1
|
Phage Cocktail Targeting STEC O157:H7 Has Comparable Efficacy and Superior Recovery Compared with Enrofloxacin in an Enteric Murine Model. Microbiol Spectr 2022; 10:e0023222. [PMID: 35536028 PMCID: PMC9241756 DOI: 10.1128/spectrum.00232-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
O157:H7 is the most important Shiga toxin-producing Escherichia coli (STEC) serotype in relation to public health. Given that antibiotics may contribute to the exacerbation of STEC-related disease and an increased frequency of antibiotic-resistant strains, bacteriophage (phage) therapy is considered a promising alternative. However, phage therapy targeting enteric pathogens is still underdeveloped with many confounding effects from the microbiota. Here we comprehensively compared the therapeutic efficacy of a phage cocktail with the antibiotic enrofloxacin in a mouse model of STEC O157:H7 EDL933 infection. Enrofloxacin treatment provided 100% survival and the phage cocktail treatment provided 90% survival. However, in terms of mouse recovery, the phage cocktail outperformed enrofloxacin in all measured outcomes. Compared with enrofloxacin treatment, phage treatment led to a faster elimination of enteric pathogens, decreased expression levels of inflammatory markers, increased weight gain, maintenance of a stable relative organ weight, and improved homeostasis of the gut microbiota. These results provide support for the potential of phage therapy to combat enteric pathogens and suggest that phage treatment leads to enhanced recovery of infected mice compared with antibiotics. IMPORTANCE With the increasing severity of antibiotic resistance and other adverse consequences, animal experiments and clinical trials investigating the use of phages for the control and prevention of enteric bacterial infections are growing. However, the effects of phages and antibiotics on organisms when treating intestinal infections have not been precisely studied. Here, we comprehensively compared the therapeutic efficacy of a phage cocktail to the antibiotic enrofloxacin in a mouse model of STEC O157:H7 EDL933 infection. We found that, despite a slightly lower protection rate, phage treatment contributed to a faster recovery of infected mice compared with enrofloxacin. These results highlight the potential benefits of phage therapy to combat enteric infections.
Collapse
|
2
|
Safe Game: Hygienic Habits in Self-Consumption of Game Meat in Eastern Spain. Foods 2022; 11:foods11030368. [PMID: 35159518 PMCID: PMC8834040 DOI: 10.3390/foods11030368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
We used anonymous questionnaires to assess the hygienic and sanitary aspects of game meat self-consumption in Eastern Spain as the first step towards a health risk assessment. The survey yielded 472 valid interviews from active hunters. The maximum possible score was 65 points (average 29 ± 8; range 1–52). Most participants were men (95%), but women achieved significantly better scores (p = 0.003). Hunters above 65 years old scored significantly lower results than younger groups (p = 0.007). The score increased with the educational level (p = 0.046). A 92% of the collaborators consumed game meat. Veterinary inspection and freezing were irregular among the participants. Most respondents declared carrying the animals in their personal vehicles. Of the dressing process, 61% of sites were outdoors, 68% of the participants declared using specific knives, 64% used the same clothes as in the field, and 42% used disposable gloves. The most usual way to dispose of the remains was garbage containers (41%); offal abandonment in the field was 33%, and 13% fed domestic animals using the remains. We conclude that public health authorities should increase their interest in the self-consumption of game meat. Clear guidelines about domestic dressing facilities and hygienic habits should be published, these being essential when looking for synergies with hunter associations.
Collapse
|
3
|
Yin H, Li J, Huang H, Wang Y, Qian X, Ren J, Xue F, Dai J, Tang F. Microencapsulated phages show prolonged stability in gastrointestinal environments and high therapeutic efficiency to treat Escherichia coli O157:H7 infection. Vet Res 2021; 52:118. [PMID: 34521472 PMCID: PMC8439058 DOI: 10.1186/s13567-021-00991-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/27/2021] [Indexed: 11/10/2022] Open
Abstract
Escherichia coli (E. coli) O157:H7 bacterial infection causes severe disease in mammals and results in substantial economic losses worldwide. Due to the development of antibiotic resistance, bacteriophage (phage) therapy has become an alternative to control O157:H7 infection. However, the therapeutic effects of phages are frequently disappointing because of their low resistance to the gastrointestinal environment. In this study, to improve the stability of phages in the gastrointestinal tract, E. coli O157:H7 phages were microencapsulated and their in vitro stability and in vivo therapeutic efficiency were investigated. The results showed that compared to free phages, the resistance of microencapsulated phages to simulated gastric fluid and bile salts significantly increased. The microencapsulated phages were efficiently released into simulated intestinal fluid, leading to a better therapeutic effect in rats infected with E. coli O157:H7 compared to the effects of the free phages. In addition, the microencapsulated phages were more stable during storage than the free phages, showing how phage microencapsulation can play an essential role in phage therapy.
