1
|
Simmons MM, Thorne L, Ortiz-Pelaez A, Spiropoulos J, Georgiadou S, Papasavva-Stylianou P, Andreoletti O, Hawkins SA, Meloni D, Cassar C. Transmissible spongiform encephalopathy in goats: is PrP rapid test sensitivity affected by genotype? J Vet Diagn Invest 2020; 32:87-93. [PMID: 31894737 PMCID: PMC7003235 DOI: 10.1177/1040638719896327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Transmissible spongiform encephalopathy (TSE) surveillance in goats relies on tests initially approved for cattle, subsequently assessed for sheep, and approval extrapolated for use in "small ruminants." The current EU-approved immunodetection tests employ antibodies against various epitopes of the prion protein PrPSc, which is encoded by the host PRNP gene. The caprine PRNP gene is polymorphic, mostly at codons different from the ovine PRNP. The EU goat population is much more heterogeneous than the sheep population, with more PRNP-related polymorphisms, and with marked breed-related differences. The ability of the current tests to detect disease-specific PrPSc generated against these different genetic backgrounds is currently assumed, rather than proven. We examined whether common polymorphisms within the goat PRNP gene might have any adverse effect on the relative performance of EU-approved rapid tests. The sample panel comprised goats from the UK, Cyprus, France, and Italy, with either experimental or naturally acquired scrapie at both the preclinical and/or unknown and clinical stages of disease. Test sensitivity was significantly lower and more variable when compared using samples from animals that were preclinical or of unknown status. However, all of the rapid tests included in our study were able to correctly identify all samples from animals in the clinical stages of disease, apart from samples from animals polymorphic for serine or aspartic acid at codon 146, in which the performance of the Bio-Rad tests was profoundly affected. Our data show that some polymorphisms may adversely affect one test and not another, as well as underline the dangers of extrapolating from other species.
Collapse
Affiliation(s)
- Marion M. Simmons
- APHA-Weybridge, Addlestone, Surrey, UK (Simmons, Thorne, Spiropoulos, Hawkins, Cassar)
- Unit of Biological Hazards and Contaminants (BIOCONTAM), Risk Assessment & Scientific Assistance, European Food Safety Authority (EFSA), Parma, Italy (Ortiz-Pelaez)
- Veterinary Services of Cyprus, Nicosia, Cyprus (Georgiadou, Papasavva-Stylianou)
- UMR Institut National de la Recherche Agronomique, École Nationale Vétérinaire de Toulouse, Toulouse, France (Andreoletti)
- Italian Reference Laboratory for TSEs, Istituto Zooprofilattico Sperimentale del Piemonte, Turin, Italy (Meloni)
| | - Leigh Thorne
- APHA-Weybridge, Addlestone, Surrey, UK (Simmons, Thorne, Spiropoulos, Hawkins, Cassar)
- Unit of Biological Hazards and Contaminants (BIOCONTAM), Risk Assessment & Scientific Assistance, European Food Safety Authority (EFSA), Parma, Italy (Ortiz-Pelaez)
- Veterinary Services of Cyprus, Nicosia, Cyprus (Georgiadou, Papasavva-Stylianou)
- UMR Institut National de la Recherche Agronomique, École Nationale Vétérinaire de Toulouse, Toulouse, France (Andreoletti)
- Italian Reference Laboratory for TSEs, Istituto Zooprofilattico Sperimentale del Piemonte, Turin, Italy (Meloni)
| | - Angel Ortiz-Pelaez
- APHA-Weybridge, Addlestone, Surrey, UK (Simmons, Thorne, Spiropoulos, Hawkins, Cassar)
- Unit of Biological Hazards and Contaminants (BIOCONTAM), Risk Assessment & Scientific Assistance, European Food Safety Authority (EFSA), Parma, Italy (Ortiz-Pelaez)
- Veterinary Services of Cyprus, Nicosia, Cyprus (Georgiadou, Papasavva-Stylianou)
- UMR Institut National de la Recherche Agronomique, École Nationale Vétérinaire de Toulouse, Toulouse, France (Andreoletti)
