1
|
Ge C, Lu H, Han J, Sun G, Li S, Lan X, Liu Y, Yu M, Hu X, Hu M, Qi X, Cui H, Duan Y, Wang S, Chen Y, Wang X, Zhang Y, Gao Y, Liu C. Recombinant Marek's disease virus expressing VP1 and VP2 proteins provides robust immune protection against chicken infectious anemia virus. Front Microbiol 2025; 15:1515415. [PMID: 39834361 PMCID: PMC11743625 DOI: 10.3389/fmicb.2024.1515415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/14/2024] [Indexed: 01/22/2025] Open
Abstract
Chicken infectious anemia (CIA) is a highly contagious disease caused by the chicken infectious anemia virus (CIAV), and it poses a serious threat to the poultry industry. However, effective control measures and strategies have not been identified. In this study, a recombinant Marek's disease virus (rMDV) expressing the VP1 and VP2 proteins of CIAV was successfully constructed using CRISPR/Cas9, and a commercial Marek's disease virus (MDV) vaccine strain was used as the vector. VP1 and VP2 expression by rMDV was confirmed by immunofluorescence assay and western blot analysis, which revealed robust in vitro expression. Further analysis showed that the VP1 and VP2 genes integrated into the MDV genome did not alter the growth kinetics of the virus and remained stable even after 20 passages, indicating the genetic stability of the recombinant virus. In animal studies, vaccination of one-day-old specific-pathogen-free chickens with rMDV induced high levels of CIAV-specific antibodies (1 × 105) and neutralizing antibodies (1:25) and a potent cellular immune response. Moreover, rMDV vaccination conferred an 85% protective index against challenge with a highly virulent strain of CIAV, significantly reducing the occurrence of anemia and thymic atrophy caused by CIAV infection and dramatically suppressing CIAV replication in the thymus. Collectively, these results highlight the potential of rMDV as a vaccine candidate for preventing and controlling CIAV infection, thus offering a new avenue for mitigating the impact of CIA on the poultry industry.
Collapse
Affiliation(s)
- Chengfei Ge
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hangqiong Lu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jinze Han
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guorong Sun
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shihao Li
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xingge Lan
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongzhen Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mengmeng Yu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinyun Hu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mingxue Hu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaole Qi
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyu Cui
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yulu Duan
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Suyan Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuntong Chen
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaomei Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Yanping Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yulong Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changjun Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
2
|
Abdelaziz K, Helmy YA, Yitbarek A, Hodgins DC, Sharafeldin TA, Selim MSH. Advances in Poultry Vaccines: Leveraging Biotechnology for Improving Vaccine Development, Stability, and Delivery. Vaccines (Basel) 2024; 12:134. [PMID: 38400118 PMCID: PMC10893217 DOI: 10.3390/vaccines12020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
With the rapidly increasing demand for poultry products and the current challenges facing the poultry industry, the application of biotechnology to enhance poultry production has gained growing significance. Biotechnology encompasses all forms of technology that can be harnessed to improve poultry health and production efficiency. Notably, biotechnology-based approaches have fueled rapid advances in biological research, including (a) genetic manipulation in poultry breeding to improve the growth and egg production traits and disease resistance, (b) rapid identification of infectious agents using DNA-based approaches, (c) inclusion of natural and synthetic feed additives to poultry diets to enhance their nutritional value and maximize feed utilization by birds, and (d) production of biological products such as vaccines and various types of immunostimulants to increase the defensive activity of the immune system against pathogenic infection. Indeed, managing both existing and newly emerging infectious diseases presents a challenge for poultry production. However, recent strides in vaccine technology are demonstrating significant promise for disease prevention and control. This review focuses on the evolving applications of biotechnology aimed at enhancing vaccine immunogenicity, efficacy, stability, and delivery.
