1
|
Heyman E, Meeremans M, Van Poucke M, Peelman L, Devriendt B, De Schauwer C. Validation of multiparametric panels for bovine mesenchymal stromal cell phenotyping. Cytometry A 2023; 103:744-755. [PMID: 37173856 DOI: 10.1002/cyto.a.24737] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Bovine mesenchymal stromal cells (MSCs) display important features that render them valuable for cell therapy and tissue engineering strategies, such as self-renewal, multi-lineage differentiation, as well as immunomodulatory properties. These cells are also promising candidates to produce cultured meat. For all these applications, it is imperative to unequivocally identify this cell population. The isolation and in vitro tri-lineage differentiation of bovine MSCs is already described, but data on their immunophenotypic characterization is not yet complete. The currently limited availability of monoclonal antibodies (mAbs) specific for bovine MSC markers strongly hampers this research. Following the minimal criteria defined for human MSCs, bovine MSCs should express CD73, CD90, and CD105 and lack expression of CD14 or CD11b, CD34, CD45, CD79α, or CD19, and MHC-II. Additional surface proteins which have been reported to be expressed include CD29, CD44, and CD106. In this study, we aimed to immunophenotype bovine adipose tissue (AT)-derived MSCs using multi-color flow cytometry. To this end, 13 commercial Abs were screened for recognizing bovine epitopes using the appropriate positive controls. Using flow cytometry and immunofluorescence microscopy, cross-reactivity was confirmed for CD34, CD73, CD79α, and CD90. Unfortunately, none of the evaluated CD105 and CD106 Abs cross-reacted with bovine cells. Subsequently, AT-derived bovine MSCs were characterized using multi-color flow cytometry based on their expression of nine markers. Bovine MSCs clearly expressed CD29 and CD44, and lacked expression of CD14, CD45, CD73, CD79α, and MHCII, while a variable expression was observed for CD34 and CD90. In addition, the mRNA transcription level of different markers was analyzed using reverse transcription quantitative polymerase chain reaction. Using these panels, bovine MSCs can be properly immunophenotyped which allows a better characterization of this heterogenous cell population.
Collapse
Affiliation(s)
- Emma Heyman
- Veterinary Stem Cell Research Unit, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - M Meeremans
- Veterinary Stem Cell Research Unit, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - M Van Poucke
- Laboratory of Animal Genetics, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - L Peelman
- Laboratory of Animal Genetics, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - B Devriendt
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Catharina De Schauwer
- Veterinary Stem Cell Research Unit, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
2
|
Kaigorodov DG, Kaigorodova AD. The non-protein fraction of embryonic stem cell secretome has antibacterial effects against antibiotic-resistant strains of bacteria. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2022. [DOI: 10.15789/2220-7619-npf-1940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In recent years, the search for new antibacterial agents has been shown to be extremely important, as the burgeoning problem of antibiotic resistance and the toxicity of many antimicrobial compounds has forced scientists to turn their attention to alternatives. Searching stem cell secretomes, including the non-protein part, for new antimicrobials is a promising area of current research. We investigated the effect of the non-protein part of an embryonic stem cell secretome on various bacterial strains, including antibiotic-resistant ones. The non-protein fraction of the stem cell secretome was obtained by preparative high-performance liquid chromatography. Bactericidal activity was tested against eight museum strains and 206 clinical strains of bacteria by comparing the secretomes effects on growth of bacterial cultures. The museum strains showed some dose-dependent effects at concentrations of 25-100 g/ml. Against the clinical strains of Gram-negative microorganisms of different species, some bactericidal activity was shown at a concentration of 100 g/ml, but sensitivity of bacteria to the secretome fraction varied, with growth stimulation being detected in some strains. Application of higher concentrations of 100-1000 g/ml showed no dose-dependent effect. The clinical strains of E. coli and P. aeruginosa were shown to have reduced bactericidal activity after one day of incubation. Thus, this study has shown that the non-protein fraction of the embryonic stem cell secretome has bactericidal effects against some strains. However, more detailed studies are needed to identify the mechanism of action and to determine the most effective dose and frequency of administration.
