1
|
Denholm K, Evans NP, Baxter-Smith K, Burr P. Retrospective study of the relative frequency of cattle respiratory disease pathogens in clinical laboratory samples submitted by UK veterinary practices. Vet Rec 2024; 195:e4434. [PMID: 39165014 DOI: 10.1002/vetr.4434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/27/2024] [Accepted: 06/07/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND The objective of this study was to explore the relative frequency and seasonality of bovine respiratory pathogens in the UK, based on clinical case submission for laboratory PCR testing. METHODS This study used retrospective data generated by a central Scotland laboratory using 407 clinical (pooled) samples collected by 95 veterinary practices located throughout the UK between November 2020 and September 2022. Statistical analyses were performed using descriptive spatial analysis (choropleth maps), chi-squared analysis, Poisson and logistic regression modelling. RESULTS The majority (77.6%) of the samples had more than one species of bacteria identified, and 17.7% had multiple viruses identified. In comparison with the colder months of autumn and winter (September to February), the warmer months (March to August) were significantly associated with lower odds of respiratory disease caused by certain pathogens. Poisson models showed small but significant univariable associations between total viruses (coefficient = ‒0.01, standard error [SE] = 0.004, 95% confidence interval [CI] = ‒0.02 to ‒0.003) and total pathogens (coefficient = ‒0.005, SE = 0.002, 95% CI = ‒0.008 to 0.002) and increasing weekly age. LIMITATIONS This is an inherently biased population because it only comprises clinical samples submitted to a single UK laboratory, and the data were analysed retrospectively. CONCLUSIONS A large majority of clinical bovine respiratory disease (BRD) samples were multipathogenic, and pathogens such as bovine coronavirus (which has generally not been considered a significant contributing pathogen in the BRD complex in the UK) were prevalent.
Collapse
Affiliation(s)
- Katharine Denholm
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Neil P Evans
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | | | | |
Collapse
|
2
|
Aydin O, Yilmaz A, Turan N, Richt JA, Yilmaz H. Molecular Characterisation and Antibody Response to Bovine Respiratory Syncytial Virus in Vaccinated and Infected Cattle in Turkey. Pathogens 2024; 13:304. [PMID: 38668259 PMCID: PMC11053851 DOI: 10.3390/pathogens13040304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024] Open
Abstract
Bovine respiratory syncytial virus (BRSV) is one of the most important respiratory pathogens of cattle. In this study, frequency of infection, analysis of variants, and the immune status of vaccinated and non-vaccinated cattle were studied. Blood (n = 162) and nasal/oropharyngeal (n = 277) swabs were collected from 62 cattle herds in Turkey. Lung samples (n = 37) were also taken from dead animals and abattoirs. Antibodies to BRSV were detected in 76 (46%) out of 162 sera. The antibody levels in the vaccinated and non-vaccinated groups were statistically significant. Among 277 nasal/oropharyngeal swabs and 37 lungs, ten nasal/oropharyngeal and four lung samples were positive for BRSV-RNA. BRSV-G gene sequences of 5 out of 14 RT-PCR positive samples showed that all viruses clustered as Group-III in phylogenetic analysis with 88-100% homology. Similarity with previous Turkish BRSVs was 89-98%, and that with BRSVs detected in the USA and Czechia was 89.47-93.12%. BRSV continues to circulate in Turkish cattle, and vaccination seems beneficial in preventing BRSV. The diversity of the BRSVs found in this study needs be considered in vaccination strategies.
Collapse
Affiliation(s)
- Ozge Aydin
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Hadimkoy, 34500, Buyukcekmece, Istanbul 66506, Turkey; (O.A.); (A.Y.); (N.T.)
| | - Aysun Yilmaz
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Hadimkoy, 34500, Buyukcekmece, Istanbul 66506, Turkey; (O.A.); (A.Y.); (N.T.)
| | - Nuri Turan
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Hadimkoy, 34500, Buyukcekmece, Istanbul 66506, Turkey; (O.A.); (A.Y.); (N.T.)
| | - Juergen A. Richt
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, NY 66506, USA;
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| | - Huseyin Yilmaz
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Hadimkoy, 34500, Buyukcekmece, Istanbul 66506, Turkey; (O.A.); (A.Y.); (N.T.)
