1
|
Xiao J, Han Z, Li X, Phillips CJC, Shi B. Effects of Transport Duration and Pre-Transport Fasting on Blood Biochemistry in Dorper × Mongolian Sheep. Animals (Basel) 2024; 14:1482. [PMID: 38791699 PMCID: PMC11117301 DOI: 10.3390/ani14101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Transport is a high-risk time for sheep, especially if the distances are long and sheep are fasted for a long time beforehand. Two experiments were conducted to compare transport durations of 1 hour (1 h) and 3 hours (3 h) and the effects of feeding before transport using Dorper × Mongolian sheep, which are typical of the region and may be tolerant of the high temperatures in the Inner Mongolian summer. Thirty 4-month-old male sheep were randomly divided into two treatment groups, with 15 sheep/treatment in each experiment, to evaluate the effects on blood biochemical indicators, stress hormone levels, rectal temperatures, and antioxidant status of lambs in summer. In Experiment 1, the levels of triglycerides and free fatty acids after 3 h transport were significantly lower than after 1 h transport (p < 0.05). The levels of thyroxine and malondialdehyde in blood were greater after 3 h transport than 1 h transport (p < 0.05). Creatine kinase levels after 3 h transport tended to be lower than after 1 h transport (p = 0.051). In Experiment 2, the levels of urea and superoxide dismutase in the group fasted pre-transport was significantly lower than those of the group fed pre-transport (p < 0.05). The serum cortisol level in the pre-transport fed group was higher compared to the group fed pre-transport (p = 0.04). Total antioxidant capacity in the pre-transport fasted group tended to be lower compared to that in the pre-transport fed group (p < 0.0001). We conclude that the reduction in nutritional status of sheep transported for longer and without feed pre-transport suggests that transporting sheep in hot conditions in northern China after fasting for a long period should be restricted. However, a decrease in the stress induced by transport following fasting is worthy of further study.
Collapse
Affiliation(s)
- Jin Xiao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.H.); (X.L.); (B.S.)
| | - Zhipeng Han
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.H.); (X.L.); (B.S.)
| | - Xintong Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.H.); (X.L.); (B.S.)
| | - Clive J. C. Phillips
- Curtin University Sustainability Policy (CUSP) Institute, Curtin University, Perth, WA 6845, Australia;
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia
| | - Binlin Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.H.); (X.L.); (B.S.)
| |
Collapse
|
2
|
Scatà MC, Alhussien MN, Grandoni F, Reale A, Zampieri M, Hussen J, De Matteis G. Hyperthermia-induced changes in leukocyte survival and phagocytosis: a comparative study in bovine and buffalo leukocytes. Front Vet Sci 2024; 10:1327148. [PMID: 38322426 PMCID: PMC10844375 DOI: 10.3389/fvets.2023.1327148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/18/2023] [Indexed: 02/08/2024] Open
Abstract
Heat stress negatively affects health, welfare, and livestock productivity by impairing immune function, increasing disease incidence. In recent years, there has been increasing interest in understanding the immune system of water buffalo due to the growing economic impact of this species for the high quality and nutritional value of buffalo milk. While there are common responses across bovine and buffalo species, there are also some species-specific variations in the physiological responses to heat stress, mainly attributed to differences in metabolism and heat dissipation efficiency. At cellular level, the exposure to thermal stress induces several anomalies in cell functions. However, there is limited knowledge about the differential response of bovine and buffalo leucocytes to early and late exposure to different degrees of thermal exposure. The aim of this study was to compare the in vitro effect of hyperthermia on apoptosis and phagocytosis in leukocytes from bovine and buffalo species. For this, whole blood samples of six bovines and nine buffaloes were incubated at 39°C (mimicking normothermia condition) or 41°C (mimicking heat stress condition) for 1, 2, and 4 h. Two flow cytometric assays were then performed to evaluate apoptosis and determine functional capacity of phagocytic cells (neutrophils and monocytes). The results showed that the viability of bovine and buffalo leukocytes was differently affected by temperature and time of in vitro exposure. A higher percentage of apoptotic leukocytes was observed in bovines than in buffaloes at 39°C (3.19 vs. 1.51, p < 0.05) and 41°C (4.01 vs. 1.69, p < 0.05) and for all incubation time points (p < 0.05). In contrast, no difference was observed in the fraction of necrotic leukocytes between the two species. In both species, lymphocytes showed the highest sensitivity to hyperthermia, showing an increased apoptosis rates along with increased incubation time. In bovine, apoptotic lymphocytes increased from 5.79 to 12.7% at 39°C (p < 0.05), in buffalo, this population increased from 1.50 to 3.57% at 39°C and from 2.90 to 4.99% at 41°C (p < 0.05). Although no significant differences were found between the two species regarding the percentage of phagocytic neutrophils, lower phagocytosis capacity values (MFI, mean fluorescence intensity) were found in bovines compared with buffaloes at 41°C (27960.72 vs. 53676.45, p > 0.05). However, for monocytes, the differences between species were significant for both phagocytosis activity and capacity with lower percentages of bovine phagocytic monocytes after 2 h at 39°C and after 1 h at 41°C. The bovine monocytes showed lower MFI values for all temperature and time variations than buffaloes (37538.91 vs. 90445.47 at 39°C and 33752.91 vs. 70278.79 at 41°C, p < 0.05). In conclusion, the current study represents the first report on the comparative analysis of the effect of in vitro heat stress on bovine and buffalo leukocyte populations, highlighting that the leukocytes of buffalo exhibit relatively higher thermal adaptation than bovine cells.