Collapse
|
3
|
An Update on Applications of Cattle Mesenchymal Stromal Cells. Animals (Basel) 2022; 12:ani12151956. [PMID: 35953945 PMCID: PMC9367612 DOI: 10.3390/ani12151956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Among livestock species, cattle are crucially important for the meat and milk production industry. Cows can be affected by different pathologies, such as mastitis, endometritis and lameness, which can negatively affect either food production or reproductive efficiency. The use of mesenchymal stromal cells (MSCs) is a valuable tool both in the treatment of various medical conditions and in the application of reproductive biotechnologies. This review provides an update on state-of-the-art applications of bovine MSCs to clinical treatments and reproductive biotechnologies. Abstract Attention on mesenchymal stromal cells (MSCs) research has increased in the last decade mainly due to the promising results about their plasticity, self-renewal, differentiation potential, immune modulatory and anti-inflammatory properties that have made stem cell therapy more clinically attractive. Furthermore, MSCs can be easily isolated and expanded to be used for autologous or allogenic therapy following the administration of either freshly isolated or previously cryopreserved cells. The scientific literature on the use of stromal cells in the treatment of several animal health conditions is currently available. Although MSCs are not as widely used for clinical treatments in cows as for companion and sport animals, they have the potential to be employed to improve productivity in the cattle industry. This review provides an update on state-of-the-art applications of bovine MSCs to clinical treatments and reproductive biotechnologies.
Collapse
|
4
|
Harman RM, Marx C, Van de Walle GR. Translational Animal Models Provide Insight Into Mesenchymal Stromal Cell (MSC) Secretome Therapy. Front Cell Dev Biol 2021; 9:654885. [PMID: 33869217 PMCID: PMC8044970 DOI: 10.3389/fcell.2021.654885] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
The therapeutic potential of the mesenchymal stromal cell (MSC) secretome, consisting of all molecules secreted by MSCs, is intensively studied. MSCs can be readily isolated, expanded, and manipulated in culture, and few people argue with the ethics of their collection. Despite promising pre-clinical studies, most MSC secretome-based therapies have not been implemented in human medicine, in part because the complexity of bioactive factors secreted by MSCs is not completely understood. In addition, the MSC secretome is variable, influenced by individual donor, tissue source of origin, culture conditions, and passage. An increased understanding of the factors that make up the secretome and the ability to manipulate MSCs to consistently secrete factors of biologic importance will improve MSC therapy. To aid in this goal, we can draw from the wealth of information available on secreted factors from MSC isolated from veterinary species. These translational animal models will inspire efforts to move human MSC secretome therapy from bench to bedside.
Collapse
Affiliation(s)
| | | | - Gerlinde R. Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
5
|
Cushnie TPT, Cushnie B, Echeverría J, Fowsantear W, Thammawat S, Dodgson JLA, Law S, Clow SM. Bioprospecting for Antibacterial Drugs: a Multidisciplinary Perspective on Natural Product Source Material, Bioassay Selection and Avoidable Pitfalls. Pharm Res 2020; 37:125. [PMID: 32529587 DOI: 10.1007/s11095-020-02849-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 05/30/2020] [Indexed: 12/12/2022]
Abstract
Bioprospecting is the exploration, extraction and screening of biological material and sometimes indigenous knowledge to discover and develop new drugs and other products. Most antibiotics in current clinical use (eg. β-lactams, aminoglycosides, tetracyclines, macrolides) were discovered using this approach, and there are strong arguments to reprioritize bioprospecting over other strategies in the search for new antibacterial drugs. Academic institutions should be well positioned to lead the early stages of these efforts given their many thousands of locations globally and because they are not constrained by the same commercial considerations as industry. University groups can lack the full complement of knowledge and skills needed though (eg. how to tailor screening strategy to biological source material). In this article, we review three key aspects of the bioprospecting literature (source material and in vitro antibacterial and toxicity testing) and present an integrated multidisciplinary perspective on (a) source material selection, (b) legal, taxonomic and other issues related to source material, (c) cultivation methods, (d) bioassay selection, (e) technical standards available, (f) extract/compound dissolution, (g) use of minimum inhibitory concentration and selectivity index values to identify progressible extracts and compounds, and (h) avoidable pitfalls. The review closes with recommendations for future study design and information on subsequent steps in the bioprospecting process.
