide early systemic protection, as well as to steer immune tolerance, while B cells mature over time. Additionally, the increase of colonic γδ T cells on d 42 suggests a protective role of these cells during weaning.
Collapse
Affiliation(s)
- L R Cangiano
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706; Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - K Lamers
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - M F Olmeda
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - C Villot
- Lallemand Animal Nutrition, F-31702 Blagnac, France, and Milwaukee, WI 53218
| | - D C Hodgins
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph ON, N1G-2W1 Canada
| | - B A Mallard
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph ON, N1G-2W1 Canada
| | - M A Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
2
|
Ateya A, Al-Sharif M, Abdo M, Fericean L, Essa B. Individual Genomic Loci and mRNA Levels of Immune Biomarkers Associated with Pneumonia Susceptibility in Baladi Goats. Vet Sci 2023; 10:vetsci10030185. [PMID: 36977224 PMCID: PMC10051579 DOI: 10.3390/vetsci10030185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
The effectiveness of breeding for inherent disease resistance in animals could be considerably increased by identifying the genes and mutations that cause diversity in disease resistance. One hundred and twenty adult female Baladi goats (sixty pneumonic and sixty apparently healthy) were used in this study. DNA and RNA were extracted from blood samples collected from the jugular vein of each goat. SLC11A1, CD-14, CCL2, TLR1, TLR7, TLR8, TLR9, β defensin, SP110, SPP1, BP1, A2M, ADORA3, CARD15, IRF3, and SCART1 SNPs that have been previously found to be associated with pneumonia resistance/susceptibility were identified via PCR-DNA sequencing. The pneumonic and healthy goats differed significantly, according to a Chi-square analysis of the discovered SNPs. The mRNA levels of the studied immune markers were noticeably greater in the pneumonic goats than in the healthy ones. The findings could support the significance of the use of immune gene expression profiles and nucleotide variations as biomarkers for the susceptibility/resistance to pneumonia and provide a practical management technique for Baladi goats. These results also suggest a potential strategy for lowering pneumonia in goats by employing genetic markers linked to an animal’s ability to fend off infection in selective breeding.
Collapse
Affiliation(s)
- Ahmed Ateya
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence: (A.A.); (L.F.)
| | - Mona Al-Sharif
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Cairo 11829, Egypt
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agricultural Sciences, University of Life Sciences King Michael I, 300645 Timisoara, Romania
- Correspondence: (A.A.); (L.F.)
| | - Bothaina Essa
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| |
Collapse
|
3
|
Identification of leptospiral protein antigens recognized by WC1 + γδ T cell subsets as target for development of recombinant vaccines. Infect Immun 2021; 90:e0049221. [PMID: 34694919 DOI: 10.1128/iai.00492-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogenic Leptospira species cause leptospirosis, a neglected zoonotic disease recognized as a global public health problem. It is also the cause of the most common cattle infection that results in major economic losses due to reproductive problems. γδ T cells play a role in the protective immune response in livestock species against Leptospira while human γδ T cells also respond to Leptospira. Thus, activation of γδ T cells has emerged as a potential component in the optimization of vaccine strategies. Bovine γδ T cells proliferate and produce IFN-γ in response to vaccination with inactivated leptospires and this response is mediated by a specific subpopulation of the WC1-bearing γδ T cells. WC1 molecules are members of the group B scavenger receptor cysteine rich (SRCR) superfamily and are composed of multiple SRCR domains, of which particular extracellular domains act as ligands for Leptospira. Since WC1 molecules function as both pattern recognition receptors and γδ TCR coreceptors, the WC1 system has been proposed as a novel target to engage γδ T cells. Here, we demonstrate the involvement of leptospiral protein antigens in the activation of WC1+ γδ T cells and identified two leptospiral outer membrane proteins able to interact directly with them. Interestingly, we show that the protein-specific γδ T cell response is composed of WC1.1+ and WC1.2+ subsets, although a greater number of WC1.1+ ???? T-cell respond. Identification of protein antigens will enhance our understanding of the role γδ T cells play in the leptospiral immune response and in recombinant vaccine development.
Collapse
|
4
|
Butty AM, Chud TCS, Cardoso DF, Lopes LSF, Miglior F, Schenkel FS, Cánovas A, Häfliger IM, Drögemüller C, Stothard P, Malchiodi F, Baes CF. Genome-wide association study between copy number variants and hoof health traits in Holstein dairy cattle. J Dairy Sci 2021; 104:8050-8061. [PMID: 33896633 DOI: 10.3168/jds.2020-19879] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/31/2021] [Indexed: 01/06/2023]
Abstract
Genome-wide association studies based on SNP have been completed for multiple traits in dairy cattle; however, copy number variants (CNV) could add genomic information that has yet to be harnessed. The objectives of this study were to identify CNV in genotyped Holstein animals and assess their association with hoof health traits using deregressed estimated breeding values as pseudophenotypes. A total of 23,256 CNV comprising 1,645 genomic regions were identified in 5,845 animals. Fourteen genomic regions harboring structural variations, including 9 deletions and 5 duplications, were associated with at least 1 of the studied hoof health traits. This group of traits included digital dermatitis, interdigital dermatitis, heel horn erosion, sole ulcer, white line lesion, sole hemorrhage, and interdigital hyperplasia; no regions were associated with toe ulcer. Twenty candidate genes overlapped with the regions associated with these traits including SCART1, NRXN2, KIF26A, GPHN, and OR7A17. In this study, an effect on infectious hoof lesions could be attributed to the PRAME (Preferentially Expressed Antigen in Melanoma) gene. Almost all genes detected in association with noninfectious hoof lesions could be linked to known metabolic disorders. The knowledge obtained considering information of associated CNV to the traits of interest in this study could improve the accuracy of estimated breeding values. This may further increase the genetic gain for these traits in the Canadian Holstein population, thus reducing the involuntary animal losses due to lameness.
