1
|
Tasker S, Addie DD, Egberink H, Hofmann-Lehmann R, Hosie MJ, Truyen U, Belák S, Boucraut-Baralon C, Frymus T, Lloret A, Marsilio F, Pennisi MG, Thiry E, Möstl K, Hartmann K. Feline Infectious Peritonitis: European Advisory Board on Cat Diseases Guidelines. Viruses 2023; 15:1847. [PMID: 37766254 PMCID: PMC10535984 DOI: 10.3390/v15091847] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Feline coronavirus (FCoV) is a ubiquitous RNA virus of cats, which is transmitted faeco-orally. In these guidelines, the European Advisory Board on Cat Diseases (ABCD) presents a comprehensive review of feline infectious peritonitis (FIP). FCoV is primarily an enteric virus and most infections do not cause clinical signs, or result in only enteritis, but a small proportion of FCoV-infected cats develop FIP. The pathology in FIP comprises a perivascular phlebitis that can affect any organ. Cats under two years old are most frequently affected by FIP. Most cats present with fever, anorexia, and weight loss; many have effusions, and some have ocular and/or neurological signs. Making a diagnosis is complex and ABCD FIP Diagnostic Approach Tools are available to aid veterinarians. Sampling an effusion, when present, for cytology, biochemistry, and FCoV RNA or FCoV antigen detection is very useful diagnostically. In the absence of an effusion, fine-needle aspirates from affected organs for cytology and FCoV RNA or FCoV antigen detection are helpful. Definitive diagnosis usually requires histopathology with FCoV antigen detection. Antiviral treatments now enable recovery in many cases from this previously fatal disease; nucleoside analogues (e.g., oral GS-441524) are very effective, although they are not available in all countries.
Collapse
Affiliation(s)
- Séverine Tasker
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU, UK
- Linnaeus Veterinary Limited, Shirley, Solihull B90 4BN, UK
| | - Diane D. Addie
- Independent Researcher, 64000 Pyrénées Aquitaine, France;
| | - Herman Egberink
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, 3584 CL Utrecht, The Netherlands;
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| | - Margaret J. Hosie
- MRC-University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, UK;
| | - Uwe Truyen
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, 04103 Leipzig, Germany;
| | - Sándor Belák
- Department of Biomedical Sciences and Veterinary Public Health (BVF), Swedish University of Agricultural Sciences (SLU), P.O. Box 7036, 750 07 Uppsala, Sweden;
| | | | - Tadeusz Frymus
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-787 Warsaw, Poland;
| | - Albert Lloret
- Fundació Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain;
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università Degli Studi di Teramo, 64100 Teramo, Italy;
| | - Maria Grazia Pennisi
- Dipartimento di Scienze Veterinarie, Università di Messina, 98168 Messina, Italy;
| | - Etienne Thiry
- Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, B-4000 Liège, Belgium;
| | - Karin Möstl
- Institute of Virology, Department for Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Katrin Hartmann
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany;
| |
Collapse
|
2
|
Capozza P, Pratelli A, Camero M, Lanave G, Greco G, Pellegrini F, Tempesta M. Feline Coronavirus and Alpha-Herpesvirus Infections: Innate Immune Response and Immune Escape Mechanisms. Animals (Basel) 2021; 11:3548. [PMID: 34944324 PMCID: PMC8698202 DOI: 10.3390/ani11123548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/11/2021] [Accepted: 12/12/2021] [Indexed: 12/14/2022] Open
Abstract
Over time, feline viruses have acquired elaborateopportunistic properties, making their infections particularly difficult to prevent and treat. Feline coronavirus (FCoV) and feline herpesvirus-1 (FeHV-1), due to the involvement of host genetic factors and immune mechanisms in the development of the disease and more severe forms, are important examples of immune evasion of the host's innate immune response by feline viruses.It is widely accepted that the innate immune system, which providesan initial universal form of the mammalian host protection from infectious diseases without pre-exposure, plays an essential role in determining the outcome of viral infection.The main components of this immune systembranchare represented by the internal sensors of the host cells that are able to perceive the presence of viral component, including nucleic acids, to start and trigger the production of first type interferon and to activate the cytotoxicity by Natural Killercells, often exploited by viruses for immune evasion.In this brief review, we providea general overview of the principal tools of innate immunity, focusing on the immunologic escape implemented byFCoVand FeHV-1 duringinfection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maria Tempesta
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy; (P.C.); (A.P.); (M.C.); (G.L.); (G.G.); (F.P.)