Collapse
Affiliation(s)
- T P Tim Cushnie
- Faculty of Medicine, Mahasarakham University, 269 Nakornsawan Road, Mahasarakham, 44000, Thailand.
| | - Benjamart Cushnie
- Faculty of Pharmacy, Mahasarakham University, Kantarawichai, Thailand
| | - Javier Echeverría
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Winita Fowsantear
- Faculty of Medicine, Mahasarakham University, 269 Nakornsawan Road, Mahasarakham, 44000, Thailand
| | - Sutthiwan Thammawat
- Faculty of Medicine, Mahasarakham University, 269 Nakornsawan Road, Mahasarakham, 44000, Thailand
| | | | - Samantha Law
- National Collection of Industrial, Food and Marine Bacteria (NCIMB) Ltd, Aberdeen, UK
| | - Simon M Clow
- PMI BioPharma Solutions LLC, Nashville, Tennessee, USA
| |
Collapse
|
6
|
Gussenhoven R, Klein L, Ophelders DRMG, Habets DHJ, Giebel B, Kramer BW, Schurgers LJ, Reutelingsperger CPM, Wolfs TGAM. Annexin A1 as Neuroprotective Determinant for Blood-Brain Barrier Integrity in Neonatal Hypoxic-Ischemic Encephalopathy. J Clin Med 2019; 8:jcm8020137. [PMID: 30682787 PMCID: PMC6406389 DOI: 10.3390/jcm8020137] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/08/2019] [Accepted: 01/20/2019] [Indexed: 12/13/2022] Open
Abstract
Blood-brain barrier (BBB) disruption is associated with hypoxia-ischemia (HI) induced brain injury and life-long neurological pathologies. Treatment options are limited. Recently, we found that mesenchymal stem/stromal cell derived extracellular vesicles (MSC-EVs) protected the brain in ovine fetuses exposed to HI. We hypothesized that Annexin A1 (ANXA1), present in MSC-EVs, contributed to their therapeutic potential by targeting the ANXA1/Formyl peptide receptor (FPR), thereby preventing loss of the BBB integrity. Cerebral ANXA1 expression and leakage of albumin into the fetal ovine brain parenchyma after HI were analyzed by immunohistochemistry. For mechanistic insights, barrier integrity of primary fetal endothelial cells was assessed after oxygen-glucose deprivation (OGD) followed by treatment with MSC-EVs or human recombinant ANXA1 in the presence or absence of FPR inhibitors. Our study revealed that BBB integrity was compromised after HI which was improved by MSC-EVs containing ANXA1. Treatment with these MSC-EVs or ANXA1 improved BBB integrity after OGD, an effect abolished by FPR inhibitors. Furthermore, endogenous ANXA1 was depleted within 24 h after induction of HI in cerebovasculature and ependyma and upregulated 72 h after HI in microglia. Targeting ANXA1/FPR with ANXA1 in the immature brain has great potential in preventing BBB loss and concomitant brain injury following HI.
Collapse
Affiliation(s)
- Ruth Gussenhoven
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands.
- School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands.
| | - Luise Klein
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands.
- School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands.
| | - Daan R M G Ophelders
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands.
- School of Oncology and Developmental Biology (GROW), Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands.
| | - Denise H J Habets
- School of Oncology and Developmental Biology (GROW), Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands.
- Department of Obstetrics and Gynecology, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands.
