1
|
Sadiq MB, Ramanoon SZ, Mansor R, Shaik Mossadeq WM, Syed-Hussain SS, Yimer N, Kaka U, Ajat M, Abdullah JFF. Potential biomarkers for lameness and claw lesions in dairy cows: A scoping review. J DAIRY RES 2024:1-9. [PMID: 39463263 DOI: 10.1017/s0022029924000487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
One of the major challenges in lameness management is prompt detection, especially before visible gait disturbance. This scoping review describes the potential biomarkers for lameness in dairy cows reported in the literature, their relevance in lameness diagnosis, identifying cows at risk of developing claw lesions and monitoring recovery after treatment. Using specific keywords, a comprehensive literature search was performed in three databases: PubMed, Google Scholar and ScienceDirect to retrieve relevant articles published between 2010 and 2022. A total of 31 articles fulfilling the inclusion criteria were analysed. The categories of potential markers for lameness reported in the literature included acute phase proteins (APPs), nociceptive neuropeptides, stress hormones, proteomes, inflammatory cytokines and metabolites in serum, urine and milk. Cortisol, APPs (serum amyloid A and haptoglobin) and serum, urinary and milk metabolites were the most studied biomarkers for lameness in dairy cows. While APPs, nociceptive neuropeptides and blood cortisol analyses assisted in elucidating the pain and stress experienced by lame cows during diagnosis and after treatment, evidence-based data are lacking to support their use in identifying susceptible animals. Meanwhile, metabolomic techniques revealed promising results in assessing metabolic alterations occurring before, during and after lameness onset. Several metabolites in serum, urinary and milk were reported that could be used to identify susceptible cows even before the onset of clinical signs. Nevertheless, further research is required employing metabolomic techniques to advance our knowledge of claw horn lesions and the discovery of novel biomarkers for identifying susceptible cows. The applicability of these biomarkers is challenging, particularly in the field, as they often require invasive procedures.
Collapse
Affiliation(s)
- Mohammed B Sadiq
- Department of Farm and Exotic Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| | - Siti Z Ramanoon
- Department of Farm and Exotic Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| | - Rozaihan Mansor
- Department of Farm and Exotic Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| | - Wan Mastura Shaik Mossadeq
- Department of Veterinary Pre-Clinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| | - Sharifah Salmah Syed-Hussain
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| | - Nurhusien Yimer
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| | - Ubedullah Kaka
- Department of Companion Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| | - Mokrish Ajat
- Department of Veterinary Pre-Clinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| | - Jesse Faez Firdaus Abdullah
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| |
Collapse
|
2
|
Wang X, Zhang B, Dong W, Zhao Y, Zhao X, Zhang Y, Zhang Q. SLC34A2 Targets in Calcium/Phosphorus Homeostasis of Mammary Gland and Involvement in Development of Clinical Mastitis in Dairy Cows. Animals (Basel) 2024; 14:1275. [PMID: 38731279 PMCID: PMC11083581 DOI: 10.3390/ani14091275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
The type II Na/Pi co-transporter (NaPi2b), encoded by the solute carrier (SLC) transporter 34A2 (SLC34A2), is responsible for calcium (Ca) and phosphorus (P) homeostasis. Unbalanced Ca/P metabolism induces mastitis in dairy cows. However, the specific role of SLC34A2 in regulating this imbalance in Holstein cows with clinical mastitis (CM) remains unclear. The aim of this study was to investigate the role of SLC34A2 and identify differentially expressed proteins (DEPs) that interact with SLC34A2 and are associated with Ca/P metabolism in dairy cows with CM. Immunohistochemical and immunofluorescence staining results showed that SLC34A2 was located primarily in the mammary epithelial cells of the mammary alveoli in both the control (healthy cows, Con/C) and CM groups. Compared to the Con/C group, the relative expression of the SLC34A2 gene and protein were significantly downregulated in the CM group. We identified 12 important DEPs included in 11 GO terms and two pathways interacting with SLC34A2 using data-independent acquisition proteomics. The PPI (protein-and-protein interaction) network results suggested that these DEPs were associated with ion metabolism and homeostasis, especially SLC34A2. These results demonstrate that SLC34A2 downregulation is negatively correlated with the occurrence and development of CM in Holstein cows, providing a basis for exploring the function and regulatory mechanism of SLC34A2 in Ca/P metabolism and homeostasis in Holstein cows with CM.
