1
|
Hong Y, Wu Y, Xie Y, Ben L, Bu X, Pan X, Shao J, Dong Q, Qin X, Wang X. Effects of antibiotic-induced resistance on the growth, survival ability and virulence of Salmonella enterica. Food Microbiol 2023; 115:104331. [PMID: 37567636 DOI: 10.1016/j.fm.2023.104331] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 08/13/2023]
Abstract
Salmonella enterica is an important foodborne pathogen that constitutes a major health hazard. The emergence and aggravation of antibiotic-resistant Salmonella has drawn attention widely around the world. Conducting a risk assessment of antibiotic-resistant foodborne pathogens throughout the food chain is a pressing requirement for ensuring food safety. The growth, survival capability, and virulence of antibiotic-resistant Salmonella represent crucial biological characteristics that play an important role in microbial risk assessment. In this study, eight antibiotic-sensitive S. enterica strains were induced by Ampicillin (Amp) and Ciprofloxacin (CIP), respectively, and AMP-resistant and CIP-resistant mutants were obtained. The growth characteristics under different temperatures (25, 30, 35 °C), viability after exposure to heat (55, 57.5, 60 °C) and acid (HCl, pH = 3.0), the virulence potential (adhesion and invasion to Caco-2 cells, biofilm formation and motility) and the lethality in a model species (Galleria mellonella) were evaluated and compared for S. enterica strains before and after antibiotic exposure. The induction by AMP and CIP are likely to promote cross-antibiotic resistance to their antibiotic classes, β-lactams and quinolones, as well as some compound antibiotics. It was observed that generally the antibiotic-induction-resistant strains showed decreased growth ability and lower heat resistance, although the differences were not significant at all the conditions tested. The AMP-resistant strains were significantly less acid resistance than the sensitive and the CIP-resistant ones, while exhibiting increased biofilm formation ability. In general, the antibiotic-induced resistance did not significantly affect the motility, adherence, or invasion ability of Caco-2 cells. However, CIP-resistant strains displayed lower lethality in G. mellonella infection, whereas AMP-resistant strains did not, and even two strains improved lethality. The study of the biological characteristics of antibiotic-resistant S. enterica is essential in better understanding the microbial risks to both the food chain and human health, thereby facilitating a more accurate risk assessment.
Collapse
Affiliation(s)
- Yi Hong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yufan Wu
- Centre of Analysis and Test, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Yani Xie
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Leijie Ben
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiangfeng Bu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xinye Pan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jingdong Shao
- Technology Center of Zhangjiagang Customs, Suzhou, China
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiaojie Qin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
2
|
Kumar Panda R, Darshana Patra S, Kumar Mohakud N, Ranjan Sahu B, Ghosh M, Misra N, Suar M. Draft genome of clinical isolate Salmonella enterica Typhimurium ms204 from Odisha, India, reveals multi drug resistance and decreased virulent gene expression. Gene 2023; 863:147248. [PMID: 36738898 DOI: 10.1016/j.gene.2023.147248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Salmonellosis, a food-borne illnesses caused by enteropathogenic bacterium Salmonella spp., is a continuous concern in both developed and developing countries. This study was carried out to perform an in-depth examination of an MDR Salmonella strain isolated from gastroenteritis patients in Odisha, India, in order to understand the genomic architecture, distribution of pathogenic island regions, and virulence factor diversity. Fecal samples were obtained from individuals with acute gastroenteritis and further subjected to panel of biochemical tests. The IlluminaHiSeq X sequencer system was used to generate whole-genome sequencing. The draft genome was submitted to gene prediction and annotation using RAST annotation system. Pathogenicity Island database and bioinformatics pipeline were used to find Salmonella pathogenicity islands (SPI) from the built scaffold. The gene expression in SPI1 and SPI2 encoded regions was investigated using qRT-PCR. The taxonomic position of Salmonella enterica subsp. enterica serovar Typhimurium was validated by serotype analysis and 16S rRNA based phylogenetic analysis. The de-novo genome assembly showed total length of 5,034,110 bp and produced 37 contigs. There are nine prophage areas, comprising of 12 regions and scaffold 8 contained a single plasmid, IncFIB. The isolate contains six known SPI genes content which was shown to be largely conserved from SPI1 to SPI2. We identified the sit ABCD cluster regulatory cascade and acquired antibiotic resistance genes in S. enterica Typhimurium ms204. Further research may aid in the correct diagnosis and monitoring of MDR Salmonella strains with a variety of physiological activities.