| |
Collapse
|
3
|
Werid GM, Miller D, Hemmatzadeh F, Messele YE, Petrovski K. An overview of the detection of bovine respiratory disease complex pathogens using immunohistochemistry: emerging trends and opportunities. J Vet Diagn Invest 2024; 36:12-23. [PMID: 37982437 PMCID: PMC10734592 DOI: 10.1177/10406387231210489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
The bovine respiratory disease complex (BRDC) is caused by a variety of pathogens, as well as contributing environmental and host-related risk factors. BRDC is the costliest disease for feedlot cattle globally. Immunohistochemistry (IHC) is a valuable tool for enhancing our understanding of BRDC given its specificity, sensitivity, cost-effectiveness, and capacity to provide information on antigen localization and immune response. Emerging trends in IHC include the use of multiplex IHC for the detection of coinfections, the use of digital imaging and automation, improved detection systems using enhanced fluorescent dyes, and the integration of IHC with spatial transcriptomics. Overall, identifying biomarkers for early detection, utilizing high-throughput IHC for large-scale studies, developing standardized protocols and reagents, and integrating IHC with other technologies are some of the opportunities to enhance the accuracy and applicability of IHC. We summarize here the various techniques and protocols used in IHC and highlight their current and potential role in BRDC research.
Collapse
Affiliation(s)
- Gebremeskel Mamu Werid
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Darren Miller
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Farhid Hemmatzadeh
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Yohannes E. Messele
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Kiro Petrovski
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
4
|
Identification and Molecular Characterisation of Bovine Parainfluenza Virus-3 and Bovine Respiratory Syncytial Virus - First Report from Turkey. J Vet Res 2019; 63:167-173. [PMID: 31276055 PMCID: PMC6598183 DOI: 10.2478/jvetres-2019-0022] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/25/2019] [Indexed: 11/20/2022] Open
Abstract
Introduction Bovine parainfluenza virus-3 (BPIV3) and bovine respiratory syncytial virus (BRSV) are the cause of respiratory disease in cattle worldwide. With other pathogens, they cause bovine respiratory disease complex (BRDC) in ruminants. The aim of the study was the detection and molecular characterisation of BPIV3 and BRSV from nasal swabs and lung samples of cows in and around the Erzurum region of eastern Turkey. Material and Methods In total, 155 samples were collected. Of animals used in the study 92 were males and 63 females. The age of the animals was between 9 months and 5 years, mean 1.4 years. Most males were in the fattening period and being raised in open sheds; females were in the lactating period and kept in free stall barns. All samples were tested for the presence of viral genes using RT-PCR. Gene-specific primers in a molecular method (RT-PCR) identified BRSV (fusion gene) and BPIV3 (matrix gene) strains at the genus level. Results RNA from BRSV and BPIV3 was detected in two (1.29%) and three (1.93%) samples, respectively, one of each of which was sequenced and the sequences were aligned with reference virus strains. Phylogenetic analyses clustered the strains in genotype C/BPIV3 and subgroup III/BRSV. Conclusion The results indicate that BRSV and BPIV3 contribute to bovine respiratory disease cases in Turkey. This is the first report on their detection and molecular characterisation in ruminants in Turkey.
Collapse
|
5
|
Liu Z, Li J, Liu Z, Li J, Li Z, Wang C, Wang J, Guo L. Development of a nanoparticle-assisted PCR assay for detection of bovine respiratory syncytial virus. BMC Vet Res 2019; 15:110. [PMID: 30971257 PMCID: PMC6458741 DOI: 10.1186/s12917-019-1858-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 03/31/2019] [Indexed: 11/10/2022] Open
Abstract
Background Bovine respiratory syncytial virus (BRSV) is a common pathogen causing respiratory disease in cattle and a significant contributor to the bovine respiratory disease (BRD) complex. BRSV is widely distributed around the world, causing severe economic losses. This study we established a new molecular detection method of BRSV pathogen NanoPCR attributed to the combination of nano-particles in traditional PCR (Polymerase chain reaction) technology. Results In this study, the BRSV NanoPCR assay was developed, and its specificity and sensitivity were investigated. The results showed that no cross-reactivity was observed for the NanoPCR assay for related viruses, including the infectious bovine rhinotracheitis virus (IBRV), bovine viral diarrhea virus (BVDV), and bovine parainfluenza virus type 3 (BPIV3), and the assay was more sensitive than the conventional PCR assay, with a detection limit of 1.43 × 102 copies recombinant plasmids per reaction, compared with 1.43 × 103 copies for conventional PCR analysis. Moreover, thirty-nine clinical bovine samples collected from two provinces in North-Eastern China, 46.15% were determined BRSV positive by our NanoPCR assay, compared with 23.07% for conventional PCR. Conclusions This is the first report to demonstrate the application of a NanoPCR assay for the detection of BRSV. The sensitive and specific NanoPCR assay developed in this study can be applied widely in clinical diagnosis and field surveillance of BRSV infection.