- Italian Reference Laboratory for TSEs, Istituto Zooprofilattico Sperimentale del Piemonte, Turin, Italy (Meloni)
| | - John Spiropoulos
- APHA-Weybridge, Addlestone, Surrey, UK (Simmons, Thorne, Spiropoulos, Hawkins, Cassar)
- Unit of Biological Hazards and Contaminants (BIOCONTAM), Risk Assessment & Scientific Assistance, European Food Safety Authority (EFSA), Parma, Italy (Ortiz-Pelaez)
- Veterinary Services of Cyprus, Nicosia, Cyprus (Georgiadou, Papasavva-Stylianou)
- UMR Institut National de la Recherche Agronomique, École Nationale Vétérinaire de Toulouse, Toulouse, France (Andreoletti)
- Italian Reference Laboratory for TSEs, Istituto Zooprofilattico Sperimentale del Piemonte, Turin, Italy (Meloni)
| | - Soteria Georgiadou
- APHA-Weybridge, Addlestone, Surrey, UK (Simmons, Thorne, Spiropoulos, Hawkins, Cassar)
- Unit of Biological Hazards and Contaminants (BIOCONTAM), Risk Assessment & Scientific Assistance, European Food Safety Authority (EFSA), Parma, Italy (Ortiz-Pelaez)
- Veterinary Services of Cyprus, Nicosia, Cyprus (Georgiadou, Papasavva-Stylianou)
- UMR Institut National de la Recherche Agronomique, École Nationale Vétérinaire de Toulouse, Toulouse, France (Andreoletti)
- Italian Reference Laboratory for TSEs, Istituto Zooprofilattico Sperimentale del Piemonte, Turin, Italy (Meloni)
| | - Penelope Papasavva-Stylianou
- APHA-Weybridge, Addlestone, Surrey, UK (Simmons, Thorne, Spiropoulos, Hawkins, Cassar)
- Unit of Biological Hazards and Contaminants (BIOCONTAM), Risk Assessment & Scientific Assistance, European Food Safety Authority (EFSA), Parma, Italy (Ortiz-Pelaez)
- Veterinary Services of Cyprus, Nicosia, Cyprus (Georgiadou, Papasavva-Stylianou)
- UMR Institut National de la Recherche Agronomique, École Nationale Vétérinaire de Toulouse, Toulouse, France (Andreoletti)
- Italian Reference Laboratory for TSEs, Istituto Zooprofilattico Sperimentale del Piemonte, Turin, Italy (Meloni)
| | - Olivier Andreoletti
- APHA-Weybridge, Addlestone, Surrey, UK (Simmons, Thorne, Spiropoulos, Hawkins, Cassar)
- Unit of Biological Hazards and Contaminants (BIOCONTAM), Risk Assessment & Scientific Assistance, European Food Safety Authority (EFSA), Parma, Italy (Ortiz-Pelaez)
- Veterinary Services of Cyprus, Nicosia, Cyprus (Georgiadou, Papasavva-Stylianou)
- UMR Institut National de la Recherche Agronomique, École Nationale Vétérinaire de Toulouse, Toulouse, France (Andreoletti)
- Italian Reference Laboratory for TSEs, Istituto Zooprofilattico Sperimentale del Piemonte, Turin, Italy (Meloni)
| | - Stephen A.C. Hawkins
- APHA-Weybridge, Addlestone, Surrey, UK (Simmons, Thorne, Spiropoulos, Hawkins, Cassar)
- Unit of Biological Hazards and Contaminants (BIOCONTAM), Risk Assessment & Scientific Assistance, European Food Safety Authority (EFSA), Parma, Italy (Ortiz-Pelaez)
- Veterinary Services of Cyprus, Nicosia, Cyprus (Georgiadou, Papasavva-Stylianou)
- UMR Institut National de la Recherche Agronomique, École Nationale Vétérinaire de Toulouse, Toulouse, France (Andreoletti)
- Italian Reference Laboratory for TSEs, Istituto Zooprofilattico Sperimentale del Piemonte, Turin, Italy (Meloni)
| | - Daniela Meloni
- APHA-Weybridge, Addlestone, Surrey, UK (Simmons, Thorne, Spiropoulos, Hawkins, Cassar)
- Unit of Biological Hazards and Contaminants (BIOCONTAM), Risk Assessment & Scientific Assistance, European Food Safety Authority (EFSA), Parma, Italy (Ortiz-Pelaez)
- Veterinary Services of Cyprus, Nicosia, Cyprus (Georgiadou, Papasavva-Stylianou)
- UMR Institut National de la Recherche Agronomique, École Nationale Vétérinaire de Toulouse, Toulouse, France (Andreoletti)
- Italian Reference Laboratory for TSEs, Istituto Zooprofilattico Sperimentale del Piemonte, Turin, Italy (Meloni)
| | - Claire Cassar
- Claire Cassar, Department of Pathology, APHA-Weybridge, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK.