Collapse
Affiliation(s)
| | | | - Nirmal Kumar Mohakud
- Kalinga Institute of Medical Sciences (KIMS), KIIT University, Bhubaneswar 751024, India
| | - Bikash Ranjan Sahu
- Department of Zoology, Centurion University of Technology and Management, India
| | - Mrinmoy Ghosh
- KIIT-Technology Business Incubator (KIIT-TBI), KIIT University, Bhubaneswar 751024, India
| | - Namrata Misra
- KIIT-Technology Business Incubator (KIIT-TBI), KIIT University, Bhubaneswar 751024, India
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar 751024, India; KIIT-Technology Business Incubator (KIIT-TBI), KIIT University, Bhubaneswar 751024, India.
| |
Collapse
|
3
|
Roy PK, Ha AJW, Nahar S, Hossain MI, Ashrafudoulla M, Toushik SH, Mizan MFR, Kang I, Ha SD. Inhibitory effects of vorinostat (SAHA) against food-borne pathogen Salmonella enterica serotype Kentucky mixed culture biofilm with virulence and quorum-sensing relative expression. BIOFOULING 2023; 39:617-628. [PMID: 37580896 DOI: 10.1080/08927014.2023.2242263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/16/2023]
Abstract
Salmonella is a food-borne microorganism that is also a zoonotic bacterial hazard in the food sector. This study determined how well a mixed culture of Salmonella Kentucky formed biofilms on plastic (PLA), silicon rubber (SR), rubber gloves (RG), chicken skin and eggshell surfaces. In vitro interactions between the histone deacetylase inhibitor-vorinostat (SAHA)-and S. enterica serotype Kentucky were examined utilizing biofilms. The minimum inhibitory concentration (MIC) of SAHA was 120 µg mL-1. The addition of sub-MIC (60 µg mL-1) of SAHA decreased biofilm formation for 24 h on PLA, SR, RG, Chicken skin, and eggshell by 3.98, 3.84, 4.11, 2.86 and 3.01 log (p < 0.05), respectively. In addition, the initial rate of bacterial biofilm formation was higher on chicken skin than on other surfaces, but the inhibitory effect was reduced. Consistent with this conclusion, virulence genes expression (avrA, rpoS and hilA) and quorum-sensing (QS) gene (luxS) was considerably downregulated at sub-MIC of SAHA. SAHA has potential as an anti-biofilm agent against S. enterica serotype Kentucky biofilm, mostly by inhibiting virulence and quorum-sensing gene expression, proving the histone deacetylase inhibitor could be used to control food-borne biofilms in the food industry.
Collapse
Affiliation(s)
- Pantu Kumar Roy
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Gyeonggi-do, Republic of Korea
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | - Angela Ji-Won Ha
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Gyeonggi-do, Republic of Korea
| | - Shamsun Nahar
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Gyeonggi-do, Republic of Korea
| | - Md Iqbal Hossain
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Gyeonggi-do, Republic of Korea
| | - Md Ashrafudoulla
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Gyeonggi-do, Republic of Korea
| | - Sazzad Hossen Toushik
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Gyeonggi-do, Republic of Korea
| | - Md Furkanur Rahaman Mizan
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Gyeonggi-do, Republic of Korea
| | - Iksoon Kang
- Department of Animal Science, College of Agriculture, Food and Environmental Science, CA Polytechnic State University, San Luis Obispo, California, USA
| | - Sang-Do Ha
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Gyeonggi-do, Republic of Korea
| |
Collapse
|
4
|
Kim YK, Roy PK, Ashrafudoulla M, Nahar S, Toushik SH, Hossain MI, Mizan MFR, Park SH, Ha SD. Antibiofilm effects of quercetin against Salmonella enterica biofilm formation and virulence, stress response, and quorum-sensing gene expression. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108964] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Roy PK, Song MG, Park SY. Impact of Quercetin against Salmonella Typhimurium Biofilm Formation on Food-Contact Surfaces and Molecular Mechanism Pattern. Foods 2022; 11:977. [PMID: 35407064 PMCID: PMC8997561 DOI: 10.3390/foods11070977] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/21/2022] Open