Collapse
Affiliation(s)
- Hanjie Yin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haosheng Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuxin Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinjie Qian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianluan Ren
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,China Pharmaceutical University, Nanjing, China
| | - Fang Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
4
|
Soare C, McNeilly TN, Seguino A. A review of potential risk factors linked to shiga toxin-producing Escherichia coli (STEC) in wild deer populations and the practices affecting the microbial contamination of wild deer carcasses with enteric bacteria. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Yamazaki A, Shirafuji Y, Kamata Y. Establishment of a Novel Molecular Detection Method for Sarcocystis in Venison. Foodborne Pathog Dis 2020; 18:104-113. [PMID: 33030358 DOI: 10.1089/fpd.2020.2831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recently, horse meat (basashi) contaminated with Sarcocystis spp. caused food poisoning in Japan. An official detection method provided by the Ministry of Health, Labour and Welfare (MHLW), Japan, was designed to detect Sarcocystis fayeri to diagnose and control outbreaks of basashi food poisoning. In 2011, Sarcocystis-contaminated venison also caused food poisoning. However, the official MHLW detection method was not adequate for detecting Sarcocystis spp. in venison. In this study, we established a novel PCR-based detection method that amplifies 18S rRNA gene based on the conserved region of the sequence in 32 species of Sarcocystis for screening and quantification. Fifty venison samples from three areas in Hokkaido were examined by the MHLW method and the novel detection method. All samples were Sarcocystis spp.-positive. A sequence analysis indicated the presence of a species of Sarcocystis specific to sika deer (Cervus nippon), and not to horses. Another primer pair was designed for a quantitative real-time PCR assay to determine the copy number of the Sarcocystis-18S rRNA gene in parasitized venison. The melting curve analysis revealed high specificity of this assay. The calculated curve demonstrated that this quantitative PCR assay showed R2 value of 0.993 with 10-106 copies. Using this quantitative real-time PCR assay, the gene copy numbers were determined in 50 venison samples. The copy numbers of each sample ranged from 104 to 107 per gram. The copy numbers differed according to the area in Hokkaido. This indicates that the density of Sarcocystis spp. that infect Sika deer in Hokkaido is affected by the area. The novel screening and quantitative PCR method for Sarcocystis in venison was useful for collecting epidemiological information on Sarcocystis in wild Japanese sika deer, which will contribute to improve the safety of venison products in Japan.
Collapse
Affiliation(s)
- Akiko Yamazaki
- Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Yukiko Shirafuji
- Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Yoichi Kamata
- Department of Food and Nutrition, Faculty of Human Life Science, Senri Kinran University, Suita, Japan
| |
Collapse
|
6
|
Szczerba-Turek A, Kordas B. Fallow Deer ( Dama dama) as a Reservoir of Shiga Toxin-Producing Escherichia coli (STEC). Animals (Basel) 2020; 10:E881. [PMID: 32438625 PMCID: PMC7278374 DOI: 10.3390/ani10050881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 01/04/2023] Open
Abstract
Shiga toxin-producing Escherichia (E.) coli (STEC) are responsible for the outbreaks of serious diseases in humans. Only a few reports on fallow deer as a reservoir of foodborne pathogens have been published to date. The purpose of this study was to determine the occurrence of STEC strains in the fallow deer population in Poland. In all, 94 fallow deer swabs were tested. Polymerase chain reaction (PCR) was performed to detect the virulence profile of stx1, stx2 and eae or aggR genes, to identify the subtypes of stx1 and stx2 genes and to perform O and H serotyping. STEC and attaching and effacing (AE)-STEC were identified in 13 isolates (13.83%). The most hazardous virulence profile was detected in three strains, namely stx2d serotype O103:HNM, eae/stx1a serotype O26:HNM and eae/stx1a serotype O157:H7. The predominant stx gene was stx2, which was identified in 76.92% of isolates. E. coli O157 was detected in 4/94 (4.26%). Other E. coli serogroups, O26, O103, O111 and O145, were identified in 14/94 fallow deer (14.89%). The present findings suggest that fallow deer are carriers of STEC/AE-STEC that are potentially pathogenic to humans.
Collapse
Affiliation(s)
- Anna Szczerba-Turek
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland;
| | | |
Collapse
|
7
|
Rajkhowa S, Sarma DK. Prevalence and antimicrobial resistance of porcine O157 and non-O157 Shiga toxin-producing Escherichia coli from India. Trop Anim Health Prod 2014; 46:931-7. [PMID: 24743858 DOI: 10.1007/s11250-014-0587-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2014] [Indexed: 01/25/2023]
Abstract
The aims of this study were to determine the prevalence of Shiga toxin-producing Escherichia coli (STEC) strains in pigs as a possible STEC reservoir in India as well as to characterize the STEC strains and to determine the antimicrobial resistance pattern of the strains. A total of 782 E. coli isolates from clinically healthy (n = 473) and diarrhoeic piglets (309) belonging to major pig-producing states of India were screened by the polymerase chain reaction (PCR) assay for the presence of virulence genes characteristic for STEC, that is, Shiga toxin-producing gene(s) (stx1, stx2), intimin (eae), enterohemolysin (hlyA) and STEC autoagglutinating adhesin (Saa). Overall STEC were detected in 113 (14.4%) piglets, and the prevalence of E. coli O157 and non-O157 STEC were 4 (0.5%) and 109 (13.9%), respectively. None of the O157 STEC isolates carried gene encoding for H7 antigen (fliCh7). The various combinations of virulence genes present in the strains studied were stx1 in 4.6%, stx1 in combination with stx2 gene in 5.1%, stx1 in combination with stx2 and ehxA in 0.6%, stx1 in combination with stx2 and eae in 0.2% and stx2 alone in 3.7%. All STEC isolates were found negative for STEC autoagglutinating adhesin (Saa). The number of STEC isolates which showed resistance to antimicrobials such as ampicillin, tetracycline, streptomycin, lincomycin, nalidixic acid, sulfadiazine, penicillin, gentamicin, kanamycin and ceftriaxone were 100, 99, 98, 97, 95, 94, 92, 88, 85 and 85, respectively. Ninety-seven isolates showed resistance to more than 2 antimicrobials, and 8 resistance groups (R1 to R8) were observed. This study demonstrates that pigs in India harbour both O157 and non-O157 STEC, and this may pose serious public health problems in future.