Collapse
Affiliation(s)
- Xueying Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.W.); (B.Z.); (W.D.); (X.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Bohao Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.W.); (B.Z.); (W.D.); (X.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Weitao Dong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.W.); (B.Z.); (W.D.); (X.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yu Zhao
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.W.); (B.Z.); (W.D.); (X.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.W.); (B.Z.); (W.D.); (X.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Quanwei Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.W.); (B.Z.); (W.D.); (X.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China;
| |
Collapse
|
3
|
Bisutti V, Mach N, Giannuzzi D, Vanzin A, Capra E, Negrini R, Gelain ME, Cecchinato A, Ajmone-Marsan P, Pegolo S. Transcriptome-wide mapping of milk somatic cells upon subclinical mastitis infection in dairy cattle. J Anim Sci Biotechnol 2023; 14:93. [PMID: 37403140 DOI: 10.1186/s40104-023-00890-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/07/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Subclinical intramammary infection (IMI) represents a significant problem in maintaining dairy cows' health. Disease severity and extent depend on the interaction between the causative agent, environment, and host. To investigate the molecular mechanisms behind the host immune response, we used RNA-Seq for the milk somatic cells (SC) transcriptome profiling in healthy cows (n = 9), and cows naturally affected by subclinical IMI from Prototheca spp. (n = 11) and Streptococcus agalactiae (S. agalactiae; n = 11). Data Integration Analysis for Biomarker discovery using Latent Components (DIABLO) was used to integrate transcriptomic data and host phenotypic traits related to milk composition, SC composition, and udder health to identify hub variables for subclinical IMI detection. RESULTS A total of 1,682 and 2,427 differentially expressed genes (DEGs) were identified when comparing Prototheca spp. and S. agalactiae to healthy animals, respectively. Pathogen-specific pathway analyses evidenced that Prototheca's infection upregulated antigen processing and lymphocyte proliferation pathways while S. agalactiae induced a reduction of energy-related pathways like the tricarboxylic acid cycle, and carbohydrate and lipid metabolism. The integrative analysis of commonly shared DEGs between the two pathogens (n = 681) referred to the core-mastitis response genes, and phenotypic data evidenced a strong covariation between those genes and the flow cytometry immune cells (r2 = 0.72), followed by the udder health (r2 = 0.64) and milk quality parameters (r2 = 0.64). Variables with r ≥ 0.90 were used to build a network in which the top 20 hub variables were identified with the Cytoscape cytohubba plug-in. The genes in common between DIABLO and cytohubba (n = 10) were submitted to a ROC analysis which showed they had excellent predictive performances in terms of discriminating healthy and mastitis-affected animals (sensitivity > 0.89, specificity > 0.81, accuracy > 0.87, and precision > 0.69). Among these genes, CIITA could play a key role in regulating the animals' response to subclinical IMI. CONCLUSIONS Despite some differences in the enriched pathways, the two mastitis-causing pathogens seemed to induce a shared host immune-transcriptomic response. The hub variables identified with the integrative approach might be included in screening and diagnostic tools for subclinical IMI detection.
Collapse
Affiliation(s)
- Vittoria Bisutti
- DAFNAE, University of Padova, Viale Dell'Università 16, Legnaro, PD, 35020, Italy.
| | - Núria Mach
- IHAP, Université de Toulouse, INRAE, ENVT, 23 Chemin Des Capelles, Toulouse, 31300, France
| | - Diana Giannuzzi
- DAFNAE, University of Padova, Viale Dell'Università 16, Legnaro, PD, 35020, Italy
| | - Alice Vanzin
- DAFNAE, University of Padova, Viale Dell'Università 16, Legnaro, PD, 35020, Italy
| | - Emanuele Capra
- IBBA, National Research Council, Via Einstein, Lodi, 26900, Italy
| | - Riccardo Negrini
- DIANA, Università Cattolica del Sacro Cuore, Via E. Parmense 84, Piacenza, 29122, Italy
| | - Maria Elena Gelain
- BCA, University of Padova, Viale Dell'Università 16, Legnaro, PD, 35020, Italy
| | - Alessio Cecchinato
- DAFNAE, University of Padova, Viale Dell'Università 16, Legnaro, PD, 35020, Italy
| | - Paolo Ajmone-Marsan
- DIANA, Università Cattolica del Sacro Cuore, Via E. Parmense 84, Piacenza, 29122, Italy
| | - Sara Pegolo
- DAFNAE, University of Padova, Viale Dell'Università 16, Legnaro, PD, 35020, Italy
| |
Collapse
|
4
|
Paramasivam R, Gopal DR, Dhandapani R, Subbarayalu R, Elangovan MP, Prabhu B, Veerappan V, Nandheeswaran A, Paramasivam S, Muthupandian S. Is AMR in Dairy Products a Threat to Human Health? An Updated Review on the Origin, Prevention, Treatment, and Economic Impacts of Subclinical Mastitis. Infect Drug Resist 2023; 16:155-178. [PMID: 36636377 PMCID: PMC9831082 DOI: 10.2147/idr.s384776] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023] Open
Abstract
Background Bovine mastitis is the most frequent and costly illness impacting dairy herds worldwide. The presence of subclinical mastitis in dairy cows has an impact on the decreased output of milk and milk quality, culling of affected cows, mortality rate, as well as mastitis-related treatment expenses, generating significant financial loss to the dairy industry. The pathogenic bacteria invade through the mammary gland, which then multiply in the milk-producing tissues causing infection, and the presence of pathogenic bacteria in milk is concerning, jeopardizes human health, and also has public health consequences. Intervention to promote herd health is essential to protect public health and the economy. Results This review attempts to provide an overview of subclinical mastitis, including mastitis in different species, the effect of mastitis on human health and its pathogenic mechanism, the prevalence and incidence of subclinical mastitis, and current preventive, diagnostic, and treatment methods for subclinical mastitis. It also elaborates on the management practices that should be followed by the farms to improve herd immunity and health. Conclusion This review brings the importance of the threat of antimicrobial resistance organisms to the dairy industry. Furthermore, this review gives a glimpse of the economic consequences faced by the farmers and a futuristic mastitis market analysis in the dairy industry.