Abstract
Quercetin is an active nutraceutical element that is found in a variety of foods, vegetables, fruits, and other products. Due to its antioxidant properties, quercetin is a flexible functional food that has broad protective effects against a wide range of infectious and degenerative disorders. As a result, research is required on food-contact surfaces (rubber (R) and hand gloves (HG)) that can lead to cross-contamination. In this investigation, the inhibitory effects of quercetin, an antioxidant and antibacterial molecule, were investigated at sub-MIC (125; 1/2, 62.5; 1/4, and 31.25; 1/8 MIC, μg/mL) against Salmonella Typhimurium on surfaces. When quercetin (0−125 μg/mL) was observed on R and HG surfaces, the inhibitory effects were 0.09−2.49 and 0.20−2.43 log CFU/cm2, respectively (p < 0.05). The results were confirmed by field emission scanning electron microscopy (FE-SEM), because quercetin inhibited the biofilms by disturbing cell-to-cell connections and inducing cell lysis, resulting in the loss of normal cell morphology, and the motility (swimming and swarming) was significantly different at 1/4 and 1/2 MIC compared to the control. Quercetin significantly (p < 0.05) suppressed the expression levels of virulence and stress response (rpoS, avrA, and hilA) and quorum-sensing (luxS) genes. Our findings imply that plant-derived quercetin could be used as an antibiofilm agent in the food industry to prevent S. Typhimurium biofilm formation.
Collapse
Affiliation(s)
| | | | - Shin Young Park
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Korea; (P.K.R.); (M.G.S.)
| |
Collapse
|
6
|
Changes in physiological states of Salmonella Typhimurium measured by qPCR with PMA and DyeTox13 Green Azide after pasteurization and UV treatment. Appl Microbiol Biotechnol 2022; 106:2739-2750. [PMID: 35262785 DOI: 10.1007/s00253-022-11850-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/17/2022] [Accepted: 02/26/2022] [Indexed: 11/02/2022]
Abstract
Diarrheal diseases caused by Salmonella pose a major threat to public health, and assessment of bacterial viability is critical in determining the safety of food and drinking water after disinfection. Viability PCR could overcome the limitations of traditional culture-dependent methods for a more accurate assessment of the viability of a microbial sample. In this study, the physiological changes in Salmonella Typhimurium induced by pasteurization and UV treatment were evaluated using a culture-based method, RT-qPCR, and viability PCR. The plate count results showed no culturable S. Typhimurium after the pasteurization and UV treatments, while viability PCR with propidium monoazide (PMA) and DyeTox13-qPCR indicated that the membrane integrity of S. Typhimurium remained intact with no metabolic activity. The RT-qPCR results demonstrated that invasion protein (invA) was detectable in UV-treated cells even though the log2-fold change ranged from - 2.13 to - 5.53 for PMA treatment. However, the catalytic activity gene purE was under the detection limit after UV treatment, indicating that most Salmonella entered metabolically inactive status after UV disinfection. Also, viability PCRs were tested with artificially contaminated eggs to determine physiological status on actual food matrices. DyeTox13-qPCR methods showed that most Salmonella lost their metabolic activity but retained membrane integrity after UV disinfection. RT-qPCR may not determine the physiological status of Salmonella after UV disinfection because mRNA could be detectable in UV-treated cells depending on the choice of target gene. Viability PCR demonstrated potential for rapid and specific detection of pathogens with physiological states such as membrane integrity and metabolic activity.Key Points• Membrane integrity of Salmonella remained intact with no metabolic activity after UV.• mRNA could be detectable in UV-treated cells depending on the choice of target gene.• Viability PCR could rapidly detect specific pathogens with their physiological states.