Collapse
Affiliation(s)
- Swaraj Rajkhowa
- National Research Centre on Pig, Indian Council of Agricultural Research (ICAR), Rani Guwahati, 781 131, Assam, India,
| | | |
Collapse
|
8
|
Franklin AB, VerCauteren KC, Maguire H, Cichon MK, Fischer JW, Lavelle MJ, Powell A, Root JJ, Scallan E. Wild ungulates as disseminators of Shiga toxin-producing Escherichia coli in urban areas. PLoS One 2013; 8:e81512. [PMID: 24349083 PMCID: PMC3859483 DOI: 10.1371/journal.pone.0081512] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/22/2013] [Indexed: 11/19/2022] Open
Abstract
Background In 2008, children playing on a soccer field in Colorado were sickened with a strain of Shiga toxin-producing Escherichia coli (STEC) O157:H7, which was ultimately linked to feces from wild Rocky Mountain elk. We addressed whether wild cervids were a potential source of STEC infections in humans and whether STEC was ubiquitous throughout wild cervid populations in Colorado. Methodology/Principal Findings We collected 483 fecal samples from Rocky Mountain elk and mule deer in urban and non-urban areas. Samples testing positive for STEC were higher in urban (11.0%) than non-urban (1.6%) areas. Elk fecal samples in urban areas had a much higher probability of containing STEC, which increased in both urban and non-urban areas as maximum daily temperature increased. Of the STEC-positive samples, 25% contained stx1 strains, 34.3% contained stx2, and 13% contained both stx1 and stx2. Additionally, eaeA genes were detected in 54.1% of the positive samples. Serotypes O103, and O146 were found in elk and deer feces, which also have the potential to cause human illness. Conclusions/Significance The high incidence of stx2 strains combined with eaeA and E-hyl genes that we found in wild cervid feces is associated with severe human disease, such as hemolytic uremic syndrome. This is of concern because there is a very close physical interface between elk and humans in urban areas that we sampled. In addition, we found a strong relationship between ambient temperature and incidence of STEC in elk feces, suggesting a higher incidence of STEC in elk feces in public areas on warmer days, which in turn may increase the likelihood that people will come in contact with infected feces. These concerns also have implications to other urban areas where high densities of coexisting wild cervids and humans interact on a regular basis.
Collapse
Affiliation(s)
- Alan B. Franklin
- United States Department of Agriculture, National Wildlife Research Center, Fort Collins, Colorado, United States of America
- * E-mail:
| | - Kurt C. VerCauteren
- United States Department of Agriculture, National Wildlife Research Center, Fort Collins, Colorado, United States of America
| | - Hugh Maguire
- Laboratory Services Division, Colorado Department of Public Health and Environment, Denver, Colorado, United States of America
| | - Mary K. Cichon
- Laboratory Services Division, Colorado Department of Public Health and Environment, Denver, Colorado, United States of America
| | - Justin W. Fischer
- United States Department of Agriculture, National Wildlife Research Center, Fort Collins, Colorado, United States of America
| | - Michael J. Lavelle
- United States Department of Agriculture, National Wildlife Research Center, Fort Collins, Colorado, United States of America
| | - Amber Powell
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, Colorado, United States of America
| | - J. Jeffrey Root
- United States Department of Agriculture, National Wildlife Research Center, Fort Collins, Colorado, United States of America
| | - Elaine Scallan
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, United States of America
| |
Collapse
|
9
|
Sasaki Y, Goshima T, Mori T, Murakami M, Haruna M, Ito K, Yamada Y. Prevalence and Antimicrobial Susceptibility of Foodborne Bacteria in Wild Boars (Sus scrofa) and Wild Deer (Cervus nippon) in Japan. Foodborne Pathog Dis 2013; 10:985-91. [DOI: 10.1089/fpd.2013.1548] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yoshimasa Sasaki
- Food Safety and Consumer Affairs Bureau, Ministry of Agriculture, Forestry, and Fisheries, Tokyo, Japan
| | - Tomoko Goshima
- Food Safety and Consumer Affairs Bureau, Ministry of Agriculture, Forestry, and Fisheries, Tokyo, Japan
| | - Tetsuya Mori
- Institute for Food and Environmental Sciences, Tokyo Kenbikyo-in Foundation, Tokyo, Japan
| | - Mariko Murakami
- Food Safety and Consumer Affairs Bureau, Ministry of Agriculture, Forestry, and Fisheries, Tokyo, Japan
| | - Mika Haruna
- Food Safety and Consumer Affairs Bureau, Ministry of Agriculture, Forestry, and Fisheries, Tokyo, Japan
| | - Kazuo Ito
- Food Safety and Consumer Affairs Bureau, Ministry of Agriculture, Forestry, and Fisheries, Tokyo, Japan
| | - Yukiko Yamada