| |
Collapse
|
2
|
Niedermeyer S, Eiden M, Toumazos P, Papasavva-Stylianou P, Ioannou I, Sklaviadis T, Panagiotidis C, Langeveld J, Bossers A, Kuczius T, Kaatz M, Groschup MH, Fast C. Genetic, histochemical and biochemical studies on goat TSE cases from Cyprus. Vet Res 2016; 47:99. [PMID: 27716411 PMCID: PMC5053211 DOI: 10.1186/s13567-016-0379-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/24/2016] [Indexed: 11/12/2022] Open
Abstract
Scrapie and bovine spongiform encephalopathy (BSE) are transmissible spongiform encephalopathies (TSE’s) affecting sheep and goats. Susceptibility of goats to scrapie is influenced by polymorphisms of the prion protein gene (PRNP) of the host. Five polymorphisms are associated with reduced susceptibility to TSE’s. In the study presented here caprine samples from a scrapie eradication program on Cyprus were genotyped and further characterized using BioRad TeSeE rapid test, histological, immunohistochemical and biochemical methods. In total 42 goats from 20 flocks were necropsied from which 25 goats showed a positive result in the rapid test, a spongiform encephalopathy and an accumulation of pathological prion protein (PrPSc) in the obex. PrPSc deposits were demonstrated in the placenta, peripheral nervous and lymphoreticular system. Two animals showed PrPSc-accumulations in peripheral tissues only. By discriminatory immunoblots a scrapie infection could be confirmed for all cases. Nevertheless, slight deviations in the glycosylation pattern might indicate the presence of different scrapie strains. Furthermore scrapie samples from goats in the current study demonstrated less long term resistance to proteinase K than ovine or caprine BSE control samples. Reduced scrapie susceptibility according to the PRNP genotype was demonstrated (Fishers Exact test, p < 0.05) for the goats with at least one polymorphism (p = 0.023) at the six codons examined and in particular for those with polymorphisms at codon 146 (p = 0.016). This work characterizes scrapie in goats having implications for breeding and surveillance strategies.
Collapse
Affiliation(s)
- Susanne Niedermeyer
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Südufer 10, 17493, Greifswald-Isle of Riems, Germany
| | - Martin Eiden
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Südufer 10, 17493, Greifswald-Isle of Riems, Germany
| | - Pavlos Toumazos
- Veterinary Services, Ministry of Agriculture, Rural Development and Environment, 1417, Nicosia, Cyprus
| | | | - Ioannis Ioannou
- Veterinary Services, Ministry of Agriculture, Rural Development and Environment, 1417, Nicosia, Cyprus
| | - Theodoros Sklaviadis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Cynthia Panagiotidis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jan Langeveld
- Department of Infection Biology, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands
| | - Alex Bossers
- Department of Infection Biology, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands
| | - Thorsten Kuczius
- Institute for Hygiene, Westfälische Wilhelms-University and University Hospital Münster, Robert Koch-Strasse 41, 48149, Münster, Germany
| | - Martin Kaatz
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Südufer 10, 17493, Greifswald-Isle of Riems, Germany
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Südufer 10, 17493, Greifswald-Isle of Riems, Germany
| | - Christine Fast
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Südufer 10, 17493, Greifswald-Isle of Riems, Germany.