Collapse
Affiliation(s)
- Zhankui Liu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Jianyou Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.,Graduate School of Northeast Agricultural University, Harbin, China
| | - Zeyu Liu
- Graduate School of Jilin Agricultural University, Jilin, China
| | - Jiawei Li
- Antu Animal Husbandry and Veterinary Station, Yanbian, China
| | - Zhijie Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Chao Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Jianke Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Li Guo
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| |
Collapse
|
6
|
O'Neill R, Mooney J, Connaghan E, Furphy C, Graham DA. Patterns of detection of respiratory viruses in nasal swabs from calves in Ireland: a retrospective study. Vet Rec 2014; 175:351. [PMID: 25037889 DOI: 10.1136/vr.102574] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A retrospective analysis was conducted to investigate the prevalence and seasonality of bovine viral diarrhoea virus (BVDV), bovine coronavirus (BoCV), bovine herpesvirus-1 (BoHV-1), bovine respiratory syncytical virus (BRSV) and parainfluenza virus-3 (PI3V) in calves (aged three months and below) in Ireland. Results from real-time PCR testing, including cycle threshold values, conducted on nasal swabs (single or pooled) submitted from 1364 respiratory disease outbreaks between January 1, 2008 and December 31, 2012 were included in this study. One or more viruses were detected in 34.6 per cent of submissions, with BoCV detected most frequently (22.9 per cent), followed by BRSV (11.6 per cent), PI3 V (7.0 per cent), BoHV-1 (6.1 per cent) and BVDV (5.0 per cent). The detection rate of all viruses was higher when pooled multiple swabs were submitted from outbreaks rather than single swabs, with these differences being significant for all except BVDV. Two or more viruses were detected in 39.4 per cent of positive submissions, with BoCV and BRSV most commonly present as one of the two partners in detection. With the exception of BVDV, which was detected all year round, the others showed a clear seasonal pattern, being most commonly detected in winter and spring.
Collapse
Affiliation(s)
- R O'Neill
- Virology Division, DAFM Veterinary Labs, Celbridge, Kildare, Ireland
| | - J Mooney
- Virology Division, DAFM Veterinary Labs, Celbridge, Kildare, Ireland
| | - E Connaghan
- Virology Division, DAFM Veterinary Labs, Celbridge, Kildare, Ireland
| | - C Furphy
- Virology Division, DAFM Veterinary Labs, Celbridge, Kildare, Ireland
| | - D A Graham
- Animal Health Ireland, Main Street, Carrick on Shannon, Ireland
| |
Collapse
|
7
|
Uehara M, Matsuda K, Sugano M, Honda T. A new high-speed droplet-real-time polymerase chain reaction method can detect bovine respiratory syncytial virus in less than 10 min. J Vet Med Sci 2013; 76:477-80. [PMID: 24285011 PMCID: PMC4013380 DOI: 10.1292/jvms.13-0357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The polymerase chain reaction (PCR) has been widely used for diagnosis of
infectious diseases of domestic animals. Rapid detection of respiratory pathogens of
cattle is useful for making therapeutic decisions. Therefore, we developed a new
genetic-based method called droplet-real-time PCR, which can detect bovine respiratory
syncytial virus (BRSV) within 10 min. Our droplet-real-time PCR markedly reduced the
reaction time of reverse transcription-PCR while maintaining the same sensitivity as
conventional real-time PCR, and it can be used as a rapid assay for detection of BRSV.