- Food Safety and Consumer Affairs Bureau, Ministry of Agriculture, Forestry, and Fisheries, Tokyo, Japan
| |
Collapse
|
10
|
Díaz-Sánchez S, Sánchez S, Herrera-León S, Porrero C, Blanco J, Dahbi G, Blanco J, Mora A, Mateo R, Hanning I, Vidal D. Prevalence of Shiga toxin-producing Escherichia coli, Salmonella spp. and Campylobacter spp. in large game animals intended for consumption: Relationship with management practices and livestock influence. Vet Microbiol 2013; 163:274-81. [DOI: 10.1016/j.vetmic.2012.12.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 12/21/2022]
|
11
|
Vande Walle K, Vanrompay D, Cox E. Bovine innate and adaptive immune responses against Escherichia coli O157:H7 and vaccination strategies to reduce faecal shedding in ruminants. Vet Immunol Immunopathol 2012; 152:109-20. [PMID: 23084625 DOI: 10.1016/j.vetimm.2012.09.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Enterohaemorrhagic E. coli (EHEC) O157:H7 is a zoonotic pathogen of worldwide importance causing foodborne infections with possibly life-threatening consequences in humans, such as haemorrhagic colitis and in a small percentage of zoonotic cases, haemolytic-uremic syndrome (HUS). Ruminants are an important reservoir of EHEC and human infections are most frequently associated with direct or indirect contact with ruminant faeces. A thorough understanding of the host-bacterium interaction in ruminants could lead to the development of novel interventions strategies, including innovative vaccines. This review aims to present the current knowledge regarding innate and adaptive immune responses in EHEC colonized ruminants. In addition, results on vaccination strategies in ruminants aiming at reduction of EHEC shedding are reviewed.
Collapse
Affiliation(s)
- Kris Vande Walle
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9860 Merelbeke, Belgium
| | | | | |
Collapse
|
12
|
Jenke C, Leopold SR, Weniger T, Rothgänger J, Harmsen D, Karch H, Mellmann A. Identification of intermediate in evolutionary model of enterohemorrhagic Escherichia coli O157. Emerg Infect Dis 2012; 18:582-8. [PMID: 22469031 PMCID: PMC3309690 DOI: 10.3201/eid1804.111414] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Single-nucleotide polymorphism typing found missing link between human strains in strain from deer. Highly pathogenic enterohemorrhagic Escherichia coli (EHEC) O157 cause a spectrum of clinical signs that include diarrhea, bloody diarrhea, and hemolytic uremic syndrome. The current evolutionary model of EHEC O157:H7/H– consists of a stepwise evolution scenario proceeding from O55:H7 to a node (hypothetical intermediate) that then branches into sorbitol-fermenting (SF) O157:H– and non-SF (NSF) O157:H7. To identify this hypothetical intermediate, we performed single nucleotide polymorphism analysis by sequencing of 92 randomly distributed backbone genomic regions of 40 O157:H7/H– isolates. Overall, 111 single nucleotide polymorphisms were identified in 75/92 partial open reading frames after sequencing 51,041 nt/strain. The EHEC O157:H7 strain LSU-61 from deer occupied an intermediate position between O55:H7 and both O157 branches (SF and NSF O157), complementing the stepwise evolutionary model of EHEC O157:H7/H–. The animal origin of this intermediate emphasizes the value of nonhuman reservoirs in the clarification of the evolution of human pathogens.
Collapse
Affiliation(s)
- Christian Jenke
- Institute for Hygiene and National Consulting Laboratory on Hemolytic Uremic Syndrome, Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Detection and characterization of Shiga toxin-producingEscherichia coliin faeces and lymphatic tissue of free-ranging deer. Epidemiol Infect 2012; 141:251-9. [DOI: 10.1017/s0950268812000246] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SUMMARYShiga toxin-producingEscherichia coli(STEC) have led to outbreaks worldwide and are considered emerging pathogens. Infections by STEC in humans have been reported after consumption of mainly beef, but also deer. This study investigated the occurrence of STEC in deer in Germany. The virulence geneseae,e-hlyAandsaa, thestxsubtypes, pulsed-field gel electrophoresis (PFGE) patterns and serovars were studied. In total, 120 samples of 60 animals were screened by real-time polymerase chain reaction (PCR). The PCR results showed a high detection rate ofstxgenes (83%). Mainly faecal samples, but also some lymphatic tissue samples, testedstx-positive. All isolates carriedstx2, wereeae-negative and carriede-hlyAin 38% andsaain 9% of samples. Serovars (O88:[H8], O174:[H8], O146:H28) associated with human diseases were also identified. In some animals, isolates from lymphatic tissue and faecal samples showed undistinguishable PFGE patterns. The examined deer were shown to be relevant reservoirs of STEC with subtypestx2bpredominating.