Collapse
Affiliation(s)
- Maria Carmela Scatà
- Research Centre for Animal Production and Aquaculture, Council for Agricultural Research and Economics (CREA), Rome, Italy
| | - Mohanned Naif Alhussien
- Reproductive Biotechnology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Francesco Grandoni
- Research Centre for Animal Production and Aquaculture, Council for Agricultural Research and Economics (CREA), Rome, Italy
| | - Anna Reale
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, Rome, Italy
| | - Michele Zampieri
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, Rome, Italy
| | - Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Giovanna De Matteis
- Research Centre for Animal Production and Aquaculture, Council for Agricultural Research and Economics (CREA), Rome, Italy
| |
Collapse
|
3
|
Brcko CC, da Silva JAR, Garcia AR, Silva AGME, Martorano LG, Vilela RA, Nahúm BDS, Barbosa AVC, da Silva WC, Rodrigues TCGDC, da Silva ÉBR, Lourenço-Júnior JDB. Effects of Climatic Conditions and Supplementation with Palm Cake on the Thermoregulation of Crossbred Buffaloes Raised in a Rotational Grazing System and with Natural Shade in Humid Tropical Regions. Animals (Basel) 2023; 14:53. [PMID: 38200784 PMCID: PMC10777955 DOI: 10.3390/ani14010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 01/12/2024] Open
Abstract
In ruminants, diet composition has a positive correlation with heat production, which can influence thermoregulation, energy expenditure and, consequently, animal performance. The objective of this work was to evaluate the effects of climatic conditions and supplementation based on palm kernel cake, on the thermoregulation of crossbred buffaloes in the eastern Amazon. The research was carried out at Embrapa Amazônia Oriental (01°26' S and 48°24' W), Belém, Pará, and lasted 12 months (representing the entire year). Twenty-four buffaloes, females, with initial age and an average weight of 54 ± 7 months and 503.1 ± 23 kg, respectively, non-pregnant, non-lactating and clinically healthy were used, divided into four treatments based on the supplementation content of the palm cake (%DM) in relation to their body weight (%): 0, 0.25, 0.50 and 1.0. The animals were kept in paddocks with Brachiaria brizantha (cv. Marandu), in a rotating system, with water to drink and mineral salt ad libitum. Equipment was installed to record environmental data (temperature and relative humidity, dew point temperature, wet bulb and black globe) and physiological data: rectal temperature (RT); respiratory rate (RR); and body surface temperature (BST), recorded twice a day, always in the morning (6:00 a.m. to 7:00 a.m.) and afternoon (12:00 p.m. to 1:00 p.m.) shifts, and were used to calculate the Globe Temperature and Humidity Index (GTHI). Supplementation did not influence the physiological variables of thermoregulation (p > 0.05). However, there were differences in the GTHI between the shifts, with higher means in the afternoon shift, especially in the less rainy period of the year, where the GTHI reached 92.06 ± 2.74 (p < 0.05). In all periods of the year, the mean values of RT, RR and BST were higher in the afternoon shift (p > 0.05). The respiratory rate (RR) is associated with the annual seasonality of the thermal waters, with higher averages in the afternoons of the rainy season. The positive correlation for rectal temperature, respiratory rate and body surface temperature indicated that buffaloes respond to thermal elevations in the atmosphere (afternoon period) and, consequently, reflect on the GTHI. Supplementation does not influence thermoregulation; the changes observed occurred in response to the region's thermal and rainfall conditions (mainly in the afternoon shift), with higher GTHI values.
Collapse
Affiliation(s)
- Carolina Carvalho Brcko
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Pará (UFPA), Federal Rural University of the Amazônia (UFRA), Brazilian Agricultural Research Corporation (EMBRAPA), Castanhal 68746-360, Brazil; (C.C.B.); (A.G.M.e.S.); (R.A.V.); (T.C.G.d.C.R.); (É.B.R.d.S.); (J.d.B.L.-J.)
| | - Jamile Andrea Rodrigues da Silva
- Institute of Animal Health and Production, Federal Rural University of the Amazônia (UFRA), Belem 66077-830, Brazil; (J.A.R.d.S.); (A.V.C.B.)
| | - Alexandre Rossetto Garcia
- Brazilian Agricultural Research Corporation, Embrapa Southeast Livestock, Rod Washington Luiz, São Carlos 13560-970, Brazil;
| | - André Guimarães Maciel e Silva
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Pará (UFPA), Federal Rural University of the Amazônia (UFRA), Brazilian Agricultural Research Corporation (EMBRAPA), Castanhal 68746-360, Brazil; (C.C.B.); (A.G.M.e.S.); (R.A.V.); (T.C.G.d.C.R.); (É.B.R.d.S.); (J.d.B.L.-J.)
| | | | - Reíssa Alves Vilela
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Pará (UFPA), Federal Rural University of the Amazônia (UFRA), Brazilian Agricultural Research Corporation (EMBRAPA), Castanhal 68746-360, Brazil; (C.C.B.); (A.G.M.e.S.); (R.A.V.); (T.C.G.d.C.R.); (É.B.R.d.S.); (J.d.B.L.-J.)
| | | | - Antônio Vinícius Corrêa Barbosa
- Institute of Animal Health and Production, Federal Rural University of the Amazônia (UFRA), Belem 66077-830, Brazil; (J.A.R.d.S.); (A.V.C.B.)
| | - Welligton Conceição da Silva
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Pará (UFPA), Federal Rural University of the Amazônia (UFRA), Brazilian Agricultural Research Corporation (EMBRAPA), Castanhal 68746-360, Brazil; (C.C.B.); (A.G.M.e.S.); (R.A.V.); (T.C.G.d.C.R.); (É.B.R.d.S.); (J.d.B.L.-J.)