Furthermore, our method is potentially applicable for rapid diagnosis of almost all
infectious diseases, including highly pathogenic avian influenza virus.
Collapse
Affiliation(s)
- Masayuki Uehara
- Division of Medical Seeds Promotion, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | | | | | | |
Collapse
|
8
|
|
9
|
Thonur L, Maley M, Gilray J, Crook T, Laming E, Turnbull D, Nath M, Willoughby K. One-step multiplex real time RT-PCR for the detection of bovine respiratory syncytial virus, bovine herpesvirus 1 and bovine parainfluenza virus 3. BMC Vet Res 2012; 8:37. [PMID: 22455597 PMCID: PMC3349549 DOI: 10.1186/1746-6148-8-37] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 03/28/2012] [Indexed: 01/12/2023] Open
Abstract
Background Detection of respiratory viruses in veterinary species has traditionally relied on virus detection by isolation or immunofluorescence and/or detection of circulating antibody using ELISA or serum neutralising antibody tests. Multiplex real time PCR is increasingly used to diagnose respiratory viruses in humans and has proved to be superior to traditional methods. Bovine respiratory disease (BRD) is one of the most common causes of morbidity and mortality in housed cattle and virus infections can play a major role. We describe here a one step multiplex reverse transcriptase quantitative polymerase chain reaction (mRT-qPCR) to detect the viruses commonly implicated in BRD. Results A mRT-qPCR assay was developed and optimised for the simultaneous detection of bovine respiratory syncytial virus (BRSV), bovine herpes virus type 1 (BoHV-1) and bovine parainfluenza virus type 3 (BPI3 i & ii) nucleic acids in clinical samples from cattle. The assay targets the highly conserved glycoprotein B gene of BoHV-1, nucleocapsid gene of BRSV and nucleoprotein gene of BPI3. This mRT-qPCR assay was assessed for sensitivity, specificity and repeatability using in vitro transcribed RNA and recent field isolates. For clinical validation, 541 samples from clinically affected animals were tested and mRT-qPCR result compared to those obtained by conventional testing using virus isolation (VI) and/or indirect fluorescent antibody test (IFAT). Conclusions The mRT-qPCR assay was rapid, highly repeatable, specific and had a sensitivity of 97% in detecting 102 copies of BRSV, BoHV-1 and BPI3 i & ii. This is the first mRT-qPCR developed to detect the three primary viral agents of BRD and the first multiplex designed using locked nucleic acid (LNA), minor groove binding (MGB) and TaqMan probes in one reaction mix. This test was more sensitive than both VI and IFAT and can replace the aforesaid methods for virus detection during outbreaks of BRD.
Collapse
Affiliation(s)
- Leenadevi Thonur
- Moredun Research Institute, International Research Centre, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Hotchkiss EJ, Dagleish MP, Willoughby K, McKendrick IJ, Finlayson J, Zadoks RN, Newsome E, Brulisauer F, Gunn GJ, Hodgson JC. Prevalence of Pasteurella multocida and other respiratory pathogens in the nasal tract of Scottish calves. Vet Rec 2011; 167:555-60. [PMID: 21257416 DOI: 10.1136/vr.c4827] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The prevalence of Pasteurella multocida, a cause of bovine respiratory disease, was studied in a random sample of beef suckler and dairy farms throughout Scotland, by means of a cross-sectional survey. A total of 637 calves from 68 farms from six geographical regions of Scotland were sampled between February and June 2008. Deep nasal swabs were taken, and samples that were culture-positive for P multocida were confirmed by PCR. Prevalence of P multocida was 17 per cent (105 of 616 calves); 47 per cent of farms had at least one positive animal. A higher prevalence was detected in dairy calves than beef calves (P=0.04). It was found that P multocida was associated with Mycoplasma-like organisms (P=0.06) and bovine parainfluenza type 3 virus (BPI-3) (P=0.04), detected by culture and quantitative PCR of nasal swabs, respectively. Detection of P multocida was not associated with bovine respiratory syncytial virus (BRSV), bovine herpesvirus type 1 (BoHV-1) or bovine viral diarrhoea virus (BVDV). Mycoplasma-like organisms, BPI-3, BRSV, BoHV-1 and BVDV were detected in 58, 17, four, 0 and eight calves, on 25, five, two, 0 and five of the 68 farms, respectively.
