1
|
Saravanakumar K, Sivasantosh S, Sathiyaseelan A, Sankaranarayanan A, Naveen KV, Zhang X, Jamla M, Vijayasarathy S, Vishnu Priya V, MubarakAli D, Wang MH. Impact of benzo[a]pyrene with other pollutants induce the molecular alternation in the biological system: Existence, detection, and remediation methods. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119207. [PMID: 35351595 DOI: 10.1016/j.envpol.2022.119207] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
The exposure of benzo [a]pyrene (BaP) in recent times is rather unavoidable than ever before. BaP emissions are sourced majorly from anthropogenic rather than natural provenance from wildfires and volcanic eruptions. A major under-looked source is via the consumption of foods that are deep-fried, grilled, and charcoal smoked foods (meats in particular). BaP being a component of poly aromatic hydrocarbons has been classified as a Group I carcinogenic agent, which has been shown to cause both systemic and localized effects in animal models as well as in humans; has been known to cause various forms of cancer, accelerate neurological disorders, invoke DNA and cellular damage due to the generation of reactive oxygen species and involve in multi-generational phenotypic and genotypic defects. BaP's short and accumulated exposure has been shown in disrupting the fertility of gamete cells. In this review, we have discussed an in-depth and capacious run-through of the various origins of BaP, its economic distribution and its impact as well as toxicological effects on the environment and human health. It also deals with a mechanism as a single compound and its ability to synergize with other chemicals/materials, novel sensitive detection methods, and remediation approaches held in the environment.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| | | | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| | - Alwarappan Sankaranarayanan
- Department of Life Sciences, Sri Sathya Sai University for Human Excellence, Navanihal, Karnataka, 585 313, India.
| | - Kumar Vishven Naveen
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| | - Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| | - Monica Jamla
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Pune, 411007, India.
| | - Sampathkumar Vijayasarathy
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| | - Veeraraghavan Vishnu Priya
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India.
| | - Davoodbasha MubarakAli
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, 600048, India.
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| |
Collapse
|
2
|
Bassel LL, Co C, Macdonald A, Sly L, McCandless EE, Hewson J, Tiwari R, Sharif S, Siracusa L, Clark ME, Caswell JL. Pulmonary and systemic responses to aerosolized lysate of Staphylococcus aureus and Escherichia coli in calves. BMC Vet Res 2020; 16:168. [PMID: 32471444 PMCID: PMC7260748 DOI: 10.1186/s12917-020-02383-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/17/2020] [Indexed: 02/06/2023] Open
Abstract
Background Constitutive and inducible defenses protect the respiratory tract from bacterial infection. The objective of this study was to characterize the response to an aerosolized lysate of killed bacteria, as a basis for studying the regulation and in vivo effects of these inducible innate immune responses. Results Bacterial lysate consisting of heat-killed and sonicated Staphylococcus aureus and Escherichia coli was aerosolized to 6 calves and systemic and pulmonary innate immune and inflammatory responses were measured in the first 24 h relative to baseline. Evaluated parameters included clinical parameters (body temperature and heart and respiratory rates), blood acute phase proteins and leukocyte counts, and leukocytes and proteins in bronchoalveolar lavage fluid. Mild clinical signs with increased heart rates and rectal temperatures developed following administration of the lysate, with resolution by 24 h. Serum haptoglobin and plasma fibrinogen concentrations were elevated at 24 h relative to baseline. Bronchoalveolar lavage fluid (BALF) had increased cellularity and increased proportion of neutrophils, as well as higher concentrations of interleukin (IL)-8, IL-10 and total protein at 24 h relative to baseline. Mass spectrometry identified 965 unique proteins in BALF: 19 proteins were increased and 26 proteins were decreased relative to baseline. The upregulated proteins included those involved in innate immunity including activation of complement, neutrophils and platelets. At postmortem examination, calves receiving higher doses of lysate had areas of lobular consolidation and interlobular edema. Histologically, neutrophils were present within bronchioles and to a lesser extent within alveoli. Calves receiving highest doses of lysate had patchy areas of neutrophils, hemorrhage and hyaline membranes within alveoli. Conclusions Aerosolization of bacterial lysate stimulated an innate immune response in lungs and airways, with alveolar damage observed at higher doses. Such a stimulus could be of value for investigating the effects of inducible innate immune responses on occurrence of disease, or for evaluating how stress, drugs or genetics affect these dynamic responses of the respiratory tract.
Collapse
Affiliation(s)
- Laura L Bassel
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Carmon Co
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Alaina Macdonald
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Laurel Sly
- Global Therapeutics Research, Veterinary Medicine Research and Development, Zoetis Inc., Kalamazoo, MI, USA
| | - Erin E McCandless
- Global Therapeutics Research, Veterinary Medicine Research and Development, Zoetis Inc., Kalamazoo, MI, USA
| | - Joanne Hewson
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Raksha Tiwari
- Global Therapeutics Research, Veterinary Medicine Research and Development, Zoetis Inc., Kalamazoo, MI, USA
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Laura Siracusa
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Mary Ellen Clark
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jeff L Caswell
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|