| | - Thomaz Cyro Guimarães de Carvalho Rodrigues
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Pará (UFPA), Federal Rural University of the Amazônia (UFRA), Brazilian Agricultural Research Corporation (EMBRAPA), Castanhal 68746-360, Brazil; (C.C.B.); (A.G.M.e.S.); (R.A.V.); (T.C.G.d.C.R.); (É.B.R.d.S.); (J.d.B.L.-J.)
| | - Éder Bruno Rebelo da Silva
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Pará (UFPA), Federal Rural University of the Amazônia (UFRA), Brazilian Agricultural Research Corporation (EMBRAPA), Castanhal 68746-360, Brazil; (C.C.B.); (A.G.M.e.S.); (R.A.V.); (T.C.G.d.C.R.); (É.B.R.d.S.); (J.d.B.L.-J.)
| | - José de Brito Lourenço-Júnior
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Pará (UFPA), Federal Rural University of the Amazônia (UFRA), Brazilian Agricultural Research Corporation (EMBRAPA), Castanhal 68746-360, Brazil; (C.C.B.); (A.G.M.e.S.); (R.A.V.); (T.C.G.d.C.R.); (É.B.R.d.S.); (J.d.B.L.-J.)
| |
Collapse
|
4
|
da Silva WC, da Silva JAR, Gouveia Júnior A, de Alvarenga ABB, Barbosa AVC, da Silva ÉBR, Pereira dos Santos MR, Lourenço-Júnior JDB, Camargo Júnior RNC, Silva AGME. A new proposal for the use of the focal animal technique in buffaloes in the Eastern Amazon. Front Vet Sci 2023; 10:1266451. [PMID: 38026641 PMCID: PMC10663286 DOI: 10.3389/fvets.2023.1266451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
This study aims to present a proposal for using the focal animal recording technique to evaluate the welfare of buffaloes and to verify the association between each behavior and thermal comfort indices. The study was conducted in an experimental paddock located in Santarém, Pará, Brazil. A total of 10 female Murrah animals were used. The behavior of the animals was recorded during the day, with the use of three trained observers, for 72 consecutive h. Climatic variables were collected, and the Temperature-Humidity Index (THI) and the practical Buffalo Comfort Climatic Conditions Index (BCCCIp) were determined. The multivariate technique of principal components and Spearman's correlation were employed. BCCCIp and THI were outside the thermal comfort zone at different times of the day. Grazing (P) was more frequent in the coldest hours of the day, while rumination occurred at different periods, mainly during the daytime and frequently in a lying position. There was a positive correlation between idle lying behavior and average temperature-Tmed (r = 0.583; p < 0.028), THI (r = 0.432; p < 0.034), and BCCCIp (r = 0.554; p < 0.049). There was a positive correlation between grazing and Tmed (r = 0.665; p < 0.0004) and BCCCIp (r = 0.583; p < 0.036). The standing idle behavior negatively correlated with Tmed (r = -0.718; p < 0.0001), THI (r = -0.522; p < 0.008), and BCCCIp (r = -0.8076; p < 0.0008). The lying ruminating behavior had a positive correlation with Tmed (r = 0.586; p < 0.002), THI (r = 0.477; p < 0.018), and BCCCIp (r = 0.8033; p < 0.0009). Furthermore, ruminating while standing correlated positively with Tmed (r = 0.680; p < 0.0003). The adaptation of the focal animal technique, with six observers evaluating each animal for 6 min through filming, proved to be efficient in pointing out the different behaviors of buffalo raised in Eastern Amazon fields under heat stress at different times of the day.
Collapse
Affiliation(s)
- Welligton Conceição da Silva
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), Federal Rural University of the Amazônia (UFRA), Brazilian Agricultural Research Corporation (EMBRAPA), Castanhal, Brazil
| | | | - Amauri Gouveia Júnior
- Laboratory of Neuroscience and Behavior, Federal University of Pará (UFPA), Belém, Brazil
| | - Adriano Braga Brasileiro de Alvarenga
- Department of Animal Sciences, University of Brasília, Brasília, Brazil
- Institute of Veterinary Medicine, Federal University of Pará (UFPA), Castanhal, Pará, Brazil
| | | | - Éder Bruno Rebelo da Silva
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), Federal Rural University of the Amazônia (UFRA), Brazilian Agricultural Research Corporation (EMBRAPA), Castanhal, Brazil
| | | | - José de Brito Lourenço-Júnior
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), Federal Rural University of the Amazônia (UFRA), Brazilian Agricultural Research Corporation (EMBRAPA), Castanhal, Brazil
| | - Raimundo Nonato Colares Camargo Júnior
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), Federal Rural University of the Amazônia (UFRA), Brazilian Agricultural Research Corporation (EMBRAPA), Castanhal, Brazil
| | - André Guimarães Maciel e Silva
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), Federal Rural University of the Amazônia (UFRA), Brazilian Agricultural Research Corporation (EMBRAPA), Castanhal, Brazil
| |
Collapse
|
5
|
Etchevers L, Renna MS, Belotti EM, Diaz PU, Salvetti NR, Ortega HH, Amweg AN. ACTH impairs the migratory and secretory profile of mononuclear cells during proestrus in cattle. Res Vet Sci 2023; 164:105031. [PMID: 37804664 DOI: 10.1016/j.rvsc.2023.105031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
The aim was to evaluate the effect of ACTH on the mechanisms involved in peripheral blood mononuclear cells (PBMCs) infiltration into the ovary during dairy cattle proestrus. Regarding this, proper expression pattern of adhesion molecules must take place both in PBMCs and in endothelial cells. Argentinian Holstein cows (n = 12) were treated with 100 IU of ACTH every 12 h for 4 days before ovulation when ovariectomy was performed (day 18). Blood samples were taken on day 15 (0 h) and immediately before (72 h) and after (74 h) the last ACTH administration. In PBMCs, flow cytometry was performed to analyze CD44, CD11b and CD62-L expression along with gene expression of chemokines' receptors. Interleukin (IL)-4 and tumor necrosis factor-α (TNF-α) production was analyzed by flow cytometry after exposing PBMCs to autologous follicular fluid. In ovarian blood vessels, expression of the vascular endothelium cell adhesion-1 (VCAM-1) and the platelet endothelial cell adhesion molecule-1 was evaluated by immunohistochemistry. In T-lymphocytes, the expression of CD44 and CD11b was lower at 72 h in ACTH-treated cows (P < 0.05). In monocytes, the expression of CD11b and CD62-L was lower at 72 h in ACTH-treated cows (P < 0.05). Also, the percentage of IL-4+ cells was higher in ACTH-treated cows, meanwhile, the percentage TNF-α+ cells was lower in ACTH-treated cows (P < 0.05). Finally, in the vessels associated with the preovulatory follicle VCAM-1 immunoexpression was lower in ACTH-treated cows (P < 0.05). Here, we present novel insights into the effect of stress during the preovulatory period on the inflammatory pathway necessary for ovulation.