Collapse
Affiliation(s)
- Adrien M Butty
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Tatiane C S Chud
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Diercles F Cardoso
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Lucas S F Lopes
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Filippo Miglior
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Flavio S Schenkel
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Angela Cánovas
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Irene M Häfliger
- Vetsuisse Faculty, Institute of Genetics, University of Bern, Bern 3012, Switzerland
| | - Cord Drögemüller
- Vetsuisse Faculty, Institute of Genetics, University of Bern, Bern 3012, Switzerland
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2R3, Canada
| | - Francesca Malchiodi
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario N1G 2W1, Canada; The Semex Alliance, Guelph, Ontario N1H 6J2, Canada
| | - Christine F Baes
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario N1G 2W1, Canada; Vetsuisse Faculty, Institute of Genetics, University of Bern, Bern 3012, Switzerland.
| |
Collapse
|
5
|
Bovine Immune Response to Vaccination and Infection with Leptospira borgpetersenii Serovar Hardjo. mSphere 2021; 6:6/2/e00988-20. [PMID: 33762318 PMCID: PMC8546708 DOI: 10.1128/msphere.00988-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This study examined the humoral and cellular response of cattle vaccinated with two commercial leptospiral vaccines, Leptavoid and Spirovac, and a novel bacterin vaccine using Seppic Montanide oil emulsion adjuvant. Vaccination was followed by experimental challenge. All vaccinated cattle were protected from colonization of the kidney and shedding of Leptospira in urine, as detected by culture and immunofluorescence assay. Agglutinating antibody titers were detected in vaccinated cattle at 4 weeks following vaccination, with small anamnestic response detected following experimental challenge. Only animals vaccinated with the oil emulsion-adjuvanted bacterin produced significant IgG2 titers following vaccination, and nonvaccinated animals produced serum IgA titers after experimental challenge. CD4+ and γδ T cells from vaccinated cattle proliferated when cultured with antigen ex vivo. Cellular responses included a marked proliferation of γδ T cells immediately following experimental challenge in vaccinated cattle and release of gamma interferon (IFN-γ), interleukin 17a (IL-17a), and IL-12p40 from stimulated cells. Proliferative and cytokine responses were found not just in peripheral mononuclear cells but also in lymphocytes isolated from renal lymph nodes at 10 weeks following experimental challenge. Overall, effects of leptospirosis vaccination and infection were subtle, resulting in only modest activation of CD4+ and γδ T cells. The use of Seppic Montanide oil emulsion adjuvants may shorten the initiation of response to vaccination, which could be useful during outbreaks or in areas where leptospirosis is endemic. IMPORTANCE Leptospirosis is an underdiagnosed, underreported zoonotic disease of which domestic livestock can be carriers. As a reservoir host for Leptospira borgpetersenii serovar Hardjo, cattle may present with reproductive issues, including abortion, birth of weak or infected calves, or failure to breed. Despite years of study and the availability of commercial vaccines, detailed analysis of the bovine immune response to vaccination and Leptospira challenge is lacking. This study evaluated immunologic responses to two efficacious commercial vaccines and a novel bacterin vaccine using an adjuvant chosen for enhanced cellular immune responses. Antigen-specific responsive CD4 and γδ T cells were detected following vaccination and were associated with release of inflammatory cytokines IFN-γ and IL-17a after stimulation. CD4 and γδ cells increased in the first week after infection and, combined with serum antibody, may play a role in clearance of bacteria from the blood and resident tissues. Additionally, these antigen-reactive T cells were found in the regional lymph nodes following infection, indicating that memory responses may not be circulating but are still present in regional lymph nodes. The information gained in this study expands knowledge of bovine immune response to leptospirosis vaccines and infection. The use of oil emulsion adjuvants may enhance early immune responses to leptospiral bacterins, which could be useful in outbreaks or situations where leptospirosis is endemic.