Collapse
Affiliation(s)
- Khaled Abdelaziz
- Department of Animal and Veterinary Science, College of Agriculture, Forestry and Life Sciences, Clemson University Poole Agricultural Center, Jersey Ln #129, Clemson, SC 29634, USA
- Clemson University School of Health Research (CUSHR), Clemson, SC 29634, USA
| | - Yosra A. Helmy
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA;
| | - Alexander Yitbarek
- Department of Animal & Food Sciences, University of Delaware, 531 S College Ave, Newark, DE 19716, USA;
| | - Douglas C. Hodgins
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Tamer A. Sharafeldin
- Department of Veterinary Biomedical Science, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD 57007, USA; (T.A.S.); (M.S.H.S.)
| | - Mohamed S. H. Selim
- Department of Veterinary Biomedical Science, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD 57007, USA; (T.A.S.); (M.S.H.S.)
| |
Collapse
|
3
|
Design of a Multiepitope Vaccine against Chicken Anemia Virus Disease. Viruses 2022; 14:v14071456. [PMID: 35891436 PMCID: PMC9318905 DOI: 10.3390/v14071456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022] Open
Abstract
Chicken anemia virus (CAV) causes severe clinical and sub-clinical infection in poultry globally and thus leads to economic losses. The drawbacks of the commercially available vaccines against CAV disease signal the need for a novel, safe, and effective vaccine design. In this study, a multiepitope vaccine (MEV) consisting of T-cell and B-cell epitopes from CAV viral proteins (VP1 and VP2) was computationally constructed with the help of linkers and adjuvant. The 3D model of the MEV construct was refined and validated by different online bioinformatics tools. Molecular docking showed stable interaction of the MEV construct with TLR3, and this was confirmed by Molecular Dynamics Simulation. Codon optimization and in silico cloning of the vaccine in pET-28a (+) vector also showed its potential expression in the E. coli K12 system. The immune simulation also indicated the ability of this vaccine to induce an effective immune response against this virus. Although the vaccine in this study was computationally constructed and still requires further in vivo study to confirm its effectiveness, this study marks a very important step towards designing a potential vaccine against CAV disease.
Collapse
|
4
|
Escalante-Sansores AR, Absalón AE, Cortés-Espinosa DV. Improving immunogenicity of poultry vaccines by use of molecular adjuvants. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2091502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | - Angel E. Absalón
- Vaxbiotek SC Departamento de Investigación y Desarrollo, Cuautlancingo, Puebla, Mexico
| | - Diana V. Cortés-Espinosa
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicadla, Tlaxcala, Mexico
| |
Collapse
|
5
|
Newcastle Disease Virus Vectored Chicken Infectious Anaemia Vaccine Induces Robust Immune Response in Chickens. Viruses 2021; 13:v13101985. [PMID: 34696415 PMCID: PMC8540149 DOI: 10.3390/v13101985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/15/2021] [Accepted: 09/29/2021] [Indexed: 01/31/2023] Open
Abstract
Newcastle disease virus (NDV) strain R2B, with an altered fusion protein cleavage site, was used as a viral vector to deliver the immunogenic genes VP2 and VP1 of chicken infectious anaemia virus (CIAV) to generate a bivalent vaccine candidate against these diseases in chickens. The immunogenic genes of CIAV were expressed as a single transcriptional unit from the NDV backbone and the two CIA viral proteins were obtained as separate entities using a self-cleaving foot-and-mouth disease virus 2A protease sequence between them. The recombinant virus (rR2B-FPCS-CAV) had similar growth kinetics as that of the parent recombinant virus (rR2B-FPCS) in vitro with similar pathogenicity characteristics. The bivalent vaccine candidate when given in specific pathogen-free chickens as primary and booster doses was able to elicit robust humoral and cell-mediated immune (CMI) responses obtained in a vaccination study that was conducted over a period of 15 weeks. In an NDV and CIAV ELISA trial, there was a significant difference in the titres of antibody between vaccinated and control groups which showed slight reduction in antibody titre by 56 days of age. Hence, a second booster was administered and the antibody titres were maintained until 84 days of age. Similar trends were noticed in CMI response carried out by lymphocyte transformation test, CD4+ and CD8+ response by flow cytometry analysis and response of real time PCR analysis of cytokine genes. Birds were challenged with virulent NDV and CIAV at 84 days and there was significant reduction in the NDV shed on the 2nd and 4th days post challenge in vaccinated birds as compared to unvaccinated controls. Haematological parameters comprising PCV, TLC, PLC and PHC were estimated in birds that were challenged with CIAV that indicated a significant reduction in the blood parameters of controls. Our findings support the development and assessment of a bivalent vaccine candidate against NDV and CIAV in chickens.