| |
Collapse
|
3
|
Kittelberger R, McIntyre L, Watts J, MacDiarmid S, Hannah MJ, Jenner J, Bueno R, Swainsbury R, Langeveld JPM, van Keulen LJM, van Zijderveld FG, Wemheuer WM, Richt JA, Sorensen SJ, Pigott CJ, O'Keefe JS. Evaluation of two commercial, rapid, ELISA kits testing for scrapie in retro-pharyngeal lymph nodes in sheep. N Z Vet J 2014; 62:343-50. [PMID: 24961961 DOI: 10.1080/00480169.2014.933729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AIMS To estimate the number of cases of scrapie that would occur in sheep of different prion protein (PrP) genotypes if scrapie was to become established in New Zealand, and to compare the performance of two commercially available, rapid ELISA kits using ovine retro-pharyngeal lymph nodes (RLN) from non-infected and infected sheep of different PrP genotypes. METHODS Using published data on the distribution of PrP genotypes within the New Zealand sheep flock and the prevalence of cases of scrapie in these genotypes in the United Kingdom, the annual expected number of cases of scrapie per genotype was estimated, should scrapie become established in New Zealand, assuming a total population of 28 million sheep. A non-infected panel of RLN was collected from 737 sheep from New Zealand that had been culled, found in extremis or died. Brain stem samples were also collected from 131 of these sheep. A second panel of infected samples comprised 218 and 117 RLN from confirmed scrapie cases that had originated in Europe and the United States of America, respectively. All samples were screened using two commercial, rapid, transmissible spongiform encephalopathy ELISA kits: Bio-Rad TeSeE ELISA (ELISA-BR), and IDEXX HerdChek BSE-Scrapie AG Test (ELISA-ID). RESULTS If scrapie became established in New Zealand, an estimated 596 cases would occur per year; of these 234 (39%) and 271 (46%) would be in sheep carrying ARQ/ARQ and ARQ/VRQ PrP genotypes, respectively. For the non-infected samples from New Zealand the diagnostic specificity of both ELISA kits was 100%. When considering all infected samples, the diagnostic sensitivity was 70.4 (95% CI=65.3-75.3)% for ELISA-BR and 91.6 (95% CI=88.2-94.4)% for ELISA-ID. For the ARQ/ARQ genotype (n=195), sensitivity was 66.2% for ELISA-BR and 90.8% for ELISA-ID, and for the ARQ/VRQ genotype (n=107), sensitivity was 81.3% for ELISA-BR and 98.1% for ELISA-ID. CONCLUSIONS In this study, the ELISA-ID kit demonstrated a higher diagnostic sensitivity for detecting scrapie in samples of RLN from sheep carrying scrapie-susceptible PrP genotypes than the ELISA-BR kit at comparable diagnostic specificity. CLINICAL RELEVANCE The diagnostic performance of the ELISA-ID kit using ovine RLN merits the consideration of including this assay in the national scrapie surveillance programme in New Zealand.
Collapse
Affiliation(s)
- R Kittelberger
- a Investigation and Diagnostic Centres and Response , Ministry for Primary Industries , Wellington , New Zealand
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Corbière F, Chauvineau-Perrin C, Lacroux C, Lugan S, Costes P, Thomas M, Brémaud I, Chartier C, Barillet F, Schelcher F, Andréoletti O. The limits of test-based scrapie eradication programs in goats. PLoS One 2013; 8:e54911. [PMID: 23372789 PMCID: PMC3553010 DOI: 10.1371/journal.pone.0054911] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 12/19/2012] [Indexed: 12/21/2022] Open
Abstract
Small ruminant post-mortem testing programs were initially designed for monitoring the prevalence of prion disease. They are now considered as a potential alternative to genetic selection for eradicating/controlling classical scrapie at population level. If such policy should be implemented, its success would be crucially dependent on the efficiency of the surveillance system used to identify infected flocks. In this study, we first determined the performance of post-mortem classical scrapie detection in eight naturally affected goat herds (total n = 1961 animals) according to the age at culling. These results provided us with necessary parameters to estimate, through a Monte Carlo simulation model, the performance of scrapie detection in a commercial population. According to this model, whatever the number of tests performed, post mortem surveillance will have limited success in identifying infected herds. These data support the contention that scrapie eradication programs relying solely on post mortem testing in goats will probably fail. Considering the epidemiological and pathological similarities of scrapie in sheep and goats, the efficiency of scrapie surveillance in both species is likely to be similar.