Collapse
Affiliation(s)
- Ragul Paramasivam
- Research and Development Division, Chimertech Private Limited, Chennai, India
| | - Dhinakar Raj Gopal
- Department of Animal Biotechnology, Madras Veterinary College, Tamilnadu Veterinary and Animal Science University (TANUVAS), Chennai, 600007, India
| | | | | | | | - Bhavadharani Prabhu
- Research and Development Division, Chimertech Private Limited, Chennai, India
| | - Veeramani Veerappan
- Research and Development Division, Chimertech Private Limited, Chennai, India
| | | | | | - Saravanan Muthupandian
- AMR and Nanotherapeutics Lab, Centre for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India,Division of Biomedical Science, College of Health Sciences, School of Medicine, Mekelle University, Mekelle, Ethiopia,Correspondence: Saravanan Muthupandian, Email
| |
Collapse
|
5
|
Critical Review on Physiological and Molecular Features during Bovine Mammary Gland Development: Recent Advances. Cells 2022; 11:cells11203325. [PMID: 36291191 PMCID: PMC9600653 DOI: 10.3390/cells11203325] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
The mammary gland is a unique organ with the ability to undergo repeated cyclic changes throughout the life of mammals. Among domesticated livestock species, ruminants (cattle and buffalo) constitute a distinct class of livestock species that are known milk producers. Cattle and buffalo contribute to 51 and 13% of the total milk supply in the world, respectively. They also play an essential role in the development of the economy for farming communities by providing milk, meat, and draft power. The development of the ruminant mammary gland is highly dynamic and multiphase in nature. There are six developmental stages: embryonic, prepubertal, pubertal, pregnancy, lactation, and involution. There has been substantial advancement in our understanding of the development of the mammary gland in both mouse and human models. Until now, there has not been a thorough investigation into the molecular processes that underlie the various stages of cow udder development. The current review sheds light on the morphological and molecular changes that occur during various developmental phases in diverse species, with a particular focus on the cow udder. It aims to explain the physiological differences between cattle and non-ruminant mammalian species such as humans, mice, and monkeys. Understanding the developmental biology of the mammary gland in molecular detail, as well as species-specific variations, will facilitate the researchers working in this area in further studies on cellular proliferation, differentiation, apoptosis, organogenesis, and carcinogenesis. Additionally, in-depth knowledge of the mammary gland will promote its use as a model organ for research work and promote enhanced milk yield in livestock animals without affecting their health and welfare.
Collapse
|
6
|
The Future of Biomarkers in Veterinary Medicine: Emerging Approaches and Associated Challenges. Animals (Basel) 2022; 12:ani12172194. [PMID: 36077913 PMCID: PMC9454634 DOI: 10.3390/ani12172194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary In this review we seek to outline the role of new technologies in biomarker discovery, particularly within the veterinary field and with an emphasis on ‘omics’, as well as to examine why many biomarkers-despite much excitement-have not yet made it to clinical practice. Further we emphasise the critical need for close collaboration between clinicians, researchers and funding bodies and the need to set clear goals for biomarker requirements and realistic application in the clinical setting, ensuring that biomarker type, method of detection and clinical utility are compatible, and adequate funding, time and sample size are available for all phases of development. Abstract New biomarkers promise to transform veterinary practice through rapid diagnosis of diseases, effective monitoring of animal health and improved welfare and production efficiency. However, the road from biomarker discovery to translation is not always straightforward. This review focuses on molecular biomarkers under development in the veterinary field, introduces the emerging technological approaches transforming this space and the role of ‘omics platforms in novel biomarker discovery. The vast majority of veterinary biomarkers are at preliminary stages of development and not yet ready to be deployed into clinical translation. Hence, we examine the major challenges encountered in the process of biomarker development from discovery, through validation and translation to clinical practice, including the hurdles specific to veterinary practice and to each of the ‘omics platforms–transcriptomics, proteomics, lipidomics and metabolomics. Finally, recommendations are made for the planning and execution of biomarker studies with a view to assisting the success of novel biomarkers in reaching their full potential.