Collapse
|
14
|
Bono JL, Smith TPL, Keen JE, Harhay GP, McDaneld TG, Mandrell RE, Jung WK, Besser TE, Gerner-Smidt P, Bielaszewska M, Karch H, Clawson ML. Phylogeny of Shiga toxin-producing Escherichia coli O157 isolated from cattle and clinically ill humans. Mol Biol Evol 2012; 29:2047-62. [PMID: 22355013 PMCID: PMC3408066 DOI: 10.1093/molbev/mss072] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cattle are a major reservoir for Shiga toxin-producing Escherichia coli O157 (STEC O157) and harbor multiple genetic subtypes that do not all associate with human disease. STEC O157 evolved from an E. coli O55:H7 progenitor; however, a lack of genome sequence has hindered investigations on the divergence of human- and/or cattle-associated subtypes. Our goals were to 1) identify nucleotide polymorphisms for STEC O157 genetic subtype detection, 2) determine the phylogeny of STEC O157 genetic subtypes using polymorphism-derived genotypes and a phage insertion typing system, and 3) compare polymorphism-derived genotypes identified in this study with pulsed field gel electrophoresis (PFGE), the current gold standard for evaluating STEC O157 diversity. Using 762 nucleotide polymorphisms that were originally identified through whole-genome sequencing of 189 STEC O157 human- and cattle-isolated strains, we genotyped a collection of 426 STEC O157 strains. Concatenated polymorphism alleles defined 175 genotypes that were tagged by a minimal set of 138 polymorphisms. Eight major lineages of STEC O157 were identified, of which cattle are a reservoir for seven. Two lineages regularly harbored by cattle accounted for the majority of human disease in this study, whereas another was rarely represented in humans and may have evolved toward reduced human virulence. Notably, cattle are not a known reservoir for E. coli O55:H7 or STEC O157:H− (the first lineage to diverge within the STEC O157 serogroup), which both cause human disease. This result calls into question how cattle may have originally acquired STEC O157. The polymorphism-derived genotypes identified in this study did not surpass PFGE diversity assessed by BlnI and XbaI digestions in a subset of 93 strains. However, our results show that they are highly effective in assessing the evolutionary relatedness of epidemiologically unrelated STEC O157 genetic subtypes, including those associated with the cattle reservoir and human disease.
Collapse
Affiliation(s)
- James L Bono
- United States Department of Agriculture, Agricultural Research Service, US Meat Animal Research Center, Clay Center, Nebraska, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Escherichia coli serotype O55:H7 diversity supports parallel acquisition of bacteriophage at Shiga toxin phage insertion sites during evolution of the O157:H7 lineage. J Bacteriol 2012; 194:1885-96. [PMID: 22328665 DOI: 10.1128/jb.00120-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) continues to be a leading cause of mortality and morbidity in children around the world. Two EPEC genomes have been fully sequenced: those of EPEC O127:H6 strain E2348/69 (United Kingdom, 1969) and EPEC O55:H7 strain CB9615 (Germany, 2003). The O55:H7 serotype is a recent precursor to the virulent enterohemorrhagic E. coli O157:H7. To explore the diversity of O55:H7 and better understand the clonal evolution of O157:H7, we fully sequenced EPEC O55:H7 strain RM12579 (California, 1974), which was collected 1 year before the first U.S. isolate of O157:H7 was identified in California. Phage-related sequences accounted for nearly all differences between the two O55:H7 strains. Additionally, O55:H7 and O157:H7 strains were tested for the presence and insertion sites of Shiga toxin gene (stx)-containing bacteriophages. Analysis of non-phage-associated genes supported core elements of previous O157:H7 stepwise evolutionary models, whereas phage composition and insertion analyses suggested a key refinement. Specifically, the placement and presence of lambda-like bacteriophages (including those containing stx) should not be considered stable evolutionary markers or be required in placing O55:H7 and O157:H7 strains within the stepwise evolutionary models. Additionally, we suggest that a 10.9-kb region (block 172) previously believed unique to O55:H7 strains can be used to identify early O157:H7 strains. Finally, we defined two subsets of O55:H7 strains that share an as-yet-unobserved or extinct common ancestor with O157:H7 strains. Exploration of O55:H7 diversity improved our understanding of the evolution of E. coli O157:H7 and suggested a key revision to accommodate existing and future configurations of stx-containing bacteriophages into current models.
Collapse
|
16
|
Seropathotypes, Phylogroups, Stx subtypes, and intimin types of wildlife-carried, shiga toxin-producing escherichia coli strains with the same characteristics as human-pathogenic isolates. Appl Environ Microbiol 2012; 78:2578-85. [PMID: 22307301 DOI: 10.1128/aem.07520-11] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objectives of this study were to investigate the presence of Shiga toxin-producing Escherichia coli (STEC) strains in wildlife that have spread in Europe, living near human settlements; to analyze their epidemiological role in maintenance and transmission to domestic livestock; and to assess the potential health risk of wildlife-carried strains. STEC strains were recovered from 53% of roe deer, 8.4% of wild boars, and 1.9% of foxes sampled in the northwest of Spain (Galicia). Of the 40 serotypes identified, 21 were classified as seropathotypes associated with human disease, accounting for 81.5% of the wildlife-carried STEC strains, including the enterohemorrhagic serotypes O157:H7-D-eae-γ1, O26:[H11]-B1-eae-β1, O121:H19-B1-eae-ε1, and O145:[H28]-D-eae-γ1. None of the wildlife-carried strains belonged to the highly pathogenic serotype O104:H4-B1 from the recent Germany outbreak. Forty percent of wildlife-carried STEC strains shared serotypes, phylogroups, intimin types, and Stx profiles with isolates from human patients from the same geographic area. Furthermore, wildlife-carried strains belonging to serotypes O5:HNM-A, O26:[H11]-B1, O76:H19-B1, O145:[H28]-D, O146:H21-B1, and O157:H7-D showed pulsed-field gel electrophoresis (PFGE) profiles with >85% similarity to human-pathogenic STEC strains. We also found a high level of similarity among STEC strains of serotypes O5:HNM-A, O26:[H11]-B1, and O145:HNM-D of bovine (feces and beef) and wildlife origins. Interestingly, O146:H21-B1, the second most frequently detected serotype in this study, is commonly associated with human diarrhea and isolated from beef and vegetables sold in Galicia. Importantly, at least 3 STEC isolates from foxes (O5:HNM-A-eae-β1, O98:[H21]-B1-eae-ζ1, and O146:[H21]-B1) showed characteristics similar to those of human STEC strains. In conclusion, roe deer, wild boar, and fox in Galicia are confirmed to be carriers of STEC strains potentially pathogenic for humans and seem to play an important role in the maintenance of STEC.