Collapse
|
6
|
Santos HM, Tsai CY, Catulin GEM, Trangia KCG, Tayo LL, Liu HJ, Chuang KP. Common bacterial, viral, and parasitic diseases in pigeons (Columba livia): A review of diagnostic and treatment strategies. Vet Microbiol 2020; 247:108779. [PMID: 32768225 DOI: 10.1016/j.vetmic.2020.108779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
Pigeons (Columba livia) have been associated with humans for a long time now. They are raised for sport (pigeon race), exhibition (display of fancy breeds), food, and research. Most of the pigeons kept are Racing Homers, trained to compete in the pigeon race. Other breeds, such as Rollers, Nose Divers, Doneks are bred for their aerial abilities. Incorporation of a good preventive medicine program is one of the most critical factors in averting infectious diseases in pigeon flocks. This review summarizes the common bacterial, viral, and parasitic infections in pigeons. The different clinical signs, symptoms, diagnostic strategies, prevention, and treatments were described in this review. Current researches, molecular diagnostic assays, and treatment strategies such as vaccines and drug candidates were included. The information found in this review can provide insights for veterinarians and researchers studying pigeons to develop effective and efficient immunoprophylactic and diagnostic tools for pigeon diagnosis and therapeutics.
Collapse
Affiliation(s)
- Harvey M Santos
- School of Chemical, Biological and Materials Engineering and Sciences, Mapúa University, Manila, 1002, Philippines
| | - Ching-Yi Tsai
- International Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Gail Everette M Catulin
- School of Chemical, Biological and Materials Engineering and Sciences, Mapúa University, Manila, 1002, Philippines
| | - Kim Chloe G Trangia
- School of Chemical, Biological and Materials Engineering and Sciences, Mapúa University, Manila, 1002, Philippines
| | - Lemmuel L Tayo
- School of Chemical, Biological and Materials Engineering and Sciences, Mapúa University, Manila, 1002, Philippines
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan; Research Center for Animal Biologics, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan; Ph.D Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan
| | - Kuo Pin Chuang
- International Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan; Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan; Research Center for Animal Biologics, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan.
| |
Collapse
|
7
|
Influence of pigeon interferon alpha (PiIFN-α) on pigeon circovirus (PiCV) replication and cytokine expression in Columba livia. Vet Microbiol 2020; 242:108591. [PMID: 32122595 DOI: 10.1016/j.vetmic.2020.108591] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/31/2019] [Accepted: 01/20/2020] [Indexed: 02/08/2023]
Abstract
Pigeon circovirus (PiCV) is the most diagnosed virus in pigeons (Columba livia) and have been studied and reported globally. PiCV infections can lead to immunosuppression and pigeons infected with PiCV can result to lymphocyte apoptosis and atrophy of immune organs. Young pigeon disease syndrome (YPDS) is a complex disease and believed that PiCV could be one of the agents leading to this syndrome. An effective treatment regimen is needed to control the spread of PiCV in pigeons. In this study pigeon interferon alpha (PiIFN-α) was cloned and expressed and its antiviral effects were tested against fowl adenovirus type 4 (FAdV-4) in vitro and PiCV in vivo. No detectable levels of FAdV-4 viral genome in LMH cells stimulated with 300 μg/mL PiIFN-α were found. Additionally, PiIFN-α was stable at different temperature and pH for 4 h, and no reduction in antiviral activity was observed in untreated and treated cells. In pigeons naturally and experimentally infected by PiCV, no detectable levels of PiCV virus titers were found after treatment with PiIFN-α. Cytokine and ISG expression levels in liver and spleen samples were detected and IFN-γ and Mx1 genes were dominantly up-regulated following PiIFN-α treatment (p < 0.05). This study demonstrated that PiCV can be inhibited by administration of PiIFN-α and PiFN-α can be used as a therapeutic approach to prevent the spread of PiCV in pigeons.