Collapse
Affiliation(s)
- L Etchevers
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - M S Renna
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - E M Belotti
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - P U Diaz
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - N R Salvetti
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - H H Ortega
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - A N Amweg
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina.
| |
Collapse
|
6
|
Lemal P, May K, König S, Schroyen M, Gengler N. Invited review: From heat stress to disease-Immune response and candidate genes involved in cattle thermotolerance. J Dairy Sci 2023:S0022-0302(23)00214-X. [PMID: 37164864 DOI: 10.3168/jds.2022-22727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/01/2023] [Indexed: 05/12/2023]
Abstract
Heat stress implies unfavorable effects on primary and functional traits in dairy cattle and, in consequence, on the profitability of the whole production system. The increasing number of days with extreme hot temperatures suggests that it is imperative to detect the heat stress status of animals based on adequate measures. However, confirming the heat stress status of an individual is still challenging, and, in consequence, the identification of novel heat stress biomarkers, including molecular biomarkers, remains a very relevant issue. Currently, it is known that heat stress seems to have unfavorable effects on immune system mechanisms, but this information is of limited use in the context of heat stress phenotyping. In addition, there is a lack of knowledge addressing the molecular mechanisms linking the relevant genes to the observed phenotype. In this review, we explored the potential molecular mechanisms explaining how heat stress affects the immune system and, therefore, increases the occurrence of immune-related diseases in cattle. In this regard, 2 relatively opposite hypotheses are under focus: the immunosuppressive action of cortisol, and the proinflammatory effect of heat stress. In both hypotheses, the modulation of the immune response during heat stress is highlighted. Moreover, it is possible to link candidate genes to these potential mechanisms. In this context, immune markers are very valuable indicators for the detection of heat stress in dairy cattle, broadening the portfolio of potential biomarkers for heat stress.
Collapse
Affiliation(s)
- P Lemal
- TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech (ULiège-GxABT), 5030 Gembloux, Belgium
| | - K May
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, Ludwigstraße 21B, 35390 Gießen, Germany
| | - S König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, Ludwigstraße 21B, 35390 Gießen, Germany
| | - M Schroyen
- TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech (ULiège-GxABT), 5030 Gembloux, Belgium
| | - N Gengler
- TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech (ULiège-GxABT), 5030 Gembloux, Belgium.
| |
Collapse
|
7
|
Lendez PA, Martínez Cuesta L, Nieto Farías MV, Vater AA, Ghezzi MD, Mota-Rojas D, Dolcini GL, Ceriani MC. Effect of heat stress on TNF-α, TNFRI and TNFRII expression in BLV infected dairy cattle. J Therm Biol 2023; 114:103568. [PMID: 37162166 DOI: 10.1016/j.jtherbio.2023.103568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
High temperatures for extended periods, which do not allow animals to recover from heat stress, affect in particular those BLV-infected animals that carry a high proviral load. For this study, animals were discriminated between BLV (+) and BLV (-), and those belonging to the first group, were classified based on their proviral load. The expression of the inflammatory cytokine TNF-α and its receptors, which play an important role in disease progression, were quantified by qPCR in two different seasons. During the summer, average temperature was 19.8 °C, maximums higher than 30 °C were frequent. Instead, during the autumn, the average temperature was 12.63 °C, and temperatures never exceeded 27 °C. During this season, almost no periods of temperatures exceeded the comfort limit. Our results revealed that the expression levels of TNF-α and its receptors were downregulated in animals with high proviral load. This fact could affect their antiviral response and predispose to viral dissemination; over time, animals with a poorer immune system are prone to acquiring opportunistic diseases. Conversely, animals with LPL maintained their expression profile, with behavior comparable to non-infected animals. These findings should be considered by producers and researchers, given the problems that global warming is causing lately to the planet.