| |
Collapse
|
3
|
Correlation of Feline Coronavirus Shedding in Feces with Coronavirus Antibody Titer. Pathogens 2020; 9:pathogens9080598. [PMID: 32707796 PMCID: PMC7459802 DOI: 10.3390/pathogens9080598] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Feline coronavirus (FCoV) infection is ubiquitous in multi-cat households. Responsible for the continuous presence are cats that are chronically shedding a high load of FCoV. The aim of the study was to determine a possible correlation between FCoV antibody titer and frequency and load of fecal FCoV shedding in cats from catteries. METHODS Four fecal samples from each of 82 cats originating from 19 German catteries were examined for FCoV viral loads by quantitative reverse transcriptase polymerase chain reaction (RT-qPCR). Additionally, antibody titers were determined by an immunofluorescence assay. RESULTS Cats with antibodies were more likely to be FCoV shedders than non-shedders, and there was a weak positive correlation between antibody titer and mean fecal virus load (Spearman r = 0.2984; p = 0.0072). Antibody titers were significantly higher if cats shed FCoV more frequently throughout the study period (p = 0.0063). When analyzing only FCoV shedders, cats that were RT-qPCR-positive in all four samples had significantly higher antibody titers (p = 0.0014) and significantly higher mean fecal virus loads (p = 0.0475) than cats that were RT-qPCR-positive in only one, two, or three samples. CONCLUSIONS The cats' antibody titers correlate with the likelihood and frequency of FCoV shedding and fecal virus load. Chronic shedders have higher antibody titers and shed more virus. This knowledge is important for the management of FCoV infections in multi-cat environments, but the results indicate that antibody measurement cannot replace fecal RT-qPCR.
Collapse
|
4
|
In Vitro Evaluation of Curcumin-Encapsulated Chitosan Nanoparticles against Feline Infectious Peritonitis Virus and Pharmacokinetics Study in Cats. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3012198. [PMID: 32596292 PMCID: PMC7262662 DOI: 10.1155/2020/3012198] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 01/23/2023]
Abstract
Feline infectious peritonitis (FIP) is an important feline viral disease, causing an overridden inflammatory response that results in a high mortality rate, primarily in young cats. Curcumin is notable for its biological activities against various viral diseases; however, its poor bioavailability has hindered its potential in therapeutic application. In this study, curcumin was encapsulated in chitosan nanoparticles to improve its bioavailability. Curcumin-encapsulated chitosan (Cur-CS) nanoparticles were synthesised based on the ionic gelation technique and were spherical and cuboidal in shape, with an average particle size of 330 nm and +42 mV in zeta potential. The nanoparticles exerted lower toxicity in Crandell-Rees feline kidney (CrFK) cells and enhanced antiviral activities with a selective index (SI) value three times higher than that of curcumin. Feline-specific bead-based multiplex immunoassay and qPCR were used to examine their modulatory effects on proinflammatory cytokines, including tumour necrosis factor (TNF)α, interleukin- (IL-) 6, and IL-1β. There were significant decrements in IL-1β, IL-6, and TNFα expression in both curcumin and Cur-CS nanoparticles. Based on the multiplex immunoassay, curcumin and the Cur-CS nanoparticles could lower the immune-related proteins in FIP virus (FIPV) infection. The single- and multiple-dose pharmacokinetics profiles of curcumin and the Cur-CS nanoparticles were determined by high-performance liquid chromatography (HPLC). Oral delivery of the Cur-CS nanoparticles to cats showed enhanced bioavailability with a maximum plasma concentration (C max) value of 621.5 ng/mL. Incorporating chitosan nanoparticles to deliver curcumin improved the oral bioavailability and antiviral effects of curcumin against FIPV infection. This study provides evidence for the potential of Cur-CS nanoparticles as a supplementary treatment of FIP.