Collapse
Affiliation(s)
- Fabien Corbière
- UMR 1225 INRA-ENVT Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire, Toulouse, France
| | | | - Caroline Lacroux
- UMR 1225 INRA-ENVT Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire, Toulouse, France
| | - Séverine Lugan
- UMR 1225 INRA-ENVT Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire, Toulouse, France
| | - Pierrette Costes
- UMR 1225 INRA-ENVT Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire, Toulouse, France
| | - Myriam Thomas
- ANSES, Laboratoire d’études et recherches caprines, Niort, France
| | - Isabelle Brémaud
- ANSES, Laboratoire d’études et recherches caprines, Niort, France
| | | | - Francis Barillet
- INRA, UR 631, Station d’Amélioration Génétique des Animaux, Castanet-Tolosan, France
| | - François Schelcher
- UMR 1225 INRA-ENVT Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire, Toulouse, France
| | - Olivier Andréoletti
- UMR 1225 INRA-ENVT Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire, Toulouse, France
- * E-mail:
| |
Collapse
|
5
|
Corbière F, Perrin-Chauvineau C, Lacroux C, Costes P, Thomas M, Brémaud I, Martin S, Lugan S, Chartier C, Schelcher F, Barillet F, Andreoletti O. PrP-associated resistance to scrapie in five highly infected goat herds. J Gen Virol 2012; 94:241-245. [PMID: 23100359 DOI: 10.1099/vir.0.047225-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The PrP gene polymorphisms at codons 142 (I/M), 154 (R/H), 211 (R/Q), 222 (Q/K) and 240 (S/P) and their association with susceptibility to classical scrapie infection were investigated in five French goat herds displaying a high disease prevalence (>10%). On the basis of PrP(Sc) detection in the central nervous system and in various lymphoid tissues, 301 of 1343 goats were found to be scrapie infected. The statistical analyses indicated that while P(240) mutation had no direct impact on scrapie infection risk, the H(154), Q(211) and K(222) mutations were associated with high resistance to scrapie. The M(142) mutated allele was associated with a limited protection level against the disease. These results further reinforce the view that, like in sheep, the control and eradication of classical scrapie through the selection of certain PrP alleles could be envisaged in commercial goat population.
Collapse
Affiliation(s)
- Fabien Corbière
- INRA, UMR 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse Cedex, France
| | | | - Caroline Lacroux
- INRA, UMR 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse Cedex, France
| | - Pierrette Costes
- INRA, UMR 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse Cedex, France
| | - Myriam Thomas
- ANSES, Laboratoire d'Etudes et de Recherches Caprines, BP 3081, 79012 Niort Cedex, France
| | - Isabelle Brémaud
- ANSES, Laboratoire d'Etudes et de Recherches Caprines, BP 3081, 79012 Niort Cedex, France
| | - Samuel Martin
- ANSES, Laboratoire d'Etudes et de Recherches Caprines, BP 3081, 79012 Niort Cedex, France
| | - Séverine Lugan
- INRA, UMR 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse Cedex, France
| | - Christophe Chartier
- ANSES, Laboratoire d'Etudes et de Recherches Caprines, BP 3081, 79012 Niort Cedex, France
| | - François Schelcher
- INRA, UMR 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse Cedex, France
| | - Francis Barillet
- INRA, UR 631, Station d'Amélioration Génétique des Animaux, BP 52627, 31326 Castanet-Tolosan Cedex, France
| | - Olivier Andreoletti
- INRA, UMR 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse Cedex, France
| |
Collapse
|
6
|
|
7
|
An assessment of the efficiency of PrPsc detection in rectal mucosa and third-eyelid biopsies from animals infected with scrapie. Vet Microbiol 2010; 147:237-43. [PMID: 20685048 DOI: 10.1016/j.vetmic.2010.06.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2009] [Revised: 06/21/2010] [Accepted: 06/29/2010] [Indexed: 12/30/2022]
Abstract
In classical scrapie, detection of PrPsc on lymphoreticular system is used for the in vivo and post mortem diagnosis of the disease. However, the sensitivity of this methodology is not well characterised because the magnitude and duration of lymphoid tissue involvement can vary considerably. The aim of the present study was to evaluate the efficiency of detecting PrPsc in rectal mucosa and third-eyelid biopsies. A total of 474 genetically susceptible sheep and 24 goats from three scrapie infected flocks were included in this study. A sample from rectal mucosa and a sample from third-eyelid lymphoid tissue were collected from each animal. Biopsy samples were fixed in formaldehyde and processed for immunohistochemical examination. Animals with negative biopsy results were studied more closely through a post mortem examination of central nervous and lymphoreticular systems and if there was a positive result, additional biopsy sections were further tested. The sensitivity of rectal mucosa and third-eyelid assays were 36% and 40% respectively on initial examination but increased to 48% and 44% respectively after retesting. The results of this field study show a high percentage of infected animals that do not have detectable levels of PrPsc in the biopsied lymphoid tissue, due mainly to the relatively high number of animals with minimal or no involvement of lymphoid tissue in the pathogenesis of the disease.