Collapse
Affiliation(s)
- Pamela Anahí Lendez
- Faculty of Veterinary Sciences, Universidad Nacional Del Centro De la Provincia de Buenos Aires (UNCPBA), Tandil, Veterinary Research Center (CIVETAN), CONICET-CICPBA, Arroyo Seco S/N, Campus Universitario, Tandil, 7000, Argentina
| | - Lucía Martínez Cuesta
- Faculty of Veterinary Sciences, Universidad Nacional Del Centro De la Provincia de Buenos Aires (UNCPBA), Tandil, Veterinary Research Center (CIVETAN), CONICET-CICPBA, Arroyo Seco S/N, Campus Universitario, Tandil, 7000, Argentina
| | - María Victoria Nieto Farías
- Faculty of Veterinary Sciences, Universidad Nacional Del Centro De la Provincia de Buenos Aires (UNCPBA), Tandil, Veterinary Research Center (CIVETAN), CONICET-CICPBA, Arroyo Seco S/N, Campus Universitario, Tandil, 7000, Argentina
| | - Adrián Alejandro Vater
- Escuela de Educación Secundaria Agraria N°1 "DR, RAMON SANTAMARINA", Pje La Porteña, Ruta Pcial N, 30 KM 122.5, Tandil, Argentina
| | - Marcelo Daniel Ghezzi
- Faculty of Veterinary Sciences, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Arroyo Seco S/N, Campus Universitario, Tandil, 7000, Argentina
| | - Daniel Mota-Rojas
- Stress Physiology and Farm Animal Welfare, Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana (UAM), Ciudad de México, Mexico
| | - Guillermina Laura Dolcini
- Faculty of Veterinary Sciences, Universidad Nacional Del Centro De la Provincia de Buenos Aires (UNCPBA), Tandil, Veterinary Research Center (CIVETAN), CONICET-CICPBA, Arroyo Seco S/N, Campus Universitario, Tandil, 7000, Argentina
| | - María Carolina Ceriani
- Faculty of Veterinary Sciences, Universidad Nacional Del Centro De la Provincia de Buenos Aires (UNCPBA), Tandil, Veterinary Research Center (CIVETAN), CONICET-CICPBA, Arroyo Seco S/N, Campus Universitario, Tandil, 7000, Argentina.
| |
Collapse
|
8
|
Kalemkeridou M, Nanas I, Moutou K, Amiridis GS, Tsipourlianos A, Dovolou E, Mamuris Z, Giannoulis T. Genetic diversity and thermotolerance in Holstein cows: Pathway analysis and marker development using whole-genome sequencing. Reprod Domest Anim 2023; 58:146-157. [PMID: 36196498 DOI: 10.1111/rda.14274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/02/2022] [Indexed: 01/07/2023]
Abstract
Heat stress causes extensive losses in the dairy sector, due to negative effects on milk production and reproduction. Cows have evolved a series of protective mechanisms, (physiological, biochemical, behavioural) to cope with the thermostressing environments, which have allowed the preservation of productive and reproductive potential of specific animals during summer; these animals are considered thermotolerant and could be used to design programs of selective breeding. These programs, targeting the generations of a population of heat-resistant animals, would increase the frequency of the desired phenotypes, tackling the financial losses on one hand and reducing the carbon footprints of the dairy sector on the other. The development of genomics techniques has enabled genome wide variant calling, to detect SNPs associated with the desired phenotypes. In this study, we used a comparative genomics approach to detect genetic variation associated with thermotolerance and to design molecular markers for characterizing the animals as tolerant/sensitive. A total of 40 cows from each group were split in four sequencing pools and a whole-genome sequencing approach was used. Results and conclusion: Genome-wide genetic variation between groups was characterized and enrichment analysis revealed specific pathways which participate in the adaptive mechanisms of thermotolerance, implicated into systemic and cellular responses, including the immune system functionality, Heat Stress and Unfolded Protein Response. The markers made a promising set of results, as specific SNPs in five genes encoding for Heat Shock Proteins were significantly associated with thermotolerance.
Collapse
Affiliation(s)
- Maria Kalemkeridou
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Ioannis Nanas
- Department of Obstetrics and Reproduction, Veterinary Faculty, University of Thessaly, Karditsa, Greece
| | - Katerina Moutou
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Georgios S Amiridis
- Department of Obstetrics and Reproduction, Veterinary Faculty, University of Thessaly, Karditsa, Greece
| | - Andreas Tsipourlianos
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Eleni Dovolou
- Department of Obstetrics and Reproduction, Veterinary Faculty, University of Thessaly, Karditsa, Greece.,Department of Animal Sciences, University of Thessaly, Larissa, Greece
| | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Themistoklis Giannoulis
- Department of Animal Sciences, University of Thessaly, Larissa, Greece.,Laboratory of Biology, Genetics and Bioinformatics, Department of Animal Science, University of Thessaly, Larissa, Greece
| |
Collapse
|
9
|
da Silva WC, da Silva ÉBR, dos Santos MRP, Camargo Junior RNC, Barbosa AVC, da Silva JAR, Vinhote JA, de Sousa EDV, Lourenço Júnior JDB. Behavior and thermal comfort of light and dark coat dairy cows in the Eastern Amazon. Front Vet Sci 2022; 9:1006093. [PMID: 36187817 PMCID: PMC9516290 DOI: 10.3389/fvets.2022.1006093] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to evaluate the behavior and thermal comfort of 20 Girolando cows (5/8-H/G), with light and dark coats, in the wettest period of the year, in Santarém, Pará, Brazil, in pasture with access to shade, and plenty of drinking water and mineral salt. Animal behavior categories were computed for 12 h a day, on 3 days in a row, by trained observers. Three day shifts were considered: Morning (6:00 a.m. to 9:55 a.m.), Intermediate (10:00 a.m. to 01:55 p.m.) and Afternoon (2:00 p.m. to 05:55 p.m.). The Temperature Index (TI), the Black Globe Humidity Index (BGHI) and the Comfort Index (CI) were calculated to measure thermal comfort. At all times studied, BGHI pointed that the environment was outside the thermal comfort zone. Dark-coated animals spent more 34.26% of the time in activities in the shade. The light-coated animals remained more 11.88% of the time in the sun, performing their natural behaviors. Both light and dark coat animals remained more 77 and 74.44% of the time in the sun, respectively. The behavior “in the sun while grazing” was the most evident, in both coats, in the studied shifts. The behaviors “in the shade while walking” and “in the shade while standing idle” were more evident (p < 0.01) in dark-coated cattle. The grazing behavior was higher in animals with dark coat (p < 0.05). In all evaluated shifts, there was a positive correlation between the behavior “in the sun while grazing” with the CI (r = 0.44211; p < 0.0305). Behaviors performed in the shade, such as “idleness while lying down,” “ruminating while lying down and standing up,” and behaviors “in the sun,” “idleness while lying down” and “ruminating while lying down,” were negatively correlated with CI. It is concluded that, even in the wettest period of the year, in the Eastern Amazon, Girolando dairy cows are exposed to hot environments, which causes thermal discomfort and changes in their natural behavior, as they spend more time standing in shaded areas, usually in rumination. Also, light-coated cows spend more time in the sun, while dark-coated cows spend more time in the shade. Thus, light-coated cows tend to have health and zootechnical performance negatively affected.