Collapse
|
7
|
Plasma proteomics reveals crosstalk between lipid metabolism and immunity in dairy cows receiving essential fatty acids and conjugated linoleic acid. Sci Rep 2022; 12:5648. [PMID: 35383209 PMCID: PMC8983735 DOI: 10.1038/s41598-022-09437-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/14/2022] [Indexed: 12/16/2022] Open
Abstract
Essential fatty acids (EFA) and conjugated linoleic acids (CLA) are unsaturated fatty acids with immune-modulatory effects, yet their synergistic effect is poorly understood in dairy cows. This study aimed at identifying differentially abundant proteins (DAP) and their associated pathways in dairy cows supplied with a combination of EFA and CLA during the transition from antepartum (AP) to early postpartum (PP). Sixteen Holstein cows were abomasally infused with coconut oil as a control (CTRL) or a mixture of EFA (linseed + safflower oil) and CLA (Lutalin, BASF) (EFA + CLA) from − 63 to + 63 days relative to parturition. Label-free quantitative proteomics was performed on plasma samples collected at days − 21, + 1, + 28, and + 63. During the transition time, DAP, consisting of a cluster of apolipoproteins (APO), including APOE, APOH, and APOB, along with a cluster of immune-related proteins, were related to complement and coagulation cascades, inflammatory response, and cholesterol metabolism. In response to EFA + CLA, specific APO comprising APOC3, APOA1, APOA4, and APOC4 were increased in a time-dependent manner; they were linked to triglyceride-enriched lipoprotein metabolisms and immune function. Altogether, these results provide new insights into metabolic and immune adaptation and crosstalk between them in transition dairy cows divergent in EFA + CLA status.
Collapse
|
8
|
Franco-Martínez L, Muñoz-Prieto A, Contreras-Aguilar MD, Želvytė R, Monkevičienė I, Horvatić A, Kuleš J, Mrljak V, Cerón JJ, Escribano D. Changes in saliva proteins in cows with mastitis: A proteomic approach. Res Vet Sci 2021; 140:91-99. [PMID: 34418789 DOI: 10.1016/j.rvsc.2021.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/05/2021] [Accepted: 08/06/2021] [Indexed: 11/29/2022]
Abstract
This study aimed to evaluate the possible saliva proteome changes in cows with mastitis using a Tandem Mass Tags (TMT) proteomics approach. For this purpose, the salivary proteomes from healthy cows and cows with mastitis were analysed, and their serum proteomes were also studied for comparative purposes. A total of eight saliva and serum paired samples for each group were used for the proteomic study, and eight additional samples for each group were analysed in the analytical and overlap performance studies. In saliva samples, 2192 proteins were identified, being sixty-three differentially modulated in mastitis. In serum, 1299 proteins were identified, being twenty-nine differentially modulated in mastitis. Gamma glutamyl transferase (γGT) in saliva and serum amyloid A (SAA) were validated by commercially available automated assays. In conclusion, there are changes in protein expression and metabolic pathways in saliva and serum proteomes of cows with mastitis, showing different response patterns but complementary information.
Collapse
Affiliation(s)
- L Franco-Martínez
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Espinardo, Murcia, Spain
| | - A Muñoz-Prieto
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| | - M D Contreras-Aguilar
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Espinardo, Murcia, Spain
| | - R Želvytė
- Department of Anatomy and Physiology, Research Center of Digestive Physiology and Pathology, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania
| | - I Monkevičienė
- Department of Anatomy and Physiology, Research Center of Digestive Physiology and Pathology, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania
| | - A Horvatić
- Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia
| | - J Kuleš
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| | - V Mrljak
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| | - J J Cerón
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Espinardo, Murcia, Spain
| | - D Escribano
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Espinardo, Murcia, Spain; Department of Animal Production, Veterinary School, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Espinardo, Murcia, Spain.