Collapse
|
7
|
Fardsanei F, Soltan Dallal MM, Zahraei Salehi T, Douraghi M, Memariani M, Memariani H. Antimicrobial resistance patterns, virulence gene profiles, and genetic diversity of Salmonella enterica serotype Enteritidis isolated from patients with gastroenteritis in various Iranian cities. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:914-921. [PMID: 34712421 PMCID: PMC8528249 DOI: 10.22038/ijbms.2021.54019.12142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/22/2021] [Indexed: 12/19/2022]
Abstract
Objectives This study aimed to evaluate antibiotic resistance profiles and presence of virulence genes among Salmonella enterica serovar Enteritidis (S. Enteritidis) isolated from patients with gastroenteritis in various regions of Iran. Moreover, genetic relatedness among the strains was assessed by pulsed-field gel electrophoresis (PFGE). Materials and Methods From April through September 2017, 59 Salmonella strains were isolated from 2116 stool samples. Of these strains, 27 S. Enteritidis were recovered. These strains were subjected to disk diffusion tests, polymerase chain reaction (PCR) for detection of virulence genes (invA, hilA, pefA, rck, stn, ssrA, ssaR, sefA, spvC, sipA, sipC, sopB, sopE, and sopE2), and PFGE. Results High prevalence of resistance towards cefuroxime (n = 20, 74.1%) and ciprofloxacin (n = 13, 48.2%) were demonstrated. All tested strains possessed invA, hilA, sefA, sipA, sopB, and sopE. The least prevalent virulence gene was rck (n = 6; 22.2%). Based on combinations of virulence genes, 12 virulotypes were observed. The most common virulotype was VP2 (n = 12; 44.4%), harboring all of the virulence genes except for rck. PFGE typing showed only two distinct fingerprints among tested strains. Each fingerprint had completely different virulotypes. Notably, VP4 (harboring all genes except for rck and spvC) was only presented in pulsotype A, while VP2 was confined to pulsotype B. Conclusion S. Enteritidis strains were derived from a limited number of clones, suggesting that it is highly homogenous. Future works should consider combinations of other genotyping methods together with larger sample sizes from more diverse sources.
Collapse
Affiliation(s)
- Fatemeh Fardsanei
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Mehdi Soltan Dallal
- Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Science, Tehran, Iran
| | - Taghi Zahraei Salehi
- Department of Microbiology, Faculty of Veterinary Medicine, University of Tehran, Iran
| | - Masoumeh Douraghi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Science, Tehran, Iran
| | - Mojtaba Memariani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamed Memariani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
8
|
Salmonella enterica Serovar Minnesota Biofilms, Susceptibility to Biocides, and Molecular Characterization. PATHOGENS (BASEL, SWITZERLAND) 2021; 10:pathogens10050581. [PMID: 34064554 PMCID: PMC8150743 DOI: 10.3390/pathogens10050581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 01/30/2023]
Abstract
The presence of virulence genes, phylogenetic relationships, biofilm formation index (BFI), and ultrastructure in S. Minnesota at different temperatures (4, 25, and 36 °C) were analyzed. In addition, the ability of biocidal agents (chlorhexidine1%, sodium hypochlorite 1%, and peracetic acid 0.8%) to inhibit biofilms formed by 20 strains isolated from broiler slaughter plants from two Brazilian companies in 2009, 2010, and 2014 was determined. The presence of specific genes was evaluated by PCR and phylogeny between strains by pulsed-field gel electrophoresis. The BFI was determined using tryptone soy broth with 5% of chicken juice, and its structure was observed by scanning electron microscopy. The presence of specific genes indicated that S. Minnesota has the potential to cause disease in humans, adapting to adverse conditions. Temperatures of 25 and 36 °C favored biofilm formation, although at 4 °C, there was still biomass that could contaminate the final product. Tolerance to all biocides was identified in 12/20 (60%), representing a real risk of adaptation mechanisms development, especially regarding to resistance to sodium hypochlorite. Phylogenetic analysis indicated cross-contamination and spread among companies, which was probably related to biofilms formation. Results show the necessity of attention to this serovar considering its resistance to sodium hypochlorite, including the need for rigorous control, adopting low temperatures to prevent biofilms formation in the poultry industry.