Collapse
|
6
|
Gillespie A, Yirsaw A, Kim S, Wilson K, McLaughlin J, Madigan M, Loonie K, Britton E, Zhang F, Damani-Yokota P, Gunasekaran KP, Telfer J, Baldwin CL. Gene characterization and expression of the γδ T cell co-receptor WC1 in sheep. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103911. [PMID: 33137393 DOI: 10.1016/j.dci.2020.103911] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Sheep are known to express the hybrid co-receptor/pattern recognition receptor WC1 on their γδ T cells but details of the ovine WC1 multigenic array and gene expression were unknown. Annotation of the sheep genome assembly (Oar_rambouillet_v1.0) yielded 15 complete and 42 partial WC1 genes predicted to code for six different protein structures. RT-PCR amplification of the most distal scavenger receptor cysteine rich (SRCR) domain known as a1, which serves as the gene signature, from genomic and cDNA templates verified the majority of annotated genes. As for cattle and goats, sheep a1 domain sequences included WC1.1 and WC1.2 types. A unique ovine gene, WC1-16, had multiple SRCR a-pattern domains in tandem similar to one found in goats. Intracytoplasmic domains of WC1 transcripts had splice variants that may affect signal transduction. The larger number of WC1 genes in sheep and differences in structures and splice variants relative to cattle could have implications in expression patterns and engagement of γδ T cells by pathogens or vaccine constructs.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Cattle
- Female
- Gene Expression
- Genome/genetics
- Goats
- Membrane Glycoproteins/classification
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Phylogeny
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/classification
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Sequence Analysis, DNA/methods
- Sequence Homology, Amino Acid
- Sheep/genetics
- Sheep/metabolism
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Alexandria Gillespie
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, 661 N. Pleasant St, University of Massachusetts, Amherst, MA, 01003-9264, USA
| | - Al Yirsaw
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, 661 N. Pleasant St, University of Massachusetts, Amherst, MA, 01003-9264, USA
| | - Sookyung Kim
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, 661 N. Pleasant St, University of Massachusetts, Amherst, MA, 01003-9264, USA
| | - Katherine Wilson
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, 661 N. Pleasant St, University of Massachusetts, Amherst, MA, 01003-9264, USA
| | - Julie McLaughlin
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, 661 N. Pleasant St, University of Massachusetts, Amherst, MA, 01003-9264, USA
| | - Mackenzie Madigan
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, 661 N. Pleasant St, University of Massachusetts, Amherst, MA, 01003-9264, USA
| | - Kathleen Loonie
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, 661 N. Pleasant St, University of Massachusetts, Amherst, MA, 01003-9264, USA
| | - Emily Britton
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, 661 N. Pleasant St, University of Massachusetts, Amherst, MA, 01003-9264, USA
| | - Fengqiu Zhang
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, 661 N. Pleasant St, University of Massachusetts, Amherst, MA, 01003-9264, USA
| | - Payal Damani-Yokota
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, 661 N. Pleasant St, University of Massachusetts, Amherst, MA, 01003-9264, USA
| | - Karthick P Gunasekaran
- College of Information and Computer Sciences, 140 Governors Drive, University of Massachusetts, Amherst, MA, 01003-9264, USA
| | - Janice Telfer
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, 661 N. Pleasant St, University of Massachusetts, Amherst, MA, 01003-9264, USA
| | - Cynthia L Baldwin
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, 661 N. Pleasant St, University of Massachusetts, Amherst, MA, 01003-9264, USA.
| |
Collapse
|
7
|
Myeloid-like γδ T cell subset in the immune response to an experimental Rift Valley fever vaccine in sheep. Vet Immunol Immunopathol 2021; 233:110184. [PMID: 33454621 DOI: 10.1016/j.vetimm.2021.110184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 06/15/2020] [Accepted: 01/04/2021] [Indexed: 12/30/2022]
Abstract
γδ T cells are a numerically significant subset of immune cells in ruminants, where they may comprise up to 70 % of all peripheral blood mononuclear cells (PBMCs) in young animals and 25 % in adults. These cells can be activated through traditional TCR-dependent mechanisms, or alternatively in a TCR-independent manner by pattern recognition receptors and have been shown to uptake antigen, as well as process and present it to αβ T cells. We have identified a novel CD11b+ subset of γδ T cells in normal sheep peripheral blood. An increase in the frequency of these cells in sheep peripheral blood in response to immunization with an experimental recombinant subunit Rift Valley fever (RVF) vaccine was observed. However, injection of the vaccine adjuvant ISA-25VG alone without the recombinant RVF virus antigens demonstrated the same effect, pointing to an antigen-independent innate immune function of CD11b+ γδ T cells in response to the adjuvant. In vitro studies showed repeatable increases of CD11b-, CD14-, CD86-, CD40-, CD72-, and IFNγ- expressing γδ T cells in PBMCs after 24 h of incubation in the absence of a mitogen. Moreover, the majority of these myeloid-like γδ T cells were demonstrated to process exogenous antigen even in the absence of mitogen. ConA activation increased CD25- and MHCII- expression in γδ T cells, but not the myeloid associated receptors CD14 or CD11b or co-stimulatory molecules such as CD86 and CD40. Considering the role of CD11b and CD14 in the activation of innate immunity, we hypothesize that this subpopulation of sheep γδ T cells may function as innate antigen presenting and pro-inflammatory cells during immune responses. The results presented here also suggest that stress molecules and/or damage-associated molecular patterns may be involved in triggering antigen presenting and pro-inflammatory functions of γδ T cells, given their appearance in vitro in the absence of specific stimulation. Taken together, these data suggest that the early appearance of γδ T cells following adjuvant administration and their possible role in early activation of αβ T cell subsets may non-specifically contribute to augmented innate immunity and may promote strong initiation of the adaptive immune response to vaccines in general.