Collapse
|
8
|
Fang L, Zhen Y, Su Q, Zhu H, Guo X, Zhao P. Efficacy of CpG-ODN and Freund's immune adjuvants on antibody responses induced by chicken infectious anemia virus VP1, VP2, and VP3 subunit proteins. Poult Sci 2019; 98:1121-1126. [PMID: 30376069 DOI: 10.3382/ps/pey475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 10/12/2018] [Indexed: 01/19/2023] Open
Abstract
Chicken infectious anemia virus is an important pathogen that causes severe anemia and immunosuppression in chickens, leading to serious economic losses worldwide in the poultry industry. However, no commercialized inactivated vaccine, subunit vaccine, or genetically engineered vaccine that is effective for controlling this virus is available. In this study, 3 recombinant plasmids were constructed to produce corresponding viral proteins in an Escherichia coli system. The immune effects of the subunit proteins accompanied by CpG-ODN or Freund's immune adjuvants were evaluated and analyzed in systemic animal experiments. The results showed that VP1 induced the highest antibody titers with the participation of VP2 protein, indicating better protection under combined treatment, and the CpG-ODN adjuvant induced higher antibody titers and smaller dispersion of antibody titers than Freund's adjuvants. This is the first study to demonstrate that VP1 protein formulated with VP2 and CpG-ODN adjuvant can induce highest antibody titers and markedly enhance the immune response, indicating its promise as a vaccine candidate.
Collapse
Affiliation(s)
- Lichun Fang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, Shandong, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, Shandong, China.,Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yue Zhen
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, Shandong, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, Shandong, China
| | - Qi Su
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, Shandong, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, Shandong, China
| | - Hongfei Zhu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoyu Guo
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Peng Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, Shandong, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, Shandong, China
| |
Collapse
|
9
|
Ganar K, Shah M, Kamdi BP, Kurkure NV, Kumar S. Molecular characterization of chicken anemia virus outbreaks in Nagpur province, India from 2012 to 2015. Microb Pathog 2017; 102:113-119. [DOI: 10.1016/j.micpath.2016.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/18/2016] [Accepted: 11/24/2016] [Indexed: 12/17/2022]
|
10
|
Effects of Chicken Interferon Gamma on Newcastle Disease Virus Vaccine Immunogenicity. PLoS One 2016; 11:e0159153. [PMID: 27409587 PMCID: PMC4943709 DOI: 10.1371/journal.pone.0159153] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023] Open
Abstract
More effective vaccines are needed to control avian diseases. The use of chicken interferon gamma (chIFNγ) during vaccination is a potentially important but controversial approach that may improve the immune response to antigens. In the present study, three different systems to co-deliver chIFNγ with Newcastle disease virus (NDV) antigens were evaluated for their ability to enhance the avian immune response and their protective capacity upon challenge with virulent NDV. These systems consisted of: 1) a DNA vaccine expressing the Newcastle disease virus fusion (F) protein co-administered with a vector expressing the chIFNγ gene for in ovo and booster vaccination, 2) a recombinant Newcastle disease virus expressing the chIFNγ gene (rZJ1*L/IFNγ) used as a live vaccine delivered in ovo and into juvenile chickens, and 3) the same rZJ1*L/IFNγ virus used as an inactivated vaccine for juvenile chickens. Co-administration of chIFNγ with a DNA vaccine expressing the F protein resulted in higher levels of morbidity and mortality, and higher amounts of virulent virus shed after challenge when compared to the group that did not receive chIFNγ. The live vaccine system co-delivering chIFNγ did not enhanced post-vaccination antibody response, nor improved survival after hatch, when administered in ovo, and did not affect survival after challenge when administered to juvenile chickens. The low dose of the inactivated vaccine co-delivering active chIFNγ induced lower antibody titers than the groups that did not receive the cytokine. The high dose of this vaccine did not increase the antibody titers or antigen-specific memory response, and did not reduce the amount of challenge virus shed or mortality after challenge. In summary, regardless of the delivery system, chIFNγ, when administered simultaneously with the vaccine antigen, did not enhance Newcastle disease virus vaccine immunogenicity.
Collapse
|