Collapse
|
17
|
Díaz S, Vidal D, Herrera-León S, Sánchez S. Sorbitol-fermenting, β-glucuronidase-positive, Shiga toxin-negative Escherichia coli O157:H7 in free-ranging red deer in South-Central Spain. Foodborne Pathog Dis 2011; 8:1313-5. [PMID: 21819212 DOI: 10.1089/fpd.2011.0923] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We investigated the prevalence of Escherichia coli O157:H7 in free-ranging red deer in south-central Spain, to assess their potential as reservoir hosts of sorbitol-fermenting (SF) E. coli O157:H7 strains, which are emerging causes of hemolytic uremic syndrome in Europe. Fecal samples from 264 hunter-harvested Iberian red deer (Cervus elaphus) were collected in 25 different game estates and examined for E. coli O157:H7 by culture and PCR. E. coli O157:H7 was detected and isolated in 4 of the 25 game estates sampled (16%) and the isolates obtained (four in total) were further phenogenotypically characterized. One of them was biochemically typical of E. coli O157:H7, that is, neither fermented sorbitol nor exhibited β-glucuronidase (GUD) activity, and carried genes encoding Shiga toxins (Stx) 1 and 2, the intimin subtype γ1, the enterohemorrhagic E. coli (EHEC)-hemolysin, and the ter gene cluster. The rest of the isolates (three of four) fermented sorbitol, exhibited GUD activity after 18-24 h incubation, and carried genes encoding the intimin subtype γ1 and the EHEC-hemolysin, although no Stx-encoding genes were detected. All these atypical isolates carried the sfp gene cluster, lacked the ter gene cluster, and were unable to grow on cefixime tellurite sorbitol MacConkey agar, which are typical features of SF E. coli O157:H7 strains isolated from patients. In total, SF, GUD-positive, Stx-negative E. coli O157:H7 strains were isolated in 3 of the 25 game estates sampled (12%), with an overall sample-level prevalence of 1.1% (3/264). Our findings indicate that free-ranging red deer may be one of the possible reservoir hosts of Stx-negative derivatives of SF E. coli O157:H7.
Collapse
Affiliation(s)
- Sandra Díaz
- Instituto de Investigación en Recursos Cinegéticos, CSIC-UCLM-JCCM, Ciudad Real, Spain
| | | | | | | |
Collapse
|
18
|
Martin C, Pastoret PP, Brochier B, Humblet MF, Saegerman C. A survey of the transmission of infectious diseases/infections between wild and domestic ungulates in Europe. Vet Res 2011; 42:70. [PMID: 21635726 PMCID: PMC3152899 DOI: 10.1186/1297-9716-42-70] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Accepted: 06/02/2011] [Indexed: 11/10/2022] Open
Abstract
The domestic animals/wildlife interface is becoming a global issue of growing interest. However, despite studies on wildlife diseases being in expansion, the epidemiological role of wild animals in the transmission of infectious diseases remains unclear most of the time. Multiple diseases affecting livestock have already been identified in wildlife, especially in wild ungulates. The first objective of this paper was to establish a list of infections already reported in European wild ungulates. For each disease/infection, three additional materials develop examples already published, specifying the epidemiological role of the species as assigned by the authors. Furthermore, risk factors associated with interactions between wild and domestic animals and regarding emerging infectious diseases are summarized. Finally, the wildlife surveillance measures implemented in different European countries are presented. New research areas are proposed in order to provide efficient tools to prevent the transmission of diseases between wild ungulates and livestock.