Collapse
|
8
|
DeKuiper JL, Cooperider HE, Lubben N, Ancel CM, Coussens PM. Mycobacterium avium Subspecies paratuberculosis Drives an Innate Th17-Like T Cell Response Regardless of the Presence of Antigen-Presenting Cells. Front Vet Sci 2020; 7:108. [PMID: 32258066 PMCID: PMC7089878 DOI: 10.3389/fvets.2020.00108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/12/2020] [Indexed: 01/05/2023] Open
Abstract
The gastrointestinal disease of ruminants is clinically known as Johne's disease (JD) and is caused by Mycobacterium avium subspecies paratuberculosis (MAP). An accumulative effect by insensitive diagnostic tools, a long subclinical stage of infection, and lack of effective vaccines have made the control of JD difficult. Currently lacking in the model systems of JD are undefined correlates of protection and the sources of inflammation due to JD. As an alternative to commonly studied immune responses, such as the Th1/Th2 paradigm, a non-classical Th17 immune response to MAP has been suggested. Indeed MAP antigens induce mRNAs encoding the Th17-associated cytokines IL-17A, IL-17F, IL-22, IL-23, IL-27, and IFNγ in CD3+ T cell cultures as determined by RT-qPCR. Although not as robust as when cultured with monocyte-derived macrophages (MDMs), MAP is able to stimulate the upregulation of these cytokines from sorted CD3+ T cells in the absence of antigen-presenting cells (APCs). CD4+ and CD8+ T cells are the main contributors of IL-17A and IL-22 in the absence of APCs. However, MAP-stimulated MDMs are the main contributor of IL-23. In vivo, JD+ cows have more circulating IL-23 than JD– cows, suggesting that this proinflammatory cytokine may be important in the etiology of JD. Our data in this study continue to suggest that Th17-like cells and associated cytokines may indeed play an important role in the immune responses to MAP infection and the development or control of JD.
Collapse
Affiliation(s)
- Justin L DeKuiper
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Hannah E Cooperider
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Noah Lubben
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Caitlin M Ancel
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Paul M Coussens
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
9
|
Abstract
Gamma delta (γδ) T cells constitute a major lymphocyte population in peripheral blood and epithelial surfaces. They play nonredundant roles in host defense against diverse pathogens. Although γδ T cells share functional features with other cells of the immune system, their distinct methods of antigen recognition, rapid response, and tissue tropism make them a unique effector population. This review considers the current state of our knowledge on γδ T cell biology in ruminants and the important roles played by this nonconventional T cell population in protection against several infectious diseases of veterinary and zoonotic importance.
Collapse
|
10
|
DeKuiper JL, Coussens PM. Inflammatory Th17 responses to infection with Mycobacterium avium subspecies paratuberculosis (MAP) in cattle and their potential role in development of Johne's disease. Vet Immunol Immunopathol 2019; 218:109954. [PMID: 31733610 DOI: 10.1016/j.vetimm.2019.109954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022]
Abstract
Chronic intestinal inflammation typically associated with late stage Johne's disease (JD) in cattle occurs despite a lack of significant expression of the typical proinflammatory cytokines IFNγ and TNFα derived from Th1- like T cells. In contrast, these cytokines appear to be relatively abundant during early infections with Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of JD in cattle. The roles of non-classical immune responses, such as those associated with Th17 cells, in response to MAP infection and development of clinical JD are less clear. In this review, we examine literature suggesting that Mycobacterial infections, including Mycobacterium tuberculosis, Mycobacterium bovis, and MAP, are all associated with expression of Th17 promoting cytokines (IL-23, IL-22, IL-17a). We discuss the possibility that Th17 associated cytokines, particularly IL-23, may act as contributing factors in development and maintenance of inflammation characteristic of clinical JD. An as yet relatively unexplored source of chronic inflammation due to over expression of IL-1α and IL-1β is also presented. We further discuss the fact that, as with the typical Th1-like cytokines IFNγ and TNFα , IL-17a is not significantly expressed in CD4+ T cells from cows with clinical JD, possibly due to T cell exhaustion. Finally, we present the notion that the Th17 driving cytokine IL-23 expressed by infected macrophages and associated epithelial cells may contribute to chronic inflammation during later stages of JD.
Collapse
Affiliation(s)
- Justin L DeKuiper
- Michigan State University, 3385A Anthony Hall, 474 S. Shaw Lane, 48824, East Lansing, MI, United States
| | - Paul M Coussens
- Michigan State University, 3385A Anthony Hall, 474 S. Shaw Lane, 48824, East Lansing, MI, United States.
| |
Collapse
|
11
|
Bastos RG, Franceschi V, Tebaldi G, Connelley T, Morrison WI, Knowles DP, Donofrio G, Fry LM. Molecular and Antigenic Properties of Mammalian Cell-Expressed Theileria parva Antigen Tp9. Front Immunol 2019; 10:897. [PMID: 31110506 PMCID: PMC6501543 DOI: 10.3389/fimmu.2019.00897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
East Coast Fever (ECF), caused by the tick-borne apicomplexan parasite Theileria parva, is a leading cause of morbidity and mortality in cattle of sub-Saharan Africa. The infection and treatment method (ITM) is currently the only vaccine available to control T. parva. Although ITM elicits levels of protection, its widespread adoption is limited by costs, laborious production process, and antibiotic co-treatment requirement, necessitating the development of a more sustainable vaccine. To this end, efforts have been concentrated in the identification of new T. parva vaccine antigens and in the development of suitable platforms for antigen expression. In this study, we investigated the molecular and antigenic properties of T. parva antigen Tp9 expressed by mammalian cells. Data indicate that Tp9 contains a signal peptide that is weakly functional in mammalian cells. Thus, Tp9 secretion from mammalian cells increased 10-fold after the native signal peptide was replaced with the human tissue plasminogen activator signal peptide (tPA). Sera from all T. parva-immune cattle recognized this recombinant, secreted Tp9. Additionally, PBMC from ITM-immunized cattle produced significant (p < 0.05) amounts of IFNγ following ex vivo exposure to Tp9, but this response varied between cattle of different MHC class I and class II genotypes. In addition, depletion experiments demonstrated that IFNγ to Tp9 was primarily produced by CD4+ T cells. Molecular analysis demonstrated that Tp9 presents a signal peptide that is weakly functional in mammalian cells, suggesting that it remains within lymphocytes during infection. Tp9 secretion from mammalian cells was substantially increased when the tPA secretion signal sequence was substituted for the native secretion signal sequence. Using full-length, recombinant Tp9 secreted from mammalian cells, we demonstrated that T. parva-immune cattle develop both humoral and cellular immune responses to this antigen. Collectively, these results provide rationale for further evaluation of Tp9 as a component of a T. parva subunit vaccine.