Collapse
Affiliation(s)
- Welligton Conceição da Silva
- Institute of Animal Health and Production, Federal Rural University of the Amazon, Belem, Pará, Brazil
- *Correspondence: Welligton Conceição da Silva
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
da Silva JAR, Pantoja MHDA, da Silva WC, de Almeida JCF, Noronha RDPP, Barbosa AVC, Lourenço Júnior JDB. Thermoregulatory reactions of female buffaloes raised in the sun and in the shade, in the climatic conditions of the rainy season of the Island of Marajó, Pará, Brazil. Front Vet Sci 2022; 9:998544. [PMID: 36176704 PMCID: PMC9513356 DOI: 10.3389/fvets.2022.998544] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022] Open
Abstract
Buffaloes are well-adapted to hot, humid climates and muddy terrain, however they show signs of thermal discomfort when exposed to direct sunlight due to their specific structural features such as dark skin, small number of sweat glands/skin area and thick skin. Epidermis layer of the skin, making heat dissipation difficult. The study aimed to evaluate the thermal comfort of female buffaloes raised in traditional and silvopastoral systems, on the island of Marajó, Pará, during the rainy season of the year. The experiment was carried out in Cachoeira do Arari, Retiro Grande, Marajó, Pará (00°55'37.814424”S 48°43'48.143060”W). Twenty female Murrah buffaloes, aged between 2 and 3years and average weight of 282 ± 29 kg, were used. They were fed on pasture and divided into two groups: WS group (with shade) and NS group (without shade). The WS group (n = 10) remained grazing in a silvopastoral system, with access to the shade of red Jambeiro (Syzygium malaccense) trees. The NS group (n = 10) was kept in grazing, in a traditional system, without access to the shade of trees or shades. The physiological variables rectal temperature (RT), respiratory rate (RR) and body surface temperature (BST) (forehead, left side of the thorax and left flank) were measured at 6:00, 10:00, 14:00, 18:00, and 22:00 h. At the same times, data on air temperature, relative air humidity, wind speed (WSP), solar radiation (SR) and Temperature and Humidity Index (THI) were also recorded. THI, WSP and SR were higher at 14:00 h (P < 0.05). At 10:00, 14:00, and 18:00 h there was difference of RT between treatments (P < 0.05), where animals of the NS group had the highest values. In the NS group, the highest value of RT was observed at 14:00 h (39.38 ± 0.43°C), when THI and SR were higher. At 10:00 and 14:00 h, BST was higher in the NS group (p < 0.05), of 34,55 ± 1.03 and 35.35 ± 1.51°C, respectively, and both groups had the highest value of BST at those same times. There was difference of the RR between treatments at 10:00 h and 14:00 h (p < 0.05), where the highest values were found in the NS group (33.71 ± 7.58 e 50.40 ± 18.41 mov./min., respectively). Even in the rainy season of the year, the climatic conditions of Ilha do Marajó are unfavorable to the welfare of buffaloes, especially at 2:00 pm, when the SR is higher. Thus, the use of the system with access to shade, such as silvopastoral, is recommended, in order to provide greater thermal comfort to animals and improve their productivity.
Collapse
Affiliation(s)
- Jamile Andréa Rodrigues da Silva
- Department of Health and Production, Institute of Animal Health and Production, Federal Rural University of the Amazon, Belem, Brazil
| | | | - Welligton Conceição da Silva
- Department of Health and Production, Institute of Animal Health and Production, Federal Rural University of the Amazon, Belem, Brazil
- *Correspondence: Welligton Conceição da Silva
| | - Jean Caio Figueiredo de Almeida
- Department of Health and Production, Institute of Animal Health and Production, Federal Rural University of the Amazon, Belem, Brazil
| | | | | | | |
Collapse
|
11
|
Lezama-García K, Mota-Rojas D, Pereira AMF, Martínez-Burnes J, Ghezzi M, Domínguez A, Gómez J, de Mira Geraldo A, Lendez P, Hernández-Ávalos I, Falcón I, Olmos-Hernández A, Wang D. Transient Receptor Potential (TRP) and Thermoregulation in Animals: Structural Biology and Neurophysiological Aspects. Animals (Basel) 2022; 12:106. [PMID: 35011212 PMCID: PMC8749608 DOI: 10.3390/ani12010106] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 02/07/2023] Open
Abstract
This review presents and analyzes recent scientific findings on the structure, physiology, and neurotransmission mechanisms of transient receptor potential (TRP) and their function in the thermoregulation of mammals. The aim is to better understand the functionality of these receptors and their role in maintaining the temperature of animals, or those susceptible to thermal stress. The majority of peripheral receptors are TRP cation channels formed from transmembrane proteins that function as transductors through changes in the membrane potential. TRP are classified into seven families and two groups. The data gathered for this review include controversial aspects because we do not fully know the mechanisms that operate the opening and closing of the TRP gates. Deductions, however, suggest the intervention of mechanisms related to G protein-coupled receptors, dephosphorylation, and ligands. Several questions emerge from the review as well. For example, the future uses of these data for controlling thermoregulatory disorders and the invitation to researchers to conduct more extensive studies to broaden our understanding of these mechanisms and achieve substantial advances in controlling fever, hyperthermia, and hypothermia.
