1
|
Abstract
The different technology platforms used to make poultry vaccines are reviewed. Vaccines based on classical technologies are either live attenuated or inactivated vaccines. Genetic engineering is applied to design by deletion, mutation, insertion, or chimerization, genetically modified target microorganisms that are used either as live or inactivated vaccines. Other vaccine platforms are based on one or a few genes of the target pathogen agent coding for proteins that can induce a protective immune response ("protective genes"). These genes can be expressed in vitro to produce subunit vaccines. Alternatively, vectors carrying these genes in their genome or nucleic acid-based vaccines will induce protection by in vivo expression of these genes in the vaccinated host. Properties of these different types of vaccines, including advantages and limitations, are reviewed, focusing mainly on vaccines targeting viral diseases and on technologies that succeeded in market authorization.
Collapse
|
2
|
Cytoplasmic Cargo Receptor p62 Inhibits Avibirnavirus Replication by Mediating Autophagic Degradation of Viral Protein VP2. J Virol 2020; 94:JVI.01255-20. [PMID: 32967959 PMCID: PMC7925189 DOI: 10.1128/jvi.01255-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/05/2020] [Indexed: 12/25/2022] Open
Abstract
Avibirnavirus causes severe immunosuppression and mortality in young chickens. VP2, the capsid protein of avibirnavirus, is responsible for virus assembly, maturation, and replication. Previous study showed that avibirnavirus particles could be engulfed into the autophagosome and degradation of virus particles took apart. Selective autophagy is a highly specific and regulated degradation pathway for the clearance of damaged or unwanted cytosolic components and superfluous organelles as well as invading microbes. However, whether and how selective autophagy removes avibirnavirus capsids is largely unknown. Here, we have shown that selective autophagy specifically clears ubiquitinated avibirnavirus protein VP2 by p62 recognition and that p62 is an inhibitor of avibirnavirus replication, highlighting the role of p62 as a potential drug target for mediating the removal of ubiquitinated virus components from cells. Selective autophagy regulates the degradation of cytoplasmic cargos, such as damaged organelles, invading pathogens, and aggregated proteins. Furthermore, autophagy is capable of degrading avibirnavirus, but the mechanism responsible for this process is unclear. Here, we show that autophagy cargo receptor p62 regulates the degradation of the avibirnavirus capsid protein VP2. Binding of p62 to VP2 enhances autophagic induction and promotes autophagic degradation of viral protein VP2. Further study showed that the interaction of p62 with viral protein VP2 is dependent on ubiquitination at the K411 site of VP2 and the ubiquitin-associated domain of p62. Mutation analysis showed that the K411R mutation of viral protein VP2 prohibits its p62-mediated degradation. Consistent with this finding, p62 lacking the ubiquitin-associated domain or the LC3-interacting region no longer promoted the degradation of VP2. Virus production revealed that the knockout of p62 but not the overexpression of p62 promotes the replication of avibirnavirus. Collectively, our findings suggest that p62 mediates selective autophagic degradation of avibirnavirus protein VP2 in a ubiquitin-dependent manner and is an inhibitor of avibirnavirus replication. IMPORTANCE Avibirnavirus causes severe immunosuppression and mortality in young chickens. VP2, the capsid protein of avibirnavirus, is responsible for virus assembly, maturation, and replication. Previous study showed that avibirnavirus particles could be engulfed into the autophagosome and degradation of virus particles took apart. Selective autophagy is a highly specific and regulated degradation pathway for the clearance of damaged or unwanted cytosolic components and superfluous organelles as well as invading microbes. However, whether and how selective autophagy removes avibirnavirus capsids is largely unknown. Here, we have shown that selective autophagy specifically clears ubiquitinated avibirnavirus protein VP2 by p62 recognition and that p62 is an inhibitor of avibirnavirus replication, highlighting the role of p62 as a potential drug target for mediating the removal of ubiquitinated virus components from cells.