Collapse
|
5
|
Felten S, Hartmann K. Diagnosis of Feline Infectious Peritonitis: A Review of the Current Literature. Viruses 2019; 11:v11111068. [PMID: 31731711 PMCID: PMC6893704 DOI: 10.3390/v11111068] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/10/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Feline infectious peritonitis (FIP) is a fatal disease that poses several challenges for veterinarians: clinical signs and laboratory changes are non-specific, and there are two pathotypes of the etiologic agent feline coronavirus (FCoV), sometimes referred to as feline enteric coronavirus (FECV) and feline infectious peritonitis virus (FIPV) that vary fundamentally in their virulence, but are indistinguishable by a number of diagnostic methods. This review focuses on all important steps every veterinary practitioner has to deal with and new diagnostic tests that can be considered when encountering a cat with suspected FIP with the aim to establish a definitive diagnosis. It gives an overview on all available direct and indirect diagnostic tests and their sensitivity and specificity reported in the literature in different sample material. By providing summarized data for sensitivity and specificity of each diagnostic test and each sample material, which can easily be accessed in tables, this review can help to facilitate the interpretation of different diagnostic tests and raise awareness of their advantages and limitations. Additionally, diagnostic trees depict recommended diagnostic steps that should be performed in cats suspected of having FIP based on their clinical signs or clinicopathologic abnormalities. These steps can easily be followed in clinical practice.
Collapse
|
6
|
Dewerchin HL, Desmarets LM, Noppe Y, Nauwynck HJ. Myosins 1 and 6, myosin light chain kinase, actin and microtubules cooperate during antibody-mediated internalisation and trafficking of membrane-expressed viral antigens in feline infectious peritonitis virus infected monocytes. Vet Res 2014; 45:17. [PMID: 24517254 PMCID: PMC3937040 DOI: 10.1186/1297-9716-45-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 01/29/2014] [Indexed: 12/20/2022] Open
Abstract
Monocytes infected with feline infectious peritonitis virus, a coronavirus, express viral proteins in their plasma membranes. Upon binding of antibodies, these proteins are quickly internalised through a new clathrin- and caveolae-independent internalisation pathway. By doing so, the infected monocytes can escape antibody-dependent cell lysis. In the present study, we investigated which kinases and cytoskeletal proteins are of importance during internalisation and subsequent intracellular transport. The experiments showed that myosin light chain kinase (MLCK) and myosin 1 are crucial for the initiation of the internalisation. With co-localisation stainings, it was found that MLCK and myosin 1 co-localise with antigens even before internalisation started. Myosin 6 co-localised with the internalising complexes during passage through the cortical actin, were it might play a role in moving or disintegrating actin filaments, to overcome the actin barrier. One minute after internalisation started, vesicles had passed the cortical actin, co-localised with microtubules and association with myosin 6 was lost. The vesicles were further transported over the microtubules and accumulated at the microtubule organising centre after 10 to 30 min. Intracellular trafficking over microtubules was mediated by MLCK, myosin 1 and a small actin tail. Since inhibiting MLCK with ML-7 was so efficient in blocking the internalisation pathway, this target can be used for the development of a new treatment for FIPV.
Collapse
Affiliation(s)
| | | | | | - Hans J Nauwynck
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| |
Collapse
|
7
|
Dedeurwaerder A, Olyslaegers DAJ, Desmarets LMB, Roukaerts IDM, Theuns S, Nauwynck HJ. ORF7-encoded accessory protein 7a of feline infectious peritonitis virus as a counteragent against IFN-α-induced antiviral response. J Gen Virol 2013; 95:393-402. [PMID: 24189622 DOI: 10.1099/vir.0.058743-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The type I IFN-mediated immune response is the first line of antiviral defence. Coronaviruses, like many other viruses, have evolved mechanisms to evade this innate response, ensuring their survival. Several coronavirus accessory genes play a central role in these pathways, but for feline coronaviruses this has never to our knowledge been studied. As it has been demonstrated previously that ORF7 is essential for efficient replication in vitro and virulence in vivo of feline infectious peritonitis virus (FIPV), the role of this ORF in the evasion of the IFN-α antiviral response was investigated. Deletion of ORF7 from FIPV strain 79-1146 (FIPV-Δ7) rendered the virus more susceptible to IFN-α treatment. Given that ORF7 encodes two proteins, 7a and 7b, it was further explored which of these proteins is active in this mechanism. Providing 7a protein in trans rescued the mutant FIPV-Δ7 from IFN sensitivity, which was not achieved by addition of 7b protein. Nevertheless, addition of protein 7a to FIPV-Δ3Δ7, a FIPV mutant deleted in both ORF3 and ORF7, could no longer increase the replication capacity of this mutant in the presence of IFN. These results indicate that FIPV 7a protein is a type I IFN antagonist and protects the virus from the antiviral state induced by IFN, but it needs the presence of ORF3-encoded proteins to exert its antagonistic function.