Collapse
Affiliation(s)
- Karina Lezama-García
- PhD Program in Biological and Health Sciences, [Doctorado en Ciencias Biológicas y de la Salud], Universidad Autónoma Metropolitana, Mexico City 04960, Mexico;
| | - Daniel Mota-Rojas
- Department of Agricultural and Animal Production, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.D.); (J.G.); (I.F.)
| | - Alfredo M. F. Pereira
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (A.M.F.P.); (A.d.M.G.)
| | - Julio Martínez-Burnes
- Animal Health Group, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico;
| | - Marcelo Ghezzi
- Faculty of Veterinary Sciences, Veterinary Research Center (CIVETAN), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), CONICET-CICPBA, Arroyo Seco S/N, Tandil 7000, Argentina; (M.G.); (P.L.)
| | - Adriana Domínguez
- Department of Agricultural and Animal Production, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.D.); (J.G.); (I.F.)
| | - Jocelyn Gómez
- Department of Agricultural and Animal Production, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.D.); (J.G.); (I.F.)
| | - Ana de Mira Geraldo
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (A.M.F.P.); (A.d.M.G.)
| | - Pamela Lendez
- Faculty of Veterinary Sciences, Veterinary Research Center (CIVETAN), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), CONICET-CICPBA, Arroyo Seco S/N, Tandil 7000, Argentina; (M.G.); (P.L.)
| | - Ismael Hernández-Ávalos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlan Izcalli 54714, Mexico;
| | - Isabel Falcón
- Department of Agricultural and Animal Production, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.D.); (J.G.); (I.F.)
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Tlalpan, Mexico City 14389, Mexico;
| | - Dehua Wang
- School of Life Sciences, Shandong University, Qingdao 266237, China;
| |
Collapse
|
12
|
Mota-Rojas D, Wang D, Titto CG, Gómez-Prado J, Carvajal-de la Fuente V, Ghezzi M, Boscato-Funes L, Barrios-García H, Torres-Bernal F, Casas-Alvarado A, Martínez-Burnes J. Pathophysiology of Fever and Application of Infrared Thermography (IRT) in the Detection of Sick Domestic Animals: Recent Advances. Animals (Basel) 2021; 11:2316. [PMID: 34438772 PMCID: PMC8388492 DOI: 10.3390/ani11082316] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Body-temperature elevations are multifactorial in origin and classified as hyperthermia as a rise in temperature due to alterations in the thermoregulation mechanism; the body loses the ability to control or regulate body temperature. In contrast, fever is a controlled state, since the body adjusts its stable temperature range to increase body temperature without losing the thermoregulation capacity. Fever refers to an acute phase response that confers a survival benefit on the body, raising core body temperature during infection or systemic inflammation processes to reduce the survival and proliferation of infectious pathogens by altering temperature, restriction of essential nutrients, and the activation of an immune reaction. However, once the infection resolves, the febrile response must be tightly regulated to avoid excessive tissue damage. During fever, neurological, endocrine, immunological, and metabolic changes occur that cause an increase in the stable temperature range, which allows the core body temperature to be considerably increased to stop the invasion of the offending agent and restrict the damage to the organism. There are different metabolic mechanisms of thermoregulation in the febrile response at the central and peripheral levels and cellular events. In response to cold or heat, the brain triggers thermoregulatory responses to coping with changes in body temperature, including autonomic effectors, such as thermogenesis, vasodilation, sweating, and behavioral mechanisms, that trigger flexible, goal-oriented actions, such as seeking heat or cold, nest building, and postural extension. Infrared thermography (IRT) has proven to be a reliable method for the early detection of pathologies affecting animal health and welfare that represent economic losses for farmers. However, the standardization of protocols for IRT use is still needed. Together with the complete understanding of the physiological and behavioral responses involved in the febrile process, it is possible to have timely solutions to serious problem situations. For this reason, the present review aims to analyze the new findings in pathophysiological mechanisms of the febrile process, the heat-loss mechanisms in an animal with fever, thermoregulation, the adverse effects of fever, and recent scientific findings related to different pathologies in farm animals through the use of IRT.
Collapse
Affiliation(s)
- Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, Unidad Xochimilco, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico; (J.G.-P.); (L.B.-F.); (F.T.-B.); (A.C.-A.)
| | - Dehua Wang
- School of Life Sciences, Shandong University, Qingdao 266237, China;
| | - Cristiane Gonçalves Titto
- Laboratório de Biometeorologia e Etologia, FZEA-USP, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga 13635-900, Brazil;
| | - Jocelyn Gómez-Prado
- Neurophysiology, Behavior and Animal Welfare Assessment, Unidad Xochimilco, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico; (J.G.-P.); (L.B.-F.); (F.T.-B.); (A.C.-A.)
| | - Verónica Carvajal-de la Fuente
- Animal Health Group, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Ciudad Victoria 87000, Mexico; (V.C.-d.l.F.); (H.B.-G.)
| | - Marcelo Ghezzi
- Animal Welfare Area, Faculty of Veterinary Sciences (FCV), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Buenos Aires 7000, Argentina;
| | - Luciano Boscato-Funes
- Neurophysiology, Behavior and Animal Welfare Assessment, Unidad Xochimilco, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico; (J.G.-P.); (L.B.-F.); (F.T.-B.); (A.C.-A.)
| | - Hugo Barrios-García
- Animal Health Group, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Ciudad Victoria 87000, Mexico; (V.C.-d.l.F.); (H.B.-G.)
| | - Fabiola Torres-Bernal
- Neurophysiology, Behavior and Animal Welfare Assessment, Unidad Xochimilco, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico; (J.G.-P.); (L.B.-F.); (F.T.-B.); (A.C.-A.)