Collapse
|
9
|
Ke Y, Lu W, Liu W, Zhu P, Chen Q, Zhu Z. Non-typhoidal Salmonella infections among children in a tertiary hospital in Ningbo, Zhejiang, China, 2012-2019. PLoS Negl Trop Dis 2020; 14:e0008732. [PMID: 33017418 PMCID: PMC7561262 DOI: 10.1371/journal.pntd.0008732] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 10/15/2020] [Accepted: 08/18/2020] [Indexed: 11/23/2022] Open
Abstract
Background Non-typhoidal Salmonella (NTS), a common cause of diarrheal enterocolitis, may also cause severe invasive diseases. Limited information on NTS infections in children is available in China. Methods We performed a retrospective study of children admitted to the Ningbo Women and Children’s Hospital with culture-confirmed NTS infections between January 2012 and December 2019. Clinical and microbiological information were collected. We compared demographic, clinical and antibiotic resistance variables of invasive NTS (iNTS) infections and non-invasive NTS (non-iNTS) infections, and explored associations between hospitalizations for pediatric NTS infections and temperature and rainfall. Results A total of 166 pediatric hospitalizations due to NTS infection were identified during the 8-year study period. Most of the 166 children were <5 years old (93.4%). The primary serotype was Salmonella Typhimurium (62.6%). Of 166 children with NTS infections, 11 had invasive infection. Compared to 155 children with non-iNTS infections, we found that iNTS infections were more likely to occur in infants ≤6 months or children with an underlying medical condition of leukemia at admission, but iNTS infections less often presented with a symptom of diarrhea (P <0.05 in all cases). The resistance rates of non-iNTS isolates to ceftazidime, ceftriaxone, cefepime, and aztreonam were significantly higher than those of iNTS isolates (P <0.05 in all cases). In addition, compared with iNTS isolates, non-iNTS isolates were significantly associated with resistance to ≥4 CLSI (Clinical and Laboratory Standard Institute) classes (P = 0.041, OR: 0.089, 95% CI: 0.009–0.901) and ≥2 first-line treatment agents (P = 0.040, OR: 0.159, 95% CI: 0.028–0.916). On the other hand, we found that seasonal NTS hospitalizations were positively associated with average seasonal temperature (r = 0.961, P = 0.039) and average monthly rainfall (r = 0.921, P <0.001). Conclusion Non-iNTS accounts for the majority of infections in this study; infants ≤6 months and children with underlying medical conditions of leukemia are more likely to have invasive infection. The rates of antibiotic resistance in the iNTS isolates are generally lower than those in the non-iNTS isolates. On the other hand, high temperatures and heavy rainfall are positively associated with NTS hospitalizations among children in Ningbo. Non-typhoidal Salmonella (NTS) infection is a foodborne disease with a global heavy burden. NTS usually causes diarrheal enterocolitis in humans and may also cause severe invasive NTS (iNTS) infections. Antimicrobial agents are not recommended for non-severe NTS diarrhea, but they are recommended for people at risk of severe or invasive infection. However, the recognition of iNTS infection among children is difficult before culture. We studied children who had NTS infections in a tertiary pediatric hospital in Ningbo and found that iNTS infections were more likely to occur in infants ≤6 months or children with an underlying medical condition of leukemia at admission, while diarrhea was more common in children with non-iNTS infections. The high rates of antibiotic resistance among children with NTS in Ningbo calls for continuous NTS surveillance. On the other hand, high temperatures and heavy rainfall were positively associated with NTS hospitalizations among children. These findings may help us to improve measures for the prevention, diagnosis and treatment of NTS infections among children.
Collapse
Affiliation(s)
- Yefang Ke
- Department of Clinical Laboratory, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| | - Wenbo Lu
- Department of Clinical Laboratory, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| | - Wenyuan Liu
- Department of Clinical Laboratory, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| | - Pan Zhu
- Neonatal Intensive Care Unit, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| | - Qunying Chen
- Department of Clinical Laboratory, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| | - Zhe Zhu
- Department of Blood Transfusion, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- * E-mail:
| |
Collapse
|
10
|
The mRNA expression of ompF, invA and invE was associated with the ciprofloxacin-resistance in Salmonella. Arch Microbiol 2020; 202:2263-2268. [DOI: 10.1007/s00203-020-01928-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/12/2020] [Accepted: 05/26/2020] [Indexed: 11/26/2022]
|
11
|
Sharma J, Kumar D, Hussain S, Pathak A, Shukla M, Prasanna Kumar V, Anisha P, Rautela R, Upadhyay A, Singh S. Prevalence, antimicrobial resistance and virulence genes characterization of nontyphoidal Salmonella isolated from retail chicken meat shops in Northern India. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.01.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Mkangara M, Mbega ER, Chacha M. Molecular identification of Salmonella Typhimurium from village chickens based on invA and spvC genes. Vet World 2019; 13:764-767. [PMID: 32546923 PMCID: PMC7245706 DOI: 10.14202/vetworld.2020.764-767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/11/2020] [Indexed: 11/16/2022] Open
Abstract
AIM This study aimed to identify Salmonella enterica serovars by polymerase chain reaction (PCR) based on virulence genes invasion A (invA) and Salmonella plasmid virulence C (spvC). MATERIALS AND METHODS DNA extraction of eight bacteria isolates was done using the PowerSoil® DNA Isolation Kit. The amplification of invA and spvC genes was done using conventional PCR. The positive PCR products were purified using the GeneJET Purification Kit and then sequenced using ABI 3730 XL automated genetic analyzer. The sequences obtained were compared for similarities with other Salmonella serovars deposited on the NCBI GenBank using BLASTN. RESULTS Four out of eight samples were amplified by primers FS139/RS141 that target invA gene with products of about 284 bp, and three out of four of the same invA positive samples were also amplified by primers FSPV-1/RSPV-2 targeting spvC with a product of about 571 bp. One sample was not amplified by primers FSPV-1/RSPV-2 as it lacked virulence plasmid. Analysis of sequences indicated 100% homology with closely related serovars of S. enterica subspecies enterica serovar Typhimurium. CONCLUSION Salmonella Typhimurium that contained invA and spvC genes are pathogenic and virulent strains.