Collapse
Affiliation(s)
- Reginaldo G Bastos
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | | | - Giulia Tebaldi
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy
| | - Timothy Connelley
- Royal School of Veterinary Sciences, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - W Ivan Morrison
- Royal School of Veterinary Sciences, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Donald P Knowles
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Gaetano Donofrio
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy
| | - Lindsay M Fry
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States.,Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Pullman, WA, United States
| |
Collapse
|
12
|
Guzman E, Montoya M. Contributions of Farm Animals to Immunology. Front Vet Sci 2018; 5:307. [PMID: 30574508 PMCID: PMC6292178 DOI: 10.3389/fvets.2018.00307] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/21/2018] [Indexed: 12/24/2022] Open
Abstract
By their very nature, great advances in immunology are usually underpinned by experiments carried out in animal models and inbred lines of mice. Also, their corresponding knock-out or knock-in derivatives have been the most commonly used animal systems in immunological studies. With much credit to their usefulness, laboratory mice will never provide all the answers to fully understand immunological processes. Large animal models offer unique biological and experimental advantages that have been and continue to be of great value to the understanding of biological and immunological processes. From the identification of B cells to the realization that γδ T cells can function as professional antigen presenting cells, farm animals have contributed significantly to a better understanding of immunity.
Collapse
Affiliation(s)
| | - Maria Montoya
- The Pirbright Institute, Woking, United Kingdom
- Centro de Investigaciones Biológicas, CIB-CSIC, Madrid, Spain
| |
Collapse
|
13
|
Damani-Yokota P, Gillespie A, Pasman Y, Merico D, Connelley TK, Kaushik A, Baldwin CL. Bovine T cell receptors and γδ WC1 co-receptor transcriptome analysis during the first month of life. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 88:190-199. [PMID: 30048698 DOI: 10.1016/j.dci.2018.07.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Here we evaluated neonatal transcription of α, β, γ and δ TCR and the γδ T cell co-receptor family WC1 in peripheral blood mononuclear cells. A previous report showed a rapid and global shift in transcription of immunoglobulin genes in neonatal calves during the first month after birth but this was not found here for the T cell genes. Transcription frequency of genes within TRAV subgroups correlated with the number of members, indicating a stochastic choice. In contrast, of the approximately 60 TRDV genes those in two of eleven TRDV1 clades and TRDVb3 were transcribed significantly more than the others while those in only one TRBV subgroup were. Transcription of genes in the TRGV5-containing cassette predominated among TRGV genes as a result of their exclusive usage by the WC1+ γδ T cells with a preference for transcription of two of four TRGV genes in that cassette. Finally, we report no large differences in transcription frequencies among the 13 WC1 genes.
Collapse
Affiliation(s)
- Payal Damani-Yokota
- Program in Molecular & Cellular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Alexandria Gillespie
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Yfke Pasman
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | | - Timothy K Connelley
- Division of Immunity and Infection, The Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Azad Kaushik
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Cynthia L Baldwin
- Program in Molecular & Cellular Biology, University of Massachusetts, Amherst, MA, 01003, USA; Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
14
|
Wilson-Welder JH, Nally JE, Alt DP, Humphrey SB, Olsen SC. Short communication: Lymphocyte proliferative responses in cattle naturally infected with digital dermatitis consist of CD8+ and γδ-T cells but lack CD4+ T cells. J Dairy Sci 2018; 101:8301-8307. [PMID: 29908808 DOI: 10.3168/jds.2017-13913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 05/02/2018] [Indexed: 11/19/2022]
Abstract
Digital dermatitis is an infectious disease of cattle and the leading cause of lameness. This disease is complicated by the reoccurrence of the lesions and the observation of lesions on more than one limb at different time points, indicating infection may not result in a protective immune response. The objective of this study was to characterize the peripheral blood cellular response in naturally infected and naïve cattle to bacterial antigens derived from pathogens associated with digital dermatitis lesions. Peripheral blood mononuclear cells were isolated from dairy cattle identified as having active or chronic lesions during routine hoof-trimming. Following bacterial antigen stimulation, cells were analyzed for proliferation and phenotype by flow cytometry, and culture supernatants were analyzed for IFN-γ secretion. Digital-dermatitis-infected animals had greater serum antibody titers to treponemal antigens, higher percentages of proliferating CD8+, γδ-T cells, and B cells, and increased IFN-γ secretion in vitro when compared with responses of naïve animals. No increase in proliferation of CD4+ T cells was detected in infected or naïve cattle. Although CD8+ and γδ-T cell responses may be antigen specific, the memory nature or long-lived response is yet unknown. The lack of responsiveness of CD4+ memory cells to treponemal antigens could explain the high rate of reoccurrence of digital dermatitis in infected animals.