Collapse
Affiliation(s)
- Claire Martin
- Research Unit in Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR), Department of Infectious and Parasitic diseases, Faculty of Veterinary Medicine, University of Liège, Boulevard de Colonster, 20, B42, B-4000 Liège, Belgium
- Anses, Sophia-Antipolis Laboratory, Unit of Ruminant Pathology, 105 Route des Chappes B.P.111, 06902 Sophia Antipolis Cedex, France
| | - Paul-Pierre Pastoret
- Publications Unit, World Organisation for Animal Health (OIE), 12 Rue Prony, 75017 Paris, France
| | - Bernard Brochier
- Scientific Institute of Public Health, Department of Microbiology, Division of Virology, Rue Juliette Wytsman 14, B-1050 Brussels, Belgium
| | - Marie-France Humblet
- Research Unit in Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR), Department of Infectious and Parasitic diseases, Faculty of Veterinary Medicine, University of Liège, Boulevard de Colonster, 20, B42, B-4000 Liège, Belgium
| | - Claude Saegerman
- Research Unit in Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR), Department of Infectious and Parasitic diseases, Faculty of Veterinary Medicine, University of Liège, Boulevard de Colonster, 20, B42, B-4000 Liège, Belgium
| |
Collapse
|
19
|
Ferens WA, Hovde CJ. Escherichia coli O157:H7: animal reservoir and sources of human infection. Foodborne Pathog Dis 2010; 8:465-87. [PMID: 21117940 DOI: 10.1089/fpd.2010.0673] [Citation(s) in RCA: 366] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
This review surveys the literature on carriage and transmission of enterohemorrhagic Escherichia coli (EHEC) O157:H7 in the context of virulence factors and sampling/culture technique. EHEC of the O157:H7 serotype are worldwide zoonotic pathogens responsible for the majority of severe cases of human EHEC disease. EHEC O157:H7 strains are carried primarily by healthy cattle and other ruminants, but most of the bovine strains are not transmitted to people, and do not exhibit virulence factors associated with human disease. Prevalence of EHEC O157:H7 is probably underestimated. Carriage of EHEC O157:H7 by individual animals is typically short-lived, but pen and farm prevalence of specific isolates may extend for months or years and some carriers, designated as supershedders, may harbor high intestinal numbers of the pathogen for extended periods. The prevalence of EHEC O157:H7 in cattle peaks in the summer and is higher in postweaned calves and heifers than in younger and older animals. Virulent strains of EHEC O157:H7 are rarely harbored by pigs or chickens, but are found in turkeys. The bacteria rarely occur in wildlife with the exception of deer and are only sporadically carried by domestic animals and synanthropic rodents and birds. EHEC O157:H7 occur in amphibian, fish, and invertebrate carriers, and can colonize plant surfaces and tissues via attachment mechanisms different from those mediating intestinal attachment. Strains of EHEC O157:H7 exhibit high genetic variability but typically a small number of genetic types predominate in groups of cattle and a farm environment. Transmission to people occurs primarily via ingestion of inadequately processed contaminated food or water and less frequently through contact with manure, animals, or infected people.
Collapse
Affiliation(s)
- Witold A Ferens
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho 83844-3052, USA.
| | | |
Collapse
|
20
|
Occurrence of verocytotoxin-producing Escherichia coli in the faeces of free-ranging wild lagomorphs in southwest Spain. EUR J WILDLIFE RES 2010. [DOI: 10.1007/s10344-010-0431-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Enteric Bacterial Pathogens with Zoonotic Potential Isolated from Farm-Raised Deer. Foodborne Pathog Dis 2010; 7:1031-7. [DOI: 10.1089/fpd.2009.0486] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
22
|
Sánchez S, Martínez R, García A, Vidal D, Blanco J, Blanco M, Blanco J, Mora A, Herrera-León S, Echeita A, Alonso J, Rey J. Detection and characterisation of O157:H7 and non-O157 Shiga toxin-producing Escherichia coli in wild boars. Vet Microbiol 2010; 143:420-3. [DOI: 10.1016/j.vetmic.2009.11.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 11/09/2009] [Accepted: 11/12/2009] [Indexed: 11/26/2022]
|
23
|
Sánchez S, Martínez R, Rey J, García A, Blanco J, Blanco M, Blanco J, Mora A, Herrera-León S, Echeita A, Alonso J. Pheno-genotypic characterisation of Escherichia coli O157:H7 isolates from domestic and wild ruminants. Vet Microbiol 2010; 142:445-9. [DOI: 10.1016/j.vetmic.2009.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 09/23/2009] [Accepted: 10/15/2009] [Indexed: 11/29/2022]
|
24
|
Assessment of Shiga toxin-producing Escherichia coli isolates from wildlife meat as potential pathogens for humans. Appl Environ Microbiol 2009; 75:6462-70. [PMID: 19700552 DOI: 10.1128/aem.00904-09] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A total of 140 Shiga toxin-producing Escherichia coli (STEC) strains from wildlife meat (deer, wild boar, and hare) isolated in Germany between 1998 and 2006 were characterized with respect to their serotypes and virulence markers associated with human pathogenicity. The strains grouped into 38 serotypes, but eight O groups (21, 146, 128, 113, 22, 88, 6, and 91) and four H types (21, 28, 2, and 8) accounted for 71.4% and 75.7% of all STEC strains from game, respectively. Eighteen of the serotypes, including enterohemorrhagic E. coli (EHEC) O26:[H11] and O103:H2, were previously found to be associated with human illness. Genes linked to high-level virulence for humans (stx(2), stx(2d), and eae) were present in 46 (32.8%) STEC strains from game. Fifty-four STEC isolates from game belonged to serotypes which are frequently found in human patients (O103:H2, O26:H11, O113:H21, O91:H21, O128:H2, O146:H21, and O146:H28). These 54 STEC isolates were compared with 101 STEC isolates belonging to the same serotypes isolated from farm animals, from their food products, and from human patients. Within a given serotype, most STEC strains were similar with respect to their stx genotypes and other virulence attributes, regardless of origin. The 155 STEC strains were analyzed for genetic similarity by XbaI pulsed-field gel electrophoresis. O103:H2, O26:H11, O113:H21, O128:H2, and O146:H28 STEC isolates from game were 85 to 100% similar to STEC isolates of the same strains from human patients. By multilocus sequence typing, game EHEC O103:H2 strains were attributed to a clonal lineage associated with hemorrhagic diseases in humans. The results from our study indicate that game animals represent a reservoir for and a potential source of human pathogenic STEC and EHEC strains.