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assessment, Unidad Xochimilco, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico; (J.G.-P.); (L.B.-F.); (F.T.-B.); (A.C.-A.)
| | - Julio Martínez-Burnes
- Animal Health Group, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Ciudad Victoria 87000, Mexico; (V.C.-d.l.F.); (H.B.-G.)
| |
Collapse
|
13
|
Mota-Rojas D, Pereira AMF, Wang D, Martínez-Burnes J, Ghezzi M, Hernández-Avalos I, Lendez P, Mora-Medina P, Casas A, Olmos-Hernández A, Domínguez A, Bertoni A, Geraldo ADM. Clinical Applications and Factors Involved in Validating Thermal Windows Used in Infrared Thermography in Cattle and River Buffalo to Assess Health and Productivity. Animals (Basel) 2021; 11:2247. [PMID: 34438705 PMCID: PMC8388381 DOI: 10.3390/ani11082247] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/27/2021] [Indexed: 02/04/2023] Open
Abstract
Infrared thermography (IRT) is a non-ionizing, non-invasive technique that permits evaluating the comfort levels of animals, a topic of concern due to the growing interest in determining the state of health and welfare of production animals. The operating principle of IRT is detecting the heat irradiated in anatomical regions characterized by a high density of near-surface blood vessels that can regulate temperature gain or loss from/to the environment by modifying blood flow. This is essential for understanding the various vascular thermoregulation mechanisms of different species, such as rodents and ruminants' tails. The usefulness of ocular, nasal, and vulvar thermal windows in the orbital (regio orbitalis), nasal (regio nasalis), and urogenital (regio urogenitalis) regions, respectively, has been demonstrated in cattle. However, recent evidence for the river buffalo has detected discrepancies in the data gathered from distinct thermal regions in these large ruminants, suggesting a limited sensitivity and specificity when used with this species due to various factors: the presence of hair, ambient temperature, and anatomical features, such as skin thickness and variations in blood supplies to different regions. In this review, a literature search was conducted in Scopus, Web of Science, ScienceDirect, and PubMed, using keyword combinations that included "infrared thermography", "water buffalo", "river buffalo" "thermoregulation", "microvascular changes", "lacrimal caruncle", "udder", "mastitis", and "nostril". We discuss recent findings on four thermal windows-the orbital and nasal regions, mammary gland in the udder region (regio uberis), and vulvar in the urogenital region (regio urogenitalis)-to elucidate the factors that modulate and intervene in validating thermal windows and interpreting the information they provide, as it relates to the clinical usefulness of IRT for cattle (Bos) and the river buffalo (Bubalus bubalis).
Collapse
Affiliation(s)
- Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.C.); (A.D.); (A.B.)
| | - Alfredo M. F. Pereira
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal;
| | - Dehua Wang
- School of Life Sciences, Shandong University, Qingdao 266237, China;
| | - Julio Martínez-Burnes
- Animal Health Group, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico;
| | - Marcelo Ghezzi
- Animal Welfare Area, Faculty of Veterinary Sciences (FCV), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Buenos Aires 7000, Argentina; (M.G.); (P.L.)
| | - Ismael Hernández-Avalos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlan Izcalli 54714, Mexico; (I.H.-A.); (P.M.-M.)
| | - Pamela Lendez
- Animal Welfare Area, Faculty of Veterinary Sciences (FCV), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Buenos Aires 7000, Argentina; (M.G.); (P.L.)
| | - Patricia Mora-Medina
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlan Izcalli 54714, Mexico; (I.H.-A.); (P.M.-M.)
| | - Alejandro Casas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.C.); (A.D.); (A.B.)
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra (INR-LGII), Tlalpan, Mexico City 14389, Mexico;
| | - Adriana Domínguez
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.C.); (A.D.); (A.B.)
| | - Aldo Bertoni
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.C.); (A.D.); (A.B.)
| | - Ana de Mira Geraldo
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal;
| |
Collapse
|
14
|
Physiological and Behavioral Mechanisms of Thermoregulation in Mammals. Animals (Basel) 2021; 11:ani11061733. [PMID: 34200650 PMCID: PMC8227286 DOI: 10.3390/ani11061733] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
This review analyzes the main anatomical structures and neural pathways that allow the generation of autonomous and behavioral mechanisms that regulate body heat in mammals. The study of the hypothalamic neuromodulation of thermoregulation offers broad areas of opportunity with practical applications that are currently being strengthened by the availability of efficacious tools like infrared thermography (IRT). These areas could include the following: understanding the effect of climate change on behavior and productivity; analyzing the effects of exercise on animals involved in sporting activities; identifying the microvascular changes that occur in response to fear, pleasure, pain, and other situations that induce stress in animals; and examining thermoregulating behaviors. This research could contribute substantially to understanding the drastic modification of environments that have severe consequences for animals, such as loss of appetite, low productivity, neonatal hypothermia, and thermal shock, among others. Current knowledge of these physiological processes and complex anatomical structures, like the nervous systems and their close relation to mechanisms of thermoregulation, is still limited. The results of studies in fields like evolutionary neuroscience of thermoregulation show that we cannot yet objectively explain even processes that on the surface seem simple, including behavioral changes and the pathways and connections that trigger mechanisms like vasodilatation and panting. In addition, there is a need to clarify the connection between emotions and thermoregulation that increases the chances of survival of some organisms. An increasingly precise understanding of thermoregulation will allow us to design and apply practical methods in fields like animal science and clinical medicine without compromising levels of animal welfare. The results obtained should not only increase the chances of survival but also improve quality of life and animal production.
Collapse
|