| |
Collapse
|
9
|
Marancik DP, Perrault JR, Komoroske LM, Stoll JA, Kelley KN, Manire CA. Plasma proteomics of green turtles ( Chelonia mydas) reveals pathway shifts and potential biomarker candidates associated with health and disease. CONSERVATION PHYSIOLOGY 2021; 9:coab018. [PMID: 33959286 PMCID: PMC8084024 DOI: 10.1093/conphys/coab018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/10/2021] [Accepted: 03/25/2021] [Indexed: 05/08/2023]
Abstract
Evaluating sea turtle health can be challenging due to an incomplete understanding of pathophysiologic responses in these species. Proteome characterization of clinical plasma samples can provide insights into disease progression and prospective biomarker targets. A TMT-10-plex-LC-MS/MS platform was used to characterize the plasma proteome of five, juvenile, green turtles (Chelonia mydas) and compare qualitative and quantitative protein changes during moribund and recovered states. The 10 plasma samples yielded a total of 670 unique proteins. Using ≥1.2-fold change in protein abundance as a benchmark for physiologic upregulation or downregulation, 233 (34.8%) were differentially regulated in at least one turtle between moribund and recovered states. Forty-six proteins (6.9%) were differentially regulated in all five turtles with two proteins (0.3%) demonstrating a statistically significant change. A principle component analysis showed protein abundance loosely clustered between moribund samples or recovered samples and for turtles that presented with trauma (n = 3) or as intestinal floaters (n = 2). Gene Ontology terms demonstrated that moribund samples were represented by a higher number of proteins associated with blood coagulation, adaptive immune responses and acute phase response, while recovered turtle samples included a relatively higher number of proteins associated with metabolic processes and response to nutrients. Abundance levels of 48 proteins (7.2%) in moribund samples significantly correlated with total protein, albumin and/or globulin levels quantified by biochemical analysis. Differentially regulated proteins identified with immunologic and physiologic functions are discussed for their possible role in the green turtle pathophysiologic response and for their potential use as diagnostic biomarkers. These findings enhance our ability to interpret sea turtle health and further progress conservation, research and rehabilitation programs for these ecologically important species.
Collapse
Affiliation(s)
- David P Marancik
- Department of Pathobiology, School of Veterinary Medicine, St. George’s University, True Blue, Grenada, West Indies
- Corresponding author: Tel: 473-444-4175.
| | - Justin R Perrault
- Loggerhead Marinelife Center, 14200 US Highway One, Juno Beach, FL 33408, USA
| | - Lisa M Komoroske
- College of Natural Resources, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, MA 01003, USA
| | - Jamie A Stoll
- College of Natural Resources, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, MA 01003, USA
| | - Kristina N Kelley
- Department of Pathobiology, School of Veterinary Medicine, St. George’s University, True Blue, Grenada, West Indies
| | - Charles A Manire
- Loggerhead Marinelife Center, 14200 US Highway One, Juno Beach, FL 33408, USA
| |
Collapse
|
10
|
Chakraborty S, Dhama K, Tiwari R, Iqbal Yatoo M, Khurana SK, Khandia R, Munjal A, Munuswamy P, Kumar MA, Singh M, Singh R, Gupta VK, Chaicumpa W. Technological interventions and advances in the diagnosis of intramammary infections in animals with emphasis on bovine population-a review. Vet Q 2020; 39:76-94. [PMID: 31288621 PMCID: PMC6830988 DOI: 10.1080/01652176.2019.1642546] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mastitis, an inflammation of the udder, is a challenging problem in dairy animals accounting for high economic losses. Disease complexity, degree of economic losses and increasing importance of the dairy industries along with public health concerns envisages devising appropriate diagnostics of mastitis, which can offer rapid, accurate and confirmatory diagnosis. The various diagnostic tests of mastitis have been divided into general or phenotypic and specific or genotypic tests. General or phenotypic tests are those that identify general alterations, which are not specific to any pathogen. Genotypic tests are specific, hence confirmatory for diagnosis of mastitis and include specific culture, polymerase chain reaction (PCR) and its various versions (e.g. qRT-PCR), loop-mediated isothermal amplification, lateral flow assays, nucleotide sequencing, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, and other molecular diagnostic methods. However, for highly specific and confirmatory diagnosis, pure cultures still provide raw materials for more sophisticated diagnostic technological interventions like PCR and nucleotide sequencing. Diagnostic ability of like infra-red thermography (IRT) has been shown to be similar to California mastitis test and also differentiates clinical mastitis from subclinical mastitis cases. As such, IRT can become a convenient and portable diagnostic tool. Of note, magnetic nanoparticles-based colorimetric biosensor assay was developed by using for instance proteolytic activity of plasmin or anti-S. aureus antibody. Last but not least, microRNAs have been suggested to be potential biomarkers for diagnosing bovine mastitis. This review summarizes the various diagnostic tests available for detection of mastitis including diagnosis through general and specific technological interventions and advances.