Collapse
Affiliation(s)
- Jennifer H Wilson-Welder
- Infectious Bacterial Diseases, National Animal Disease Center, Agriculture Research Service, USDA, Ames, IA 50010.
| | - Jarlath E Nally
- Infectious Bacterial Diseases, National Animal Disease Center, Agriculture Research Service, USDA, Ames, IA 50010
| | - David P Alt
- Infectious Bacterial Diseases, National Animal Disease Center, Agriculture Research Service, USDA, Ames, IA 50010
| | - Samuel B Humphrey
- Microscopy Services, National Animal Disease Center, Agriculture Research Service, USDA, Ames, IA 50010
| | - Steven C Olsen
- Infectious Bacterial Diseases, National Animal Disease Center, Agriculture Research Service, USDA, Ames, IA 50010
| |
Collapse
|
15
|
Pinto PS, Pestana C, Medeiros MA, Lilenbaum W. Plurality of Leptospira strains on slaughtered animals suggest a broader concept of adaptability of leptospires to cattle. Acta Trop 2017; 172:156-159. [PMID: 28472618 DOI: 10.1016/j.actatropica.2017.04.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/27/2017] [Accepted: 04/29/2017] [Indexed: 01/15/2023]
Abstract
Leptospirosis in bovines is in majority determined by the host-adapted serovars, mainly Hardjo (types Hardjoprajitno and Hardjobovis), that belong to the serogroup Sejroe. Members of other serogroups as Pomona and Tarassovi have been eventually reported, mainly when outbreaks occurs. Nevertheless, the real role of other strains (non-Hardjo) on determining disease or being transmitted by cattle free of apparent clinical signs of acute infection remains to be elucidated. In that context, the aim of the present study was to investigate the hypothesis that strains of serovars/serogroups other than Hardjo may also be maintained and shed by cattle free of clinical signs. Samples of urine and/or vaginal fluid were collected from 697 bovines from a slaughterhouse located close to Rio de Janeiro, Brazil. Culturing yielded 19 isolates what represents the largest number ever obtained in Brazil on similar studies. These strains were serogrouped and genetically characterized. Fifteen of those were described in other papers and four are first described on the present study. Isolates belong to three different species (Leptospira santarosai, L. alstonii and L. interrogans) and five serogroups (Sarmin, Tarassovi, Shermani, Grippotyphosa and Sejroe). The majority (84.2%) of the isolates belongs to the species L. santarosai, the most prevalent species on cattle in the studied region. Non-Hardjo (non-Sejroe) strains represent 57.9% of the isolates, what indicates an unexpected high diversity of serogroups obtained from these cattle. This suggest that non-Hardjo (non-Sejroe) strains may also be maintained and shed by cattle and that finding must be considered in the epidemiology and control of the disease.
Collapse
Affiliation(s)
- Priscila S Pinto
- Laboratory of Veterinary Bacteriology, Biomedical Institute, Fluminense Federal University, 101 Prof. Hernani Mello Street, Niterói, Rio de Janeiro, Brazil
| | - Cristiane Pestana
- Laboratory of Recombinant Technology, Bio-Manguinhos, Oswaldo Cruz Foundation, Brazil
| | - Marco A Medeiros
- Laboratory of Recombinant Technology, Bio-Manguinhos, Oswaldo Cruz Foundation, Brazil
| | - Walter Lilenbaum
- Laboratory of Veterinary Bacteriology, Biomedical Institute, Fluminense Federal University, 101 Prof. Hernani Mello Street, Niterói, Rio de Janeiro, Brazil.