Collapse
Affiliation(s)
- Annelike Dedeurwaerder
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Dominique A J Olyslaegers
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Lowiese M B Desmarets
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Inge D M Roukaerts
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Sebastiaan Theuns
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Hans J Nauwynck
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| |
Collapse
|
8
|
Vermeulen BL, Devriendt B, Olyslaegers DA, Dedeurwaerder A, Desmarets LM, Favoreel HW, Dewerchin HL, Nauwynck HJ. Suppression of NK cells and regulatory T lymphocytes in cats naturally infected with feline infectious peritonitis virus. Vet Microbiol 2013; 164:46-59. [PMID: 23434014 PMCID: PMC7117246 DOI: 10.1016/j.vetmic.2013.01.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 01/24/2013] [Accepted: 01/30/2013] [Indexed: 01/11/2023]
Abstract
A strong cell-mediated immunity (CMI) is thought to be indispensable for protection against infection with feline infectious peritonitis virus (FIPV) in cats. In this study, the role of natural killer (NK) cells and regulatory T cells (Tregs), central players in the innate and adaptive CMI respectively, was examined during natural FIPV infection. When quantified, both NK cells and Tregs were drastically depleted from the peripheral blood, mesenteric lymph node (LN) and spleen in FIP cats. In contrast, mesentery and kidney from FIP cats did not show any difference when compared to healthy non-infected control animals. In addition, other regulatory lymphocytes (CD4+CD25−Foxp3+ and CD3+CD8+Foxp3+) were found to be depleted from blood and LN as well. Phenotypic analysis of blood-derived NK cells in FIP cats revealed an upregulation of activation markers (CD16 and CD25) and migration markers (CD11b and CD62L) while LN-derived NK cells showed upregulation of only CD16 and CD62L. LN-derived NK cells from FIPV-infected cats were also significantly less cytotoxic when compared with healthy cats. This study reveals for the first time that FIPV infection is associated with severe suppression of NK cells and Tregs, which is reflected by cell depletion and lowered cell functionality (only NK cells). This will un-doubtfully lead to a reduced capacity of the innate immune system (NK cells) to battle FIPV infection and a decreased capacity (Tregs) to suppress the immunopathology typical for FIP. However, these results will also open possibilities for new therapies targeting specifically NK cells and Tregs to enhance their numbers and/or functionality during FIPV infection.
Collapse
Affiliation(s)
- Ben L Vermeulen
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Cherlet M, Gleich S, Dewerchin H, Nauwynck H, Daminet S, De Backer P, Croubels S. Quantitative analysis of an anti-viral immune escape compound ML-7 in feline plasma using ultra performance liquid chromatography/electrospray ionization mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 905:118-26. [PMID: 22925719 PMCID: PMC7105240 DOI: 10.1016/j.jchromb.2012.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 08/03/2012] [Accepted: 08/09/2012] [Indexed: 11/29/2022]
Abstract
An analytical method for the quantitative measurement of ML-7, a product with possible anti-immune escape activity for feline infectious peritonitis virus (FIPV), in feline plasma was developed and validated. The sample preparation consists of a solid-phase extraction step on an MCX cartridge. ML-7 and ML-9, used as the internal standard for the analysis, were separated on an ACQUITY UPLC™ BEH C(18) reversed-phase column (1.7 μm, 50 mm × 2.1 mm I.D.), using isocratic elution with acetonitrile and 0.1% formic acid in water as the mobile phase. Both compounds were subsequently quantified in MRM mode on a Micromass(®) Quattro Premier™ XE triple quadrupole mass spectrometer. The use of a Thermo Scientific(®) Exactive™ orbitrap mass spectrometer made it possible to confirm the proposed fragmentation pattern of both ML-7 and ML-9. A validation study according to EC requirements was carried out, in which the method showed good performance. Linear behaviour was observed in the 1-2500 ng ml(-1) range, which is relevant for real sample analysis. Accuracy and precision were within the criteria requested by the EC requirements throughout this concentration range. Extraction recovery of ML-7 was 72%. Matrix effect for ML-7 was not higher than 8%. The method was successfully used for the monitoring of ML-7 in feline plasma after intravenous, subcutaneous or oral administration of an ML-7 formulation, for the determination of pharmacokinetic parameters, with a limit of quantification of 1 ng ml(-1) and a limit of detection of 0.4 ng ml(-1). The proposed method also shows good characteristics for the analysis of ML-7 in plasma of other animal species and human plasma.