Collapse
Affiliation(s)
- Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences & Animal Husbandry , West Tripura , India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU) , Mathura , India
| | - Mohd Iqbal Yatoo
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir , Srinagar , India
| | | | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University , Bhopal , India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University , Bhopal , India
| | - Palanivelu Munuswamy
- Division of Pathology, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - M Asok Kumar
- Division of Pathology, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Mithilesh Singh
- Immunology Section, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Vivek Kumar Gupta
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University , Bangkok , Thailand
| |
Collapse
|
11
|
Abstract
The use of a proteomic approach to investigate changes in the milk proteome is growing and has parralleled the increasing technological developments in proteomics moving from early investigation using a gel-based two-dimensional separation approach to more quantitative method of current focus applying chromatography and mass spectrometry. Proteomic approaches to investigate lactational performance have made substantial findings especially in the alterations in lactation during mastitis. An experimental model of Streptococcus uberis infection of the mammary gland has been used as a means to determine change not only in the milk proteome, but also in the peptidome and in the metabolome caused by the infection. Examination of the peptidome, that is the peptides of less than 25 kDa in molecular weight, demonstrated an increase in small peptides most of which were casein degradation products but also included small bioactive peptides such as mammary-associated serum amyloid A3 (MSAA3). The peptidome has also been shown to differ depending on the causative bacteria of naturally occuring mastitis. The use of a non-gel-based relative quantitative proteomic methodology has revealed major changes in the protein component of milk in mastitis. The S. uberis infection lead to increases in the concentrations of proteins such as cathelicidins, haptoglobin, MSAA3 and decreases milk content of proteins such as xanthine oxidase, butyrophilin and β-1,4-galactosyltransferase. Analysis of all protein change data identified the acute phase, coagulation and complement pathways as well as proteins related to bile acid metabolism as being most modified. Examination of the small molecular weight organic molecules of milk using a metabolomic approach identified an increase in the content in milk during mastitis of bile acids such as taurochenodeoxycholic acid. Notable changes were also found in metabolites responding to infection of the mammary gland. Carbohydrate and nucleic acid metabolites were reduced, whereas lipid and nitrogen containing metabolites were increased. The latter included increases in amino acids along with di and tri peptides, likely to be the result of casein degradation. The use of proteomics and other omic technology is in its infancy in investigation of lactational parameters, but can already provide additional insight into the changes involved in disease and will have further value in physiological and nutritional investigation of lactation.
Collapse
|
12
|
Asselstine V, Miglior F, Suárez-Vega A, Fonseca PAS, Mallard B, Karrow N, Islas-Trejo A, Medrano JF, Cánovas A. Genetic mechanisms regulating the host response during mastitis. J Dairy Sci 2019; 102:9043-9059. [PMID: 31421890 DOI: 10.3168/jds.2019-16504] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/05/2019] [Indexed: 12/21/2022]
Abstract
Mastitis is a very costly and common disease in the dairy industry. The study of the transcriptome from healthy and mastitic milk somatic cell samples using RNA-Sequencing technology can provide measurements of transcript levels associated with the immune response to the infection. The objective of this study was to characterize the Holstein milk somatic cell transcriptome from 6 cows to determine host response to intramammary infections. RNA-Sequencing was performed on 2 samples from each cow from 2 separate quarters, one classified as healthy (n = 6) and one as mastitic (n = 6). In total, 449 genes were differentially expressed between the healthy and mastitic quarters (false discovery rate <0.05, fold change >±2). Among the differentially expressed genes, the most expressed genes based on reads per kilobase per million mapped reads (RPKM) in the healthy group were associated with milk components (CSN2 and CSN3), and in the mastitic group they were associated with immunity (B2M and CD74). In silico functional analysis was performed using the list of 449 differentially expressed genes, which identified 36 significantly enriched metabolic pathways (false discovery rate <0.01), some of which were associated with the immune system, such as cytokine-cytokine interaction and cell adhesion molecules. Seven functional candidate genes were selected, based on the criteria of being highly differentially expressed between healthy and mastitic groups and significantly enriched in metabolic pathways that are relevant to the inflammatory process (GLYCAM1, B2M, CD74, BoLA-DRA, FCER1G, SDS, and NFKBIA). Last, we identified the differentially expressed genes that are located in quantitative trait locus regions previously known to be associated with mastitis, specifically clinical mastitis, somatic cell count, and somatic cell score. It was concluded that multiple genes within quantitative trait locus regions could potentially affect host response to mastitis-causing agents, making some cows more susceptible to intramammary infections. The identification of potential candidate genes with functional, statistical, biological, and positional relevance associated with host defense to infection will contribute to a better understanding of the underlying genetic architecture associated with mastitis. This in turn will improve the sustainability of agricultural practices by facilitating the selection of cows with improved host defense leading to increased resistance to mastitis.