| |
Collapse
|
16
|
Lin X, Xiao G, Luo D, Kong L, Chen X, Sun D, Yan J. Chimeric epitope vaccine against Leptospira interrogans infection and induced specific immunity in guinea pigs. BMC Microbiol 2016; 16:241. [PMID: 27737644 PMCID: PMC5064800 DOI: 10.1186/s12866-016-0852-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2016] [Indexed: 11/28/2022] Open
Abstract
Background Leptospirosis is an important reemerging zoonosis, with more than half a million cases reported annually, and is caused by pathogenic Leptospira species. Development of a universal vaccine is one of the major strategic goals to overcome the disease burden of leptospirosis. In this study, a chimeric multi-epitope protein-based vaccine was designed and tested for its potency to induce a specific immune response and provide protection against L. interrogans infection. Results The protein, containing four repeats of six T- and B-cell combined epitopes from the leptospiral outer membrane proteins, OmpL1, LipL32 and LipL21, was expressed and purified. Western blot analysis showed that the recombinant protein (named r4R) mainly expressed in a soluble pattern, and reacted with antibodies raised in rabbit against heat-killed Leptospira and in guinea pigs against the r4R vaccine. Microscopic agglutination tests showed that r4R antisera was immunological cross-reactive with a range of Chinese standard reference strains of Leptospira belonging to different serogroups. In guinea pigs, the r4R vaccine induced a Th1-biased immune response, as reflected by the IgG2a/IgG1 ratio and cytokine production of stimulated splenocytes derived from immunized animals. Finally, r4R-immunized guinea pigs showed increased survival of lethal Leptospira challenges compared with PBS-immunized animals and tissue damage and leptospiral colonization of the kidney were reduced. Conclusions The multi-epitope chimeric r4R protein is a promising antigen for the development of a universal cross-reactive vaccine against leptospirosis. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0852-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xu'ai Lin
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China. .,Basic Medical Microbiology Division, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Guohui Xiao
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Dongjiao Luo
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Liangliang Kong
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Xu Chen
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Dexter Sun
- Department of Neurology and Neuroscience, New York Presbyterian Hospital and Hospital for Special Surgery, Cornell University Weill Medical College, New York, NY, 10021, USA
| | - Jie Yan
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China. .,Basic Medical Microbiology Division, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
17
|
Palomares RA, Sakamoto K, Walz HL, Brock KV, Hurley DJ. Acute infection with bovine viral diarrhea virus of low or high virulence leads to depletion and redistribution of WC1(+) γδ T cells in lymphoid tissues of beef calves. Vet Immunol Immunopathol 2015; 167:190-5. [PMID: 26282369 DOI: 10.1016/j.vetimm.2015.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 07/05/2015] [Accepted: 07/30/2015] [Indexed: 11/16/2022]
Abstract
The objective of this study was to determine the abundance and distribution of γδ T lymphocytes in lymphoid tissue during acute infection with high (HV) or low virulence (LV) non-cytopathic bovine viral diarrhea virus (BVDV) in beef calves. This study was performed using tissue samples from a previous experiment in which thirty beef calves were randomly assigned to 1 of 3 groups: LV [n=10; animals inoculated intranasally (IN) with LV BVDV-1a (strain SD-1)], HV [n=10; animals inoculated IN with HV BVDV-2 (strain 1373)], and control (n=10; animals inoculated with cell culture medium). On day 5 post inoculation, animals were euthanized, and samples from spleen and mesenteric lymph nodes (MLN) were collected to assess the abundance of WC1(+) γδ T cells. A higher proportion of calves challenged with BVDV showed signs of apoptosis and cytophagy in MLN and spleen samples compared to the control group. A significantly lower number of γδ T cells was observed in spleen and MLN from calves in HV and LV groups than in the control calves (P<0.05). In conclusion, acute infection with HV or LV BVDV resulted in depletion of WC1(+) γδ T cells in mucosal and systemic lymphoid tissues at five days after challenge in beef calves. This reduction in γδ T cells in the studied lymphoid tissues could be also due to lymphocyte trafficking to other tissues.
Collapse
Affiliation(s)
- Roberto A Palomares
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-2771, United States.
| | - Kaori Sakamoto
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-2771, United States
| | - Heather L Walz
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Kenny V Brock
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - David J Hurley
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-2771, United States
| |
Collapse
|
18
|
Hsu H, Baldwin CL, Telfer JC. The Endocytosis and Signaling of the γδ T Cell Coreceptor WC1 Are Regulated by a Dileucine Motif. THE JOURNAL OF IMMUNOLOGY 2015; 194:2399-406. [DOI: 10.4049/jimmunol.1402020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
19
|
Hsu H, Chen C, Nenninger A, Holz L, Baldwin CL, Telfer JC. WC1 is a hybrid γδ TCR coreceptor and pattern recognition receptor for pathogenic bacteria. THE JOURNAL OF IMMUNOLOGY 2015; 194:2280-8. [PMID: 25632007 DOI: 10.4049/jimmunol.1402021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
WC1 proteins are uniquely expressed on γδ T cells and belong to the scavenger receptor cysteine-rich (SRCR) superfamily. While present in variable, and sometimes high, numbers in the genomes of mammals and birds, in cattle there are 13 distinct genes (WC1-1 to WC1-13). All bovine WC1 proteins can serve as coreceptors for the TCR in a tyrosine phosphorylation dependent manner, and some are required for the γδ T cell response to Leptospira. We hypothesized that individual WC1 receptors encode Ag specificity via coligation of bacteria with the γδ TCR. SRCR domain binding was directly correlated with γδ T cell response, as WC1-3 SRCR domains from Leptospira-responsive cells, but not WC1-4 SRCR domains from Leptospira-nonresponsive cells, bound to multiple serovars of two Leptospira species, L. borgpetersenii, and L. interrogans. Three to five of eleven WC1-3 SRCR domains, but none of the eleven WC1-4 SRCR domains, interacted with Leptospira spp. and Borrelia burgdorferi, but not with Escherichia coli or Staphylococcus aureus. Mutational analysis indicated that the active site for bacterial binding in one of the SRCR domains is composed of amino acids in three discontinuous regions. Recombinant WC1 SRCR domains with the ability to bind leptospires inhibited Leptospira growth. Our data suggest that WC1 gene arrays play a multifaceted role in the γδ T cell response to bacteria, including acting as hybrid pattern recognition receptors and TCR coreceptors, and they may function as antimicrobials.