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany.
| | - Boris W Kramer
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands.
- School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands.
- School of Oncology and Developmental Biology (GROW), Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands.
| | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands.
| | - Chris P M Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands.
| | - Tim G A M Wolfs
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands.
- School of Oncology and Developmental Biology (GROW), Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands.
- Department of Biomedical Engineering (BMT), School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands.
| |
Collapse
|
7
|
Gugjoo MB, Amarpal, Fazili MR, Shah RA, Sharma GT. Mesenchymal stem cell: Basic research and potential applications in cattle and buffalo. J Cell Physiol 2018; 234:8618-8635. [PMID: 30515790 DOI: 10.1002/jcp.27846] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022]
Abstract
Characteristic features like self-renewal, multilineage differentiation potential, and immune-modulatory/anti-inflammatory properties, besides the ability to mobilize and home distant tissues make stem cells (SCs) a lifeline for an individual. Stem cells (SCs) if could be harvested and expanded without any abnormal change may be utilized as an all-in-one solution to numerous clinical ailments. However, slender understanding of their basic physiological properties, including expression potential, behavioral alternations during culture, and the effect of niche/microenvironment has currently restricted the clinical application of SCs. Among various types of SCs, mesenchymal stem cells (MSCs) are extensively studied due to their easy availability, straightforward harvesting, and culturing procedures, besides, their less likelihood to produce teratogens. Large ruminant MSCs have been harvested from various adult tissues and fetal membranes and are well characterized under in vitro conditions but unlike human or other domestic animals in vivo studies on cattle/buffalo MSCs have mostly been aimed at improving the animals' production potential. In this document, we focused on the status and potential application of MSCs in cattle and buffalo.
Collapse
Affiliation(s)
- Mudasir Bashir Gugjoo
- Division of Veterinary Clinical Complex, FVSc & AH, SKUAST Kashmir, Srinagar, J&K, India.,Division of Surgery, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Amarpal
- Division of Surgery, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Mujeeb R Fazili
- Division of Veterinary Clinical Complex, FVSc & AH, SKUAST Kashmir, Srinagar, J&K, India
| | - Riaz A Shah
- Division of Animal Biotechnology, FVSc & AH, SKUAST Kashmir, Srinagar, J&K, India
| | - Gutulla Taru Sharma
- Division of Physiology & Climatology, Indian Veterinary Research Institute, Bareilly, UP, India
| |
Collapse
|
8
|
Endometrial Stem Cells in Farm Animals: Potential Role in Uterine Physiology and Pathology. Bioengineering (Basel) 2018; 5:bioengineering5030075. [PMID: 30231577 PMCID: PMC6163755 DOI: 10.3390/bioengineering5030075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/07/2018] [Accepted: 09/14/2018] [Indexed: 01/24/2023] Open
Abstract
The endometrium is an accessible source of mesenchymal stem cells. Most investigations of endometrial mesenchymal stem cells (eMSCs) have been conducted in humans. In animals, particularly in livestock, eMSC research is scarce. Such cells have been described in the bovine, ovine, caprine, porcine, and equine endometrium. Here we provide the state of the art of eMSCs in farm animals with a focus on the bovine species. In bovines, eMSCs have been identified during the phases of the estrous cycle, during which their functionality and the presence of eMSC-specific markers has been shown to change. Moreover, postpartum inflammation related to endometritis affects the presence and functionality of eMSCs, and prostaglandin E2 (PGE2) may be the mediator of such changes. We demonstrated that exposure to PGE2 in vitro modifies the transcriptomic profile of eMSCs, showing its potential role in the fate of stem cell activation, migration, and homing during pathological uterine inflammation in endometritis and in healthy puerperal endometrium. Farm animal research on eMSCs can be of great value in translational research for certain uterine pathologies and for immunomodulation of local responses to pathogens, hormones, and other substances. Further research is necessary in areas such as in vivo location of the niches and their immunomodulatory and anti-infective properties.
Collapse
|