Collapse
Affiliation(s)
- V Asselstine
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - F Miglior
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - A Suárez-Vega
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - P A S Fonseca
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - B Mallard
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - N Karrow
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - A Islas-Trejo
- Department of Animal Science, University of California-Davis, Davis 95616
| | - J F Medrano
- Department of Animal Science, University of California-Davis, Davis 95616
| | - A Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada, N1G 2W1.
| |
Collapse
|
13
|
Milk proteome from in silico data aggregation allows the identification of putative biomarkers of negative energy balance in dairy cows. Sci Rep 2019; 9:9718. [PMID: 31273261 PMCID: PMC6609625 DOI: 10.1038/s41598-019-46142-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/19/2019] [Indexed: 01/13/2023] Open
Abstract
A better knowledge of the bovine milk proteome and its main drivers is a prerequisite for the modulation of bioactive proteins in milk for human nutrition, as well as for the discovery of biomarkers that are useful in husbandry and veterinary medicine. Milk composition is affected by lactation stage and reflects, in part, the energy balance of dairy cows. We aggregated the cow milk proteins reported in 20 recent proteomics publications to produce an atlas of 4654 unique proteins. A multistep assessment was applied to the milk proteome datasets according to lactation stages and milk fractions, including annotations, pathway analysis and literature mining. Fifty-nine proteins were exclusively detected in milk from early lactation. Among them, we propose six milk proteins as putative biomarkers of negative energy balance based on their implication in metabolic adaptative pathways. These proteins are PCK2, which is a gluconeogenic enzyme; ACAT1 and IVD, which are involved in ketone metabolism; SDHA and UQCRC1, which are related to mitochondrial oxidative metabolism; and LRRC59, which is linked to mammary gland cell proliferation. The cellular origin of these proteins warrants more in-depth research but may constitute part of a molecular signature for metabolic adaptations typical of early lactation.
Collapse
|
14
|
Greenwood SL, Honan MC. Symposium review: Characterization of the bovine milk protein profile using proteomic techniques. J Dairy Sci 2019; 102:2796-2806. [PMID: 30612793 DOI: 10.3168/jds.2018-15266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/26/2018] [Indexed: 12/27/2022]
Abstract
Identification and characterization of the comprehensive bovine milk proteome has historically been limited due to the dichotomy of protein abundances within milk. The high abundance of a select few proteins, including caseins, α-lactalbumin, β-lactoglobulin, and serum albumin, has hindered intensive identification and characterization of the vast array of low-abundance proteins in milk due to limitations in separation techniques and protein labeling capacity. In more recent years, the development and advancement of proteomics techniques have yielded valuable tools for characterization of the protein profile in bovine milk. More extensive fractionation and enrichment techniques, including the use of combinations of precipitation techniques, immunosorption, gel electrophoresis, chromatography, ultracentrifugation, and hexapeptide-based binding enrichment, have allowed for better isolation of lower abundance proteins for further downstream liquid chromatography-tandem mass spectrometry approaches. The different milk subfractions isolated during these processes can also be analyzed as individual entities to assess the protein profile unique to the different fractions-for instance, investigation of the skim milk-associated proteome versus the milk fat globule membrane-associated proteome. Updates to high-throughput methods, equipment, and software have also allowed for greater interpretation and visualization of the data. For instance, labeling techniques have enabled analysis of multiplexed samples and more accurate comparison of specific protein abundances and quantities across samples, and integration of gene ontology analysis has allowed for a more in-depth and visual representation of potential relationships between identified proteins. Inclusively, these developments in proteomic techniques have allowed for a rapid increase in the number of milk-associated proteins identified and a better grasp of the relationships and potential functionality of the proteins within the milk proteome.
Collapse
Affiliation(s)
- Sabrina L Greenwood
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington 05405.
| | - Mallory C Honan
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington 05405
| |
Collapse
|
15
|
Yang S, Zhao Z, Zhang A, Jia F, Song M, Huang Z, Fu J, Li G, Lin S. Proteomics analysis of chicken peripheral blood lymphocyte in Taishan Pinus massoniana pollen polysaccharide regulation. PLoS One 2018; 13:e0208314. [PMID: 30496273 PMCID: PMC6264863 DOI: 10.1371/journal.pone.0208314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 11/15/2018] [Indexed: 11/18/2022] Open
Abstract
The natural polysaccharides extracted from the pollen of Pinus massoniana (TPPPS) have been shown to be a promising immune adjuvant against several viral chicken diseases. However, the exact mechanism through which TPPPS enhances the host immune response in chicken remains poorly understood. In the current study, chicken peripheral blood lymphocytes were treated with varying concentrations of TPPPS and pro-inflammatory cytokines such as IFN-γ, iIL-2 and IL-6 were measured to determine the optimal dose of the polysaccharide. A comparative analysis was subsequently performed between the proteome of lymphocytes subjected to the best treatment conditions and that of untreated cells. Protein identification and quantitation revealed a panel of three up-regulated and seven down-regulated candidates in TPPPS-treated chicken peripheral blood lymphocytes. Further annotation and functional analysis suggested that a number of those protein candidates were involved in the regulation of host innate immune response, inflammation and other immune-related pathways. We believe that our results could serve as a stepping stone for further research on the immune-enhancing properties of TPPPS and other polysaccharide-based immune adjuvants.