Collapse
Affiliation(s)
- Haoting Hsu
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003; and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
| | - Chuang Chen
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003; and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
| | - Ariel Nenninger
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003; and
| | - Lauren Holz
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003; and
| | - Cynthia L Baldwin
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003; and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
| | - Janice C Telfer
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003; and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
20
|
Baldwin CL, Telfer JC. The bovine model for elucidating the role of γδ T cells in controlling infectious diseases of importance to cattle and humans. Mol Immunol 2014; 66:35-47. [PMID: 25547715 DOI: 10.1016/j.molimm.2014.10.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/22/2014] [Accepted: 10/24/2014] [Indexed: 01/29/2023]
Abstract
There are several instances of co-investigation and related discoveries and achievements in bovine and human immunology; perhaps most interesting is the development of the BCG vaccine, the tuberculin skin test and the more recent interferon-gamma test that were developed first in cattle to prevent and diagnosis bovine tuberculosis and then applied to humans. There are also a number of immune-physiological traits that ruminant share with humans including the development of their immune systems in utero which increases the utility of cattle as a model for human immunology. These are reviewed here with a particular focus on the use of cattle to unravel γδ T cell biology. Based on the sheer number of γδ T cells in this γδ T cell high species, it is reasonable to expect γδ T cells to play an important role in protective immune responses. For that reason alone cattle may provide good models for elucidating at least some of the roles γδ T cells play in protective immunity in all species. This includes fundamental research on γδ T cells as well as the responses of ruminant γδ T cells to a variety of infectious disease situations including to protozoan and bacterial pathogens. The role that pattern recognition receptors (PRR) play in the activation of γδ T cells may be unique relative to αβ T cells. Here we focus on that of the γδ T cell specific family of molecules known as WC1 or T19 in ruminants, which are part of the CD163 scavenger receptor cysteine rich (SRCR) family that includes SCART1 and SCART2 expressed on murine γδ T cells. We review the evidence for WC1 being a PRR as well as an activating co-receptor and the role that γδ T cells bearing these receptors play in immunity to leptospirosis and tuberculosis. This includes the generation of memory responses to vaccines, thereby continuing the tradition of co-discovery between cattle and humans.
Collapse
Affiliation(s)
- Cynthia L Baldwin
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst 01003, United States.
| | - Janice C Telfer
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst 01003, United States.
| |
Collapse
|
21
|
Witherden DA, Ramirez K, Havran WL. Multiple Receptor-Ligand Interactions Direct Tissue-Resident γδ T Cell Activation. Front Immunol 2014; 5:602. [PMID: 25505467 PMCID: PMC4241470 DOI: 10.3389/fimmu.2014.00602] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/07/2014] [Indexed: 11/13/2022] Open
Abstract
γδ T cells represent a major T cell population in epithelial tissues, such as skin, intestine, and lung, where they function in maintenance of the epithelium and provide a crucial first line defense against environmental and pathogenic insults. Despite their importance, the molecular mechanisms directing their activation and function have remained elusive. Epithelial-resident γδ T cells function through constant communication with neighboring cells, either via direct cell-to-cell contact or cell-to-matrix interactions. These intimate relationships allow γδ T cells to facilitate the maintenance of epithelial homeostasis, tissue repair following injury, inflammation, and protection from malignancy. Recent studies have identified a number of molecules involved in these complex interactions, under both homeostatic conditions, as well as following perturbation of these barrier tissues. These interactions are crucial to the timely production of cytokines, chemokines, growth factors, and extracellular matrix proteins for restoration of homeostasis. In this review, we discuss recent advances in understanding the mechanisms directing epithelial-T cell crosstalk and the distinct roles played by individual receptor-ligand pairs of cell surface molecules in this process.
Collapse
Affiliation(s)
- Deborah A Witherden
- Department of Immunology and Microbial Science, The Scripps Research Institute , La Jolla, CA , USA
| | - Kevin Ramirez
- Department of Immunology and Microbial Science, The Scripps Research Institute , La Jolla, CA , USA
| | - Wendy L Havran
- Department of Immunology and Microbial Science, The Scripps Research Institute , La Jolla, CA , USA
| |
Collapse
|
22
|
Entrican G, Wattegedera SR, Griffiths DJ. Exploiting ovine immunology to improve the relevance of biomedical models. Mol Immunol 2014; 66:68-77. [PMID: 25263932 PMCID: PMC4368439 DOI: 10.1016/j.molimm.2014.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/19/2014] [Accepted: 09/01/2014] [Indexed: 12/29/2022]
Abstract
Sheep make a valuable contribution to immunology research. Lessons to be learned from studying infections in the natural host. Factors to consider when selecting biomedical models.
Animal models of human disease are important tools in many areas of biomedicine; for example, in infectious disease research and in the development of novel drugs and medical devices. Most studies involving animals use rodents, in particular congenic mice, due to the availability of a wide number of strains and the ease with which they can be genetically manipulated. The use of mouse models has led to major advances in many fields of research, in particular in immunology but despite these advances, no animal model can exactly reproduce all the features of human disease. It is increasingly becoming recognised that in many circumstances mice do not provide the best model and that alternative species may be more appropriate. Here, we describe the relative merits of sheep as biomedical models for human physiology and disease in comparison to mice, with a particular focus on reproductive and respiratory pathogens.
Collapse
Affiliation(s)
- Gary Entrican
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh EH26 0PZ, Scotland, UK.
| | - Sean R Wattegedera
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh EH26 0PZ, Scotland, UK
| | - David J Griffiths
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh EH26 0PZ, Scotland, UK
| |
Collapse
|