Collapse
|
8
|
Hagenaars TJ, Melchior MB, Bossers A, Davidse A, Engel B, van Zijderveld FG. Scrapie prevalence in sheep of susceptible genotype is declining in a population subject to breeding for resistance. BMC Vet Res 2010; 6:25. [PMID: 20470415 PMCID: PMC2883980 DOI: 10.1186/1746-6148-6-25] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 05/14/2010] [Indexed: 12/02/2022] Open
Abstract
Background Susceptibility of sheep to scrapie infection is known to be modulated by the PrP genotype of the animal. In the Netherlands an ambitious scrapie control programme was started in 1998, based on genetic selection of animals for breeding. From 2002 onwards EU regulations required intensive active scrapie surveillance as well as certain control measures in affected flocks. Here we analyze the data on genotype frequencies and scrapie prevalence in the Dutch sheep population obtained from both surveillance and affected flocks, to identify temporal trends. We also estimate the genotype-specific relative risks to become a detected scrapie case. Results We find that the breeding programme has produced a steady increase in the level of genetic scrapie resistance in the Dutch sheep population. We also find that a significant decline in the prevalence of scrapie in tested animals has occurred a number of years after the start of the breeding programme. Most importantly, the estimated scrapie prevalence level per head of susceptible genotype is also declining significantly, indicating that selective breeding causes a population effect. Conclusions The Dutch scrapie control programme has produced a steady rise in genetic resistance levels in recent years. A recent decline in the scrapie prevalence per tested sheep of susceptible prion protein genotype indicates that selective breeding causes the desired population effect.
Collapse
Affiliation(s)
- Thomas J Hagenaars
- Central Veterinary Institute of Wageningen UR, AB Lelystad, the Netherlands.
| | | | | | | | | | | |
Collapse
|
9
|
González L, Martin S, Hawkins SAC, Goldmann W, Jeffrey M, Sisó S. Pathogenesis of natural goat scrapie: modulation by host PRNP genotype and effect of co-existent conditions. Vet Res 2010; 41:48. [PMID: 20374697 PMCID: PMC2865875 DOI: 10.1051/vetres/2010020] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 04/07/2010] [Indexed: 11/30/2022] Open
Abstract
After detection of a high prevalence of scrapie in a large dairy goat herd, 72 infected animals were examined by immunohistochemistry with prion protein (PrP) antibody Bar224 to study the pathogenesis of the infection. Tissues examined included the brain and thoracic spinal cord (TSC), a wide selection of lymphoreticular system (LRS) tissues, the distal ileum and its enteric nervous system (ENS), and other organs, including the mammary gland. The whole open reading frame of the PRNP gene was sequenced and antibodies to caprine arthritis-encephalitis virus (CAEV) infection were determined. Unexpectedly, accumulation of disease-associated PrP (PrPd) in the brain was more frequent in methionine carriers at codon 142 (24/32, 75.0%) than amongst isoleucine homozygotes (14/40, 35.0%). The latter, however, showed significantly greater amounts of brain PrPd than the former (average scores of 9.3 and 3.0, respectively). A significant proportion of the 38 goats that were positive in brain were negative in the ENS (44.7%) or in the TSC (39.5%). These results, together with the early and consistent involvement of the circumventricular organs and the hypothalamus, point towards a significant contribution of the haematogenous route in the process of neuroinvasion. Chronic enteritis was observed in 98 of the 200 goats examined, with no association with either scrapie infection or presence of PrPd in the gut. Lymphoproliferative interstitial mastitis was observed in 13/31 CAEV-positive and scrapie-infected goats; PrPd in the mammary gland was detected in five of those 13 goats, suggesting a possible contribution of CAEV infection in scrapie transmission via milk.