Collapse
|
25
|
Sánchez S, García-Sánchez A, Martínez R, Blanco J, Blanco J, Blanco M, Dahbi G, Mora A, Hermoso de Mendoza J, Alonso J, Rey J. Detection and characterisation of Shiga toxin-producing Escherichia coli other than Escherichia coli O157:H7 in wild ruminants. Vet J 2009; 180:384-8. [DOI: 10.1016/j.tvjl.2008.01.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 01/23/2008] [Accepted: 01/24/2008] [Indexed: 11/26/2022]
|
26
|
La Ragione RM, Best A, Woodward MJ, Wales AD. Escherichia coli O157:H7 colonization in small domestic ruminants. FEMS Microbiol Rev 2008; 33:394-410. [PMID: 19207740 DOI: 10.1111/j.1574-6976.2008.00138.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Enterohaemorrhagic Escherichia coli O157:H7 was first implicated in human disease in the early 1980s, with ruminants cited as the primary reservoirs. Preliminary studies indicated cattle to be the sole source of E. coli O157:H7 outbreaks in humans; however, further epidemiological studies soon demonstrated that E. coli O157:H7 was widespread in other food sources and that a number of transmission routes existed. More recently, small domestic ruminants (sheep and goats) have emerged as important sources of E. coli O157:H7 human infection, particularly with the widespread popularity of petting farms and the increased use of sheep and goat food products, including unpasteurized cheeses. Although the colonization and persistence characteristics of E. coli O157:H7 in the bovine host have been studied intensively, this is not the case for small ruminants. Despite many similarities to the bovine host, the pathobiology of E. coli O157:H7 in small domestic ruminants does appear to differ significantly from that described in cattle. This review aims to critically review the current knowledge regarding colonization and persistence of E. coli O157:H7 in small domestic ruminants, including comparisons with the bovine host where appropriate.
Collapse
Affiliation(s)
- Roberto M La Ragione
- Department of Food and Environmental Safety, Veterinary Laboratories Agency, Addlestone, Surrey, UK.
| | | | | | | |
Collapse
|
27
|
Shiga toxins, and the genes encoding them, in fecal samples from native Idaho ungulates. Appl Environ Microbiol 2008; 75:862-5. [PMID: 19060170 DOI: 10.1128/aem.01158-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cattle are a known reservoir of Shiga toxin-producing Escherichia coli. The prevalence and stability of Shiga toxin and/or Shiga toxin genes among native wild ungulates in Idaho were investigated. The frequency of both Shiga genes and toxin was similar to that reported for Idaho cattle ( approximately 19%).
Collapse
|
28
|
Prevalence of antibodies against Toxoplasma gondii in roe deer from Spain. Vet Parasitol 2008; 153:152-6. [DOI: 10.1016/j.vetpar.2008.01.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 01/08/2008] [Accepted: 01/11/2008] [Indexed: 11/20/2022]
|
29
|
Niu YD, Xu Y, McAllister TA, Rozema EA, Stephens TP, Bach SJ, Johnson RP, Stanford K. Comparison of fecal versus rectoanal mucosal swab sampling for detecting Escherichia coli O157:H7 in experimentally inoculated cattle used in assessing bacteriophage as a mitigation strategy. J Food Prot 2008; 71:691-8. [PMID: 18468021 DOI: 10.4315/0362-028x-71.4.691] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study was conducted to compare fecal grab (FEC) and rectoanal mucosal swab (RAMS) techniques as sampling methods for surveillance of Escherichia coli O157:H7 in conjunction with administration of a mitigation therapy. The study was nested within a larger experiment that investigated bacteriophage as a preharvest strategy for controlling E. coli O157:H7 in feedlot steers. Samples (FEC and RAMS) were collected from 16 of the 32 feedlot steers (control and oral bacteriophage treatment; n = 8) involved in the mitigation study. All steers had been inoculated on day 0 with 10(10) CFU of nalidixic acid-resistant E. coli O157:H7, and samples were collected on 16 occasions over the next 83 days. FEC samples were assessed by direct plating of serial dilutions in PBS, plus a 6-h enrichment and immunomagnetic separation when E. coli O157:H7 concentrations were below limits detectable by direct plating (i.e., <1 log CFU/g). All RAMS samples were assessed by enrichment and immunomagnetic separation. E. coli O157:H7 was detected more frequently (P < 0.01) by FEC than by RAMS. Overall, 213 of 256 samples were positive either by FEC or RAMS. Discrepancies between sampling techniques were observed in 63 of the 213 positive samples; FEC missed 11 samples that were positive by RAMS, and RAMS missed 52 of those positive by FEC (miss rates of 5.16 and 24.41%, respectively). Kappa values (0.36 to 0.45) indicated only fair to moderate agreement between FEC and RAMS results, but this agreement was higher at lower levels of E. coli O157:H7 shedding (later in the experimental period). Selection of sampling procedure could significantly influence the assessed merit during testing of potential strategies for controlling E. coli O157:H7 on the farm.
Collapse
Affiliation(s)
- Y D Niu
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|