Collapse
Affiliation(s)
- Marc Cherlet
- Ghent University, Faculty of Veterinary Medicine, Department of Pharmacology, Toxicology and Biochemistry, Merelbeke, Belgium.
| | | | | | | | | | | | | |
Collapse
|
10
|
Myrrha LW, Silva FMF, Peternelli EFDO, Junior AS, Resende M, de Almeida MR. The paradox of feline coronavirus pathogenesis: a review. Adv Virol 2011; 2011:109849. [PMID: 22312333 PMCID: PMC3265210 DOI: 10.1155/2011/109849] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 06/01/2011] [Accepted: 06/01/2011] [Indexed: 12/04/2022] Open
Abstract
Feline coronavirus (FCoV) is an enveloped single-stranded RNA virus, of the family Coronaviridae and the order Nidovirales. FCoV is an important pathogen of wild and domestic cats and can cause a mild or apparently symptomless enteric infection, especially in kittens. FCoV is also associated with a lethal, systemic disease known as feline infectious peritonitis (FIP). Although the precise cause of FIP pathogenesis remains unclear, some hypotheses have been suggested. In this review we present results from different FCoV studies and attempt to elucidate existing theories on the pathogenesis of FCoV infection.
Collapse
Affiliation(s)
- Luciana Wanderley Myrrha
- Laboratório de Infectologia Molecular Animal (LIMA), Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n Campus Universitário, 36570-000 Vicosa, MG, Brazil
| | - Fernanda Miquelitto Figueira Silva
- Laboratório de Infectologia Molecular Animal (LIMA), Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n Campus Universitário, 36570-000 Vicosa, MG, Brazil
| | - Ethel Fernandes de Oliveira Peternelli
- Laboratório de Infectologia Molecular Animal (LIMA), Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n Campus Universitário, 36570-000 Vicosa, MG, Brazil
| | - Abelardo Silva Junior
- Laboratório de Infectologia Molecular Animal (LIMA), Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n Campus Universitário, 36570-000 Vicosa, MG, Brazil
| | - Maurício Resende
- Laboratório de Doença das Aves, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627—Pampulha, 31270-901, Belo Horizonte, MG, Brazil
| | - Márcia Rogéria de Almeida
- Laboratório de Infectologia Molecular Animal (LIMA), Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n Campus Universitário, 36570-000 Vicosa, MG, Brazil
| |
Collapse
|
11
|
Addie D, Belák S, Boucraut-Baralon C, Egberink H, Frymus T, Gruffydd-Jones T, Hartmann K, Hosie MJ, Lloret A, Lutz H, Marsilio F, Pennisi MG, Radford AD, Thiry E, Truyen U, Horzinek MC. Feline infectious peritonitis. ABCD guidelines on prevention and management. J Feline Med Surg 2009; 11:594-604. [PMID: 19481039 PMCID: PMC7129471 DOI: 10.1016/j.jfms.2009.05.008] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
OVERVIEW Feline coronavirus infection is ubiquitous in domestic cats, and is particularly common where conditions are crowded. While most FCoV-infected cats are healthy or display only a mild enteritis, some go on to develop feline infectious peritonitis, a disease that is especially common in young cats and multi-cat environments. Up to 12% of FCoV-infected cats may succumb to FIP, with stress predisposing to the development of disease. DISEASE SIGNS The 'wet' or effusive form, characterised by polyserositis (abdominal and/or thoracic effusion) and vasculitis, and the 'dry' or non-effusive form (pyogranulomatous lesions in organs) reflect clinical extremes of a continuum. The clinical picture of FIP is highly variable, depending on the distribution of the vasculitis and pyogranulomatous lesions. Fever refractory to antibiotics, lethargy, anorexia and weight loss are common non-specific signs. Ascites is the most obvious manifestation of the effusive form. DIAGNOSIS The aetiological diagnosis of FIP ante-mortem may be difficult, if not impossible. The background of the cat, its history, the clinical signs, laboratory changes, antibody titres and effusion analysis should all be used to help in decision-making about further diagnostic procedures. At the time of writing, there is no non-invasive confirmatory test available for cats without effusion. DISEASE MANAGEMENT In most cases FIP is fatal. Supportive treatment is aimed at suppressing the inflammatory and detrimental immune response. However, there are no controlled studies to prove any beneficial effect of corticosteroids. VACCINATION RECOMMENDATIONS At present, only one (intranasal) FIP vaccine is available, which is considered as being non-core. Kittens may profit from vaccination when they have not been exposed to FCoV (eg, in an early-weaning programme), particularly if they enter a FCoV-endemic environment.