Collapse
|
3
|
Rapid Generation of Attenuated Infectious Bursal Disease Virus from Dual-Promoter Plasmids by Reduction of Viral Ribonucleoprotein Activity. J Virol 2020; 94:JVI.01569-19. [PMID: 31915284 DOI: 10.1128/jvi.01569-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/29/2019] [Indexed: 01/02/2023] Open
Abstract
Infectious bursal disease virus (IBDV) of the Birnaviridae family leads to immunosuppression of young chickens by destroying B cells in the bursa of Fabricius (BFs). Given the increasing number of variant IBDV strains, we urgently require a method to produce attenuated virus for vaccine development. To accomplish this goal, the dual-promoter plasmids in which the RNA polymerase II and RNA polymerase I (Pol I) promoters were placed upstream of the IBDV genomic sequence, which was followed by mouse Pol I terminator and a synthetic polyadenylation signal, were developed for rapid generation of IBDV. This approach did not require trans-supplementation of plasmids for the expression of VP1 and VP3, the main components of IBDV ribonucleoprotein (RNP). Based on the finding in this study that the IBDV RNP activity was partially retained by VP1-FLAG, we successfully rescued the replication-competent IBDV/1FLAG expressing VP1-FLAG. Compared with its parental counterpart, IBDV/1FLAG formed smaller size plaques in cultured cells and induced the same 100% immune protection in vivo However, neither retarded development nor severe BFs lesion was observed in the IBDV/1FLAG-inoculated chickens. Collectively, this is the first report that viral RNP activity was affected by the addition of an epitope tag on the componential viral proteins. Furthermore, this work demonstrates the rapid generation of attenuated IBDV from dual-promoter plasmids via reducing viral RNP activity by a fused FLAG tag on the C terminus of VP1. This would be a convenient strategy to attenuate epidemic variant IBDV strains for rapid and efficient vaccine development.IMPORTANCE Immunosuppression in chickens as a result of infectious bursal disease virus (IBDV) infection leads to significant economic losses in the poultry industry worldwide every year. Currently, vaccination is still the best way to prevent the prevalence of IBDV. However, with the occurrence of increasing numbers of variant IBDV strains, it is challenging to develop antigen-matched live attenuated vaccine. Here, we first developed a dual-promoter reverse-genetic system for the rapid generation of IBDV. Using this system, the attenuated IBDV/1FLAG expressing VP1-FLAG, which displays the decreased viral RNP activity, was rescued. Moreover, IBDV/1FLAG inoculation induced a similar level of neutralizing antibodies to that of its parental counterpart, protecting chickens against lethal challenge. Our study, for the first time, describes a dual-promoter reverse-genetic approach for the rapid generation of attenuated IBDV while maintaining entire parental antigenicity, suggesting a potential new method to attenuate epidemic variant IBDV strains for vaccine development.