Collapse
Affiliation(s)
- Mwanaisha Mkangara
- Department of Sustainable Agriculture and Biodiversity and Ecosystems Management, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
- Department of Science and Laboratory Technology, Dar es Salaam Institute of Technology, Dar es Salaam, Tanzania
| | - Ernest R. Mbega
- Department of Sustainable Agriculture and Biodiversity and Ecosystems Management, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Musa Chacha
- Department of Sustainable Agriculture and Biodiversity and Ecosystems Management, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| |
Collapse
|
13
|
Barilli E, Bacci C, StellaVilla Z, Merialdi G, D’Incau M, Brindani F, Vismarra A. Antimicrobial resistance, biofilm synthesis and virulence genes in Salmonella isolated from pigs bred on intensive farms. Ital J Food Saf 2018; 7:7223. [PMID: 30046559 PMCID: PMC6036996 DOI: 10.4081/ijfs.2018.7223] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/19/2018] [Accepted: 02/28/2018] [Indexed: 11/23/2022] Open
Abstract
Salmonella is the second cause of food-borne infection in humans in the USA and Europe. Pigs represent the second most important reservoir for the pathogen and the consumption of pork meat is a major risk factor for human salmonellosis. Here, we evaluated the virulence patterns of eleven Salmonella isolated from pigs (carcasses and faces) bred in intensive farms in the north of Italy. The two serotypes identified were S. Typhimurium and its monophasic variant 1,4,5,12:i:-. None of the isolates was an ESBL producer, as confirmed also by PCR. However, the presence of a multi-drug resistant pattern was evident, with all the isolates being resistant to at least to five antimicrobial agents belonging to various classes. Moreover, six out of eleven isolates showed important resistance profiles, such as resistance against colistin and ciprofloxacin, with nine to twelve recorded resistances. The isolates were negative for the biofilm synthesis test, while four different virulotypes were characterized. All the isolates showed the presence of invA, hilA, stn, ssrA, sipC. One sample also harbored ssaR and spvC genes. One strain was positive for all the virulence genes tested and was resistant to 12 antimicrobial agents. The present study contributes new data to the surveillance program for antibiotic resistance. Furthermore, the presence of eleven highly virulent isolates poses concern for human health in relation to their diffusion in the environment.