Collapse
Affiliation(s)
- Lorenzo González
- Veterinary Laboratories Agency (VLA-Lasswade), Pentlands Science Park, Penicuik, Midlothian EH26 0PZ, United Kingdom.
| | | | | | | | | | | |
Collapse
|
10
|
González L, Martin S, Sisó S, Konold T, Ortiz-Peláez A, Phelan L, Goldmann W, Stewart P, Saunders G, Windl O, Jeffrey M, Hawkins SAC, Dawson M, Hope J. High prevalence of scrapie in a dairy goat herd: tissue distribution of disease-associated PrP and effect of PRNP genotype and age. Vet Res 2009; 40:65. [PMID: 19686637 DOI: 10.1051/vetres/2009048] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 08/14/2009] [Indexed: 01/01/2023] Open
Abstract
Following a severe outbreak of clinical scrapie in 2006-2007, a large dairy goat herd was culled and 200 animals were selected for post-mortem examinations in order to ascertain the prevalence of infection, the effect of age, breed and PRNP genotype on the susceptibility to scrapie, the tissue distribution of diseaseassociated PrP (PrP(d)), and the comparative efficiency of different diagnostic methods. As determined by immunohistochemical (IHC) examinations with Bar224 PrP antibody, the prevalence of preclinical infection was very high (72/200; 36.0%), with most infected animals being positive for PrP(d) in lymphoreticular system (LRS) tissues (68/72; 94.4%) compared to those that were positive in brain samples (38/72; 52.8%). The retropharyngeal lymph node and the palatine tonsil showed the highest frequency of PrP(d) accumulation (87.3% and 84.5%, respectively), while the recto-anal mucosa-associated lymphoid tissue (RAMALT) was positive in only 30 (41.7%) of the infected goats. However, the efficiency of rectal and palatine tonsil biopsies taken shortly before necropsy was similar. The probability of brain and RAMALT being positive directly correlated with the spread of PrP(d) within the LRS. The prevalence of infection was influenced by PRNP genetics at codon 142 and by the age of the goats: methionine carriers older than 60 months showed a much lower prevalence of infection (12/78; 15.4%) than those younger than 60 months (20/42; 47.6%); these last showed prevalence values similar to isoleucine homozygotes of any age (40/80; 50.0%). Two of seven goats with definite signs of scrapie were negative for PrP(d) in brain but positive in LRS tissues, and one goat showed biochemical and IHC features of PrP(d) different from all other infected goats. The results of this study have implications for surveillance and control policies for scrapie in goats.