Collapse
Affiliation(s)
- E J Hotchkiss
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, near Edinburgh EH26 0PZ
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Bovine respiratory syncytial virus (BRSV) is a major cause of respiratory disease and a major contributor to the bovine respiratory disease (BRD) complex. BRSV infects the upper and lower respiratory tract and is shed in nasal secretions. The close relatedness of BRSV to human respiratory syncytial virus (HRSV) has allowed researchers to use BRSV and HRSV to elucidate the mechanisms by which these viruses induce disease. Attempted vaccine production using formalin-inactivated vaccine resulted in exacerbated disease when infants became exposed to HRSV. Cattle vaccinated with formalin-inactivated virus had enhanced disease when inoculated with BRSV. This article discusses various aspects of BRSV, its epidemiology, pathogenesis, diagnostic tests, immunity, and vaccination.
Collapse
|
12
|
Timsit E, Maingourd C, Le Dréan E, Belloc C, Seegers H, Douart A, Assié S. Evaluation of a commercial real-time reverse transcription polymerase chain reaction kit for the diagnosis of Bovine respiratory syncytial virus infection. J Vet Diagn Invest 2010; 22:238-41. [PMID: 20224083 DOI: 10.1177/104063871002200211] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Recently a commercial real-time reverse transcription polymerase chain reaction (RT-PCR) kit has been marketed for the detection of Bovine respiratory syncytial virus (BRSV). However, diagnostic interpretation of the results of this kit requires its comparison to commonly used methods. Therefore, the objective of this study was to evaluate the performance of this kit in comparison with the conventional direct fluorescent antibody test (FAT). Twenty BRSV strains and 14 heterologous bovine viruses were used to check the kit's sensitivity and specificity. The efficiency and detection limit of the kit were determined by testing dilution series of a BRSV strain. The comparison between real-time RT-PCR kit and FAT was performed with 94 clinical samples from calves with clinical signs of respiratory disease including lung tissues (n = 55), transtracheal aspiration samples (n = 20), and nasal swab samples (n = 19). All of the BRSV strains tested were detected by real-time RT-PCR. No cross-reaction was shown with the 14 heterologous bovine viruses. The real-time RT-PCR was 99.3% efficient with a detection limit of 0.1 TCID(50) (50% tissue culture infective dose). The results of real-time RT-PCR and FAT were concordant for 65 of the 94 clinical samples tested. The remaining 29 clinical samples were positive by real-time RT-PCR and negative by FAT, demonstrating the higher sensitivity of real-time RT-PCR. In conclusion, the kit evaluated in this study was sensitive, specific, and had a low threshold of detection. Furthermore, the use of this kit instead of FAT allows an improvement of the sensitivity for the detection of BRSV in clinical samples.
Collapse
Affiliation(s)
- Edouard Timsit
- INRA, Veterinary School, UMR 1300 Unit of Bio-aggression, Epidemiology and Risk Analysis, BP 40706, 44307 Nantes Cedex 03, France.
| | | | | | | | | | | | | |
Collapse
|
13
|
Timsit E, Le Dréan E, Maingourd C, Belloc C, Guattéo R, Bareille N, Seegers H, Douart A, Sellal E, Assié S. Detection by real-time RT-PCR of a bovine respiratory syncytial virus vaccine in calves vaccinated intranasally. Vet Rec 2009; 165:230-3. [PMID: 19700783 DOI: 10.1136/vr.165.8.230] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Seventeen four- to five-week-old calves that were not shedding bovine respiratory syncytial virus (BRSV) were vaccinated intranasally against the disease and sampled by nasal swabbing on 16 different days for up to 20 days after vaccination. BRSV vaccine virus was detected in 15 of the 17 calves. Five of the calves were PCR positive on only one swab, eight were PCR positive on two to five swabs and two were PCR positive on more than five swabs. Twelve of the calves were positive only before day 14 and three were positive after day 14. The nasal shedding of BRSV vaccine virus was very variable.
Collapse
Affiliation(s)
- E Timsit
- UMR Bio-aggression, Epidemiology and Risk Analysis, Ecole Nationale Vétérinaire de Nantes, BP 40706, 44307 Nantes Cedex 03, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|