Collapse
|
4
|
Wang W, Song Y, Liu L, Zhang Y, Wang T, Zhang W, Li K, Qi X, Gao Y, Gao L, Liu C, Zhang Y, Wang Y, Pan Q, He G, Wang X, Cui H. Neutralizing-antibody-mediated protection of chickens against infectious bursal disease via one-time vaccination with inactivated recombinant Lactococcus lactis expressing a fusion protein constructed from the RCK protein of Salmonella enterica and VP2 of infectious bursal disease virus. Microb Cell Fact 2019; 18:21. [PMID: 30704494 PMCID: PMC6357496 DOI: 10.1186/s12934-019-1061-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023] Open
Abstract
Background Infectious bursal disease (IBD) is an acute contagious immunosuppressive disease which lead to acute bursal injury and immune dysfunction in poultry. It has caused heavy economic losses in the commercial poultry industry for many years in worldwide. Attenuated live vaccine has widely used in poultry showing some promising signs against IBDV infection. But it has defects such as generating enhanced virulence and immunosuppression prohibits. Therefore, the development of mucosal vaccines using the food-grade lactic acid bacterium is necessary. Here, we construct a recombinant Lactococcus co-expressing the major IBDV antigens VP2 and RCK protein of Salmonella enterica to prevent IBD. Results The recombinant fusion protein VP2-RCK was expressed in a soluble and stable form in the cytoplasm of the recombinant Lactococcus lactis. Animal experiments showed that: (1) the survival rates of the injected immunization inactivated recombinant LAB group and oral immunization live recombinant LAB group were 100% and 80%, respectively; (2) ELISA titers of all serum samples from all experimental groups were negative, but high amounts of specific neutralizing antibodies were detected (1:210 to 1:212); and (3) the bursas of the injected immunization inactivated recombinant LAB group did not suffer damage, as confirmed by clinical observation and bursal histopathological examination. Our results indicate that r-L. lactis-OptiVP2-RCK induces a specific neutralizing-antibody-mediated immune response that confers full protection against very-virulent IBDV (vvIBDV) challenge. Conclusion Lactococcus lactis NZ3900 strain and its matching plasmid pNZ8149 could express the recombinant fusion protein VP2-RCK in a soluble form in the cytoplasm. The protective efficacy of r-L. lactis-OptiVP2-RCK (100%) was better than r-L. lactis-OptiVP2 (0%) which prove RCK protein played its unique role. The neutralizing antibodies titers against infectious bursal disease virus via one-time vaccination with inactivated r-L. lactis-OptiVP2-RCK could reach 1:210 to 1:212, but ELISA titers of all serum samples were negative. For this phenomenon, perhaps because of the change of delivery pathway or the spatial structure of fusion protein. We need further study to test these hypotheses.
Collapse
Affiliation(s)
- Wenqian Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yuxin Song
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.,College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Linlin Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yuan Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.,College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Tingting Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Wang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.,College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Kai Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xiaole Qi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yulong Gao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Li Gao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Changjun Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yanping Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yongqiang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Qing Pan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Gaoming He
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Xiaomei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Hongyu Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| |
Collapse
|
5
|
Gallid herpesvirus 3 SB-1 strain as a recombinant viral vector for poultry vaccination. NPJ Vaccines 2018; 3:21. [PMID: 29872549 PMCID: PMC5972151 DOI: 10.1038/s41541-018-0056-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 11/11/2022] Open
Abstract
Live herpesvirus-vectored vaccines are widely used in veterinary medicine to protect against many infectious diseases. In poultry, three strains of herpesvirus vaccines are used against Marek's disease (MD). However, of these, only the herpesvirus of turkeys (HVT) has been successfully developed and used as a recombinant vaccine vector to induce protection against other avian viral diseases such as infectious bursal disease (IBD), Newcastle disease (ND) or avian influenza (AI). Although effective when administered individually, recombinant HVT vectors have limitations when combined in multivalent vaccines. Thus there is a need for developing additional viral vectors that could be combined with HVT in inducing protection against multiple avian diseases in multivalent vaccines. Gallid herpesvirus 3 (GaHV3) strain SB-1 is widely used by the poultry industry as bivalent vaccine in combination with HVT to exploit synergistic effects against MD. Here, we report the development and application of SB-1 as a vaccine vector to express the VP2 capsid antigen of IBD virus. A VP2 expression cassette was introduced into the SB-1 genome at three intergenic locations (UL3/UL4, UL10/UL11 and UL21/UL22) using recombineering methods on the full-length pSB-1 infectious clone of the virus. We show that the recombinant SB-1 vectors expressing VP2 induced neutralising antibody responses at levels comparable to that of commercial HVT-based VAXXITEKHVT+IBD vaccine. Birds vaccinated with the experimental recombinant SB-1 vaccine were protected against clinical disease after challenge with the very virulent UK661 IBDV isolate, demonstrating its value as an efficient viral vector for developing multivalent vaccines against avian diseases.
Collapse
|