Collapse
Affiliation(s)
- Lorenzo González
- Veterinary Laboratories Agency (VLA-Lasswade), Pentlands Science Park, Penicuik, Midlothian EH26 0PZ, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Durand B, Martinez MJ, Calavas D, Ducrot C. Comparison of strategies for substantiating freedom from scrapie in a sheep flock. BMC Vet Res 2009; 5:16. [PMID: 19405956 PMCID: PMC2697144 DOI: 10.1186/1746-6148-5-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Accepted: 04/30/2009] [Indexed: 11/25/2022] Open
Abstract
Background The public health threat represented by a potential circulation of bovine spongiform encephalopathy agent in sheep population has led European animal health authorities to launch large screening and genetic selection programmes. If demonstrated, such a circulation would have dramatic economic consequences for sheep breeding sector. In this context, it is important to evaluate the feasibility of qualification procedures that would allow sheep breeders demonstrating their flock is free from scrapie. Classical approaches, based on surveys designed to detect disease presence, do not account for scrapie specificities: the genetic variations of susceptibility and the absence of live diagnostic test routinely available. Adapting these approaches leads to a paradoxical situation in which a greater amount of testing is needed to substantiate disease freedom in genetically resistant flocks than in susceptible flocks, whereas probability of disease freedom is a priori higher in the former than in the latter. The goal of this study was to propose, evaluate and compare several qualification strategies for demonstrating a flock is free from scrapie. Results A probabilistic framework was defined that accounts for scrapie specificities and allows solving the preceding paradox. Six qualification strategies were defined that combine genotyping data, diagnostic tests results and flock pedigree. These were compared in two types of simulated flocks: resistant and susceptible flocks. Two strategies allowed demonstrating disease freedom in several years, for the majority of simulated flocks: a strategy in which all the flock animals are genotyped, and a strategy in which only founders animals are genotyped, the flock pedigree being known. In both cases, diagnostic tests are performed on culled animals. The less costly strategy varied according to the genetic context (resistant or susceptible) and to the relative costs of a genotyping exam and of a diagnostic test. Conclusion This work demonstrates that combining data sources allows substantiating a flock is free from scrapie within a reasonable time frame. Qualification schemes could thus be a useful tool for voluntary or mandatory scrapie control programmes. However, there is no general strategy that would always minimize the costs and choice of the strategy should be adapted to local genetic conditions.
Collapse
Affiliation(s)
- Benoit Durand
- Unité d'épidémiologie, Afssa-Lerpaz, 23 avenue du Général de Gaulle, 94706 Maisons-Alfort, France.
| | | | | | | |
Collapse
|
12
|
TSE risk assessment from carcasses of ovine and caprine animals below 6 months of age from TSE infected flocks intended for human consumption - Scientific Opinion of the Panel on Biological Hazards. EFSA J 2008; 6:719. [PMID: 37213859 PMCID: PMC10193622 DOI: 10.2903/j.efsa.2008.719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
13
|
Fediaevsky A, Tongue SC, Nöremark M, Calavas D, Ru G, Hopp P. A descriptive study of the prevalence of atypical and classical scrapie in sheep in 20 European countries. BMC Vet Res 2008; 4:19. [PMID: 18544152 PMCID: PMC2442063 DOI: 10.1186/1746-6148-4-19] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 06/10/2008] [Indexed: 12/03/2022] Open
Abstract
Background The development of active surveillance programmes for transmissible spongiform encephalopathies of small ruminants across Europe has led to the recent identification of a previously undetected form of ovine prion disease, 'atypical' scrapie. Knowledge of the epidemiology of this disease is still limited, as is whether it represents a risk for animal and/or public health. The detection of atypical scrapie has been related to the use of only some of the EU agreed rapid tests. Information about the rapid tests used is not, as yet, available from public reports on the surveillance of transmissible spongiform encephalopathies in small ruminants. We collected detailed results of active surveillance from European countries to estimate and to compare the prevalence of atypical scrapie and classical scrapie in sheep for each country stratified by each surveillance stream; healthy slaughtered and found dead adult sheep. Results From the 20 participating countries, it appeared that atypical scrapie was detected in Europe wherever the conditions necessary for its diagnosis were present. In most countries, atypical scrapie and classical scrapie occurred at low prevalence level. The classical scrapie prevalence estimates were more variable than those for atypical scrapie, which appeared remarkably homogeneous across countries, surveillance streams and calendar years of surveillance. Differences were observed in the age and genotype of atypical scrapie and classical scrapie cases that are consistent with previous published findings. Conclusion This work suggests that atypical scrapie is not rare compared to classical scrapie. The homogeneity of its prevalence, whatever the country, stream of surveillance or year of detection, contrasts with the epidemiological pattern of classical scrapie. This suggests that the aetiology of atypical scrapie differs from that of classical scrapie.
Collapse
Affiliation(s)
- Alexandre Fediaevsky
- AFSSA-Lyon, Unité Epidémiologie, 31 Avenue Tony Garnier, 69364 Lyon Cedex 07, France.
| | | | | | | | | | | |
Collapse
|
14
|
|