Collapse
Affiliation(s)
- Diane Addie
- European Advisory Board on Cat Diseases (ABCD).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Cornelissen E, Dewerchin HL, Van Hamme E, Nauwynck HJ. Absence of antibody-dependent, complement-mediated lysis of feline infectious peritonitis virus-infected cells. Virus Res 2009; 144:285-9. [PMID: 19720244 PMCID: PMC7114424 DOI: 10.1016/j.virusres.2009.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 03/23/2009] [Accepted: 03/31/2009] [Indexed: 11/25/2022]
Abstract
Cats infected with virulent feline coronavirus which causes feline infectious peritonitis (FIP) usually succumb to disease despite high antibody concentrations. One of the mechanisms that can help resolving infection is antibody-dependent, complement-mediated lysis (ADCML) of infected cells. ADCML consists of virus-specific antibodies that bind to cell surface expressed viral proteins which result in complement activation and cell lysis. The objective of this study was to determine the sensitivity of FIP-virus (FIPV) infected cells towards ADCML and to examine the role of the accessory proteins 3abc and 7ab in this process. ADCML assays, using FIPV strain 79-1146 and its deletion mutant strain Δ3abc/Δ7ab, were performed on: (i) CrFK cells that show surface-expressed viral antigens, (ii) monocytes without surface-expressed viral proteins due to retention and (iii) monocytes with surface-expressed viral proteins since the antibody-mediated internalization of these proteins was blocked. As expected, no ADCML was detected of the monocytes without surface-expressed viral antigens. Surprisingly, no lysis was observed in the CrFK cells and the monocytes that do show surface-expressed viral proteins, while controls showed that the ADCML assay was functional. These experiments proof that FIPV can employ another immune evasion strategy against ADCML (besides preventing surface expression): the inhibition of complement-mediated lysis. This new evasion strategy is not attributed to the group-specific proteins since lysis of cells infected with FIPV Δ3abc/Δ7ab was not detected.
Collapse
Affiliation(s)
- E Cornelissen
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | | | | | | |
Collapse
|
13
|
Affiliation(s)
- Niels C Pedersen
- Department of Medicine and Epidemiology and Center for Companion Animal Health, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
14
|
Dewerchin HL, Cornelissen E, Van Hamme E, Smits K, Verhasselt B, Nauwynck HJ. Surface-expressed viral proteins in feline infectious peritonitis virus-infected monocytes are internalized through a clathrin- and caveolae-independent pathway. J Gen Virol 2008; 89:2731-2740. [DOI: 10.1099/vir.0.2008/002212-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Infection with feline infectious peritonitis virus (FIPV), a feline coronavirus, frequently leads to death in spite of a strong humoral immune response. In previous work, we reported that infected monocytes, thein vivotarget cells of FIPV, express viral proteins in their plasma membranes. These proteins are quickly internalized upon binding of antibodies. As the cell surface is cleared from viral proteins, internalization might offer protection against antibody-dependent cell lysis. Here, the internalization and subsequent trafficking of the antigen–antibody complexes were characterized using biochemical, cell biological and genetic approaches. Internalization occurred through a clathrin- and caveolae-independent pathway that did not require dynamin, rafts, actin or rho-GTPases. These findings indicate that the viral antigen–antibody complexes were not internalized through any of the previously described pathways. Further characterization showed that this internalization process was independent from phosphatases and tyrosine kinases but did depend on serine/threonine kinases. After internalization, the viral antigen–antibody complexes passed through the early endosomes, where they resided only briefly, and accumulated in the late endosomes. Between 30 and 60 min after antibody addition, the complexes left the late endosomes but were not degraded in the lysosomes. This study reveals what is probably a new internalization pathway into primary monocytes, confirming once more the complexity of endocytic processes.
Collapse
Affiliation(s)
- Hannah L. Dewerchin
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Els Cornelissen
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Evelien Van Hamme
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Kaatje Smits
- Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Science, Ghent University, Belgium
| | - Bruno Verhasselt
- Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Science, Ghent University, Belgium
| | - Hans J. Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Belgium
| |
Collapse
|