Collapse
Affiliation(s)
- Shifa Yang
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan, Shandong, China
| | - Zengcheng Zhao
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Anyuan Zhang
- Institute of Veterinary Drug Qualily Inspection of Shandong Province, Jinan, Shandong, China
| | - Fengjuan Jia
- Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan, Shandong, China
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Minxun Song
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Zhongli Huang
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Jian Fu
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Guiming Li
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan, Shandong, China
| | - Shuqian Lin
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| |
Collapse
|
16
|
Bernard L, Bonnet M, Delavaud C, Delosière M, Ferlay A, Fougère H, Graulet B. Milk Fat Globule in Ruminant: Major and Minor Compounds, Nutritional Regulation and Differences Among Species. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700039] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Laurence Bernard
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores; F-63122 Saint-Genès-Champanelle France
| | - Muriel Bonnet
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores; F-63122 Saint-Genès-Champanelle France
| | - Carole Delavaud
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores; F-63122 Saint-Genès-Champanelle France
| | - Mylène Delosière
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores; F-63122 Saint-Genès-Champanelle France
| | - Anne Ferlay
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores; F-63122 Saint-Genès-Champanelle France
| | - Hélène Fougère
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores; F-63122 Saint-Genès-Champanelle France
| | - Benoît Graulet
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores; F-63122 Saint-Genès-Champanelle France
| |
Collapse
|
17
|
Identification of Host Defense-Related Proteins Using Label-Free Quantitative Proteomic Analysis of Milk Whey from Cows with Staphylococcus aureus Subclinical Mastitis. Int J Mol Sci 2017; 19:ijms19010078. [PMID: 29283389 PMCID: PMC5796028 DOI: 10.3390/ijms19010078] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/19/2017] [Accepted: 12/23/2017] [Indexed: 11/22/2022] Open
Abstract
Staphylococcus aureus is the most common contagious pathogen associated with bovine subclinical mastitis. Current diagnosis of S. aureus mastitis is based on bacteriological culture of milk samples and somatic cell counts, which lack either sensitivity or specificity. Identification of milk proteins that contribute to host defense and their variable responses to pathogenic stimuli would enable the characterization of putative biomarkers of subclinical mastitis. To accomplish this, milk whey samples from healthy and mastitic dairy cows were analyzed using a label-free quantitative proteomics approach. In total, 90 proteins were identified, of which 25 showed significant differential abundance between healthy and mastitic samples. In silico functional analyses indicated the involvement of the differentially abundant proteins in biological mechanisms and signaling pathways related to host defense including pathogen-recognition, direct antimicrobial function, and the acute-phase response. This proteomics and bioinformatics analysis not only facilitates the identification of putative biomarkers of S. aureus subclinical mastitis but also recapitulates previous findings demonstrating the abundance of host defense proteins in intramammary infection. All mass spectrometry data are available via ProteomeXchange with identifier PXD007516.
Collapse
|
18
|
Selection of possible signature peptides for the detection of bovine lactoferrin in infant formulas by LC-MS/MS. PLoS One 2017; 12:e0184152. [PMID: 28926582 PMCID: PMC5604936 DOI: 10.1371/journal.pone.0184152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 08/18/2017] [Indexed: 12/12/2022] Open
Abstract
An LC-MS/MS assay based on a signature peptide was developed and fully validated for the quantitation of bovine lactoferrin in infant formulas. Three unreported signature peptides were derived and identified from the tryptic peptides of bovine lactoferrin. The peptide ETTVFENLPEK was used for quantification based on assay performance. The blank matrix camel milk powder and bovine lactoferrin protein standards were mixed and spiked with stable isotope-labeled internal standard to establish a calibration curve. The established method was extensively validated by determining the linearity (R2 > 0.999), sensitivity (limit of quantitation, 0.16 mg/100 g), recovery (83.1–91.6%), precision (RSD < 5.4%) and repeatability (RSD < 7.7%). To validate the applicability of the method, four different brands of infant formulas in China were analysed. The acquired contents of bovine lactoferrin were 52.60–150.56 mg/100 g.
Collapse
|
19
|
Abstract
This article summarizes the relevant definitions related to biomarkers; reviews the general processes related to biomarker discovery and ultimate acceptance and use; and finally summarizes and reviews, to the extent possible, examples of the types of biomarkers used in animal species within veterinary clinical practice and human and veterinary drug development. We highlight opportunities for collaboration and coordination of research within the veterinary community and leveraging of resources from human medicine to support biomarker discovery and validation efforts for veterinary medicine.
Collapse
Affiliation(s)
- Michael J Myers
- Center for Veterinary Medicine, Food and Drug Administration, Rockville, Maryland 20855;
| | - Emily R Smith
- Center for Veterinary Medicine, Food and Drug Administration, Rockville, Maryland 20855;
| | - Phillip G Turfle
- Center for Veterinary Medicine, Food and Drug Administration, Rockville, Maryland 20855;
| |
Collapse
|