Collapse
Affiliation(s)
- Elena Barilli
- Department of Veterinary Sciences, University of Parma
| | | | | | - Giuseppe Merialdi
- Istituto Zooprofilattico Sperimentale della Lombardia, Emilia Romagna, Bologna
| | - Mario D’Incau
- Istituto Zooprofilattico Sperimentale della Lombardia, Emilia Romagna, Brescia, Italy
| | | | | |
Collapse
|
14
|
Fardsanei F, Soltan Dallal MM, Douraghi M, Memariani H, Bakhshi B, Zahraei Salehi T, Nikkhahi F. Antimicrobial resistance, virulence genes and genetic relatedness of Salmonella enterica serotype Enteritidis isolates recovered from human gastroenteritis in Tehran, Iran. J Glob Antimicrob Resist 2017; 12:220-226. [PMID: 29045813 DOI: 10.1016/j.jgar.2017.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 09/04/2017] [Accepted: 10/07/2017] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVES Salmonella enterica serotype Enteritidis is a major serotype associated with human salmonellosis. The main objective of this study was to determine the antibiotic susceptibility patterns and the presence of virulence-associated genes among S. Enteritidis strains isolated from patients with gastroenteritis in Tehran, Iran. METHODS Over a period of 14 months (May 2015 to July 2016), 44 S. Enteritidis isolates recovered from clinical sources were characterised for antimicrobial susceptibility and virulence genes. Possible genetic relatedness among the strains was also assessed using pulsed-field gel electrophoresis (PFGE). RESULTS Salmonella Enteritidis isolates showed high rates of resistance to ciprofloxacin (90.9%) and nalidixic acid (77.3%). Of the 44 S. Enteritidis isolates, 30 (68.2%) were resistant to three or more antibiotics. Twenty-two different antimicrobial resistance patterns were detected among the isolates. The most frequent resistance type was antibiotype 14 (resistance to ciprofloxacin, cefuroxime and nalidixic acid), occurring in 8 (18.2%) of the isolates. Notably, all of the isolates carried invA, sefA, sipA and sopE2 virulence genes. Furthermore, 17 virulence profiles were observed among the strains. The most common virulence profile was VP1 (n=17; 38.6%), harbouring all of the virulence genes. Two distinct PFGE patterns were observed among 44S. Enteritidis isolates. There was no association between virulence profiles or antibiotypes and PFGE clusters. CONCLUSIONS Overall, this study provides valuable information on the virulence gene content, antibiotic resistance and genetic diversity of S. Enteritidis isolated from human sources in Iran.
Collapse
Affiliation(s)
- Fatemeh Fardsanei
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Soltan Dallal
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Food Microbiology Research Centre, Tehran University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Douraghi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Food Microbiology Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Memariani
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Taghi Zahraei Salehi
- Department of Microbiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Farhad Nikkhahi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
15
|
Fardsanei F, Soltan Dallal MM, Douraghi M, Zahraei Salehi T, Mahmoodi M, Memariani H, Nikkhahi F. Genetic diversity and virulence genes of Salmonella enterica subspecies enterica serotype Enteritidis isolated from meats and eggs. Microb Pathog 2017; 107:451-456. [PMID: 28433796 DOI: 10.1016/j.micpath.2017.04.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 02/07/2023]
Abstract
Salmonella enterica subspecies enterica serotype Enteritidis (S. Enteritidis) is one of the leading causes of food-borne gastroenteritis associated with the consumption of contaminated food products of animal origin. Little is known about the genetic diversity and virulence content of S. Enteritidis isolated from poultry meats and eggs in Iran. A total of 34 S. Enteritidis strains were collected from different food sources of animal origin in Tehran from May 2015 to July 2016. All of the S. Enteritidis strains were serotyped, antimicrobial susceptibility tested, and characterized for virulence genes. Pulsed-field gel electrophoresis (PFGE) was also applied for comparison of genetic relatedness. All of the strains harbored invA, hilA, ssrA, sefA, spvC, and sipA genes. A high prevalence of resistance against certain antibiotics such as cefuroxime (79.4%), nalidixic acid (47%), and ciprofloxacin (44.2%) was also observed. Regarding PFGE, S. Enteritidis strains from different sources showed considerable overlap, suggesting the lack of diversity among these isolates. Moreover, no correlation between virulence profiles or antibiotypes and PFGE clusters was observed. In conclusion, our study provided valuable information on virulence gene content, antibiotic resistance, and genetic diversity of S. Enteritidis isolated from food sources.
Collapse
Affiliation(s)
- Fatemeh Fardsanei
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Mehdi Soltan Dallal
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Science, Tehran, Iran; Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Douraghi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Science, Tehran, Iran; Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Taghi Zahraei Salehi
- Department of Microbiology, Faculty of Veterinary Medicine, University of Tehran, Iran
| | - Mahmood Mahmoodi
- Dept. Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Memariani
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Farhad Nikkhahi
- Department of Microbiology, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
16
|
Deekshit VK, Kumar BK, Rai P, Karunasagar I, Karunasagar I. Differential expression of virulence genes and role of gyrA mutations in quinolone resistant and susceptible strains of Salmonella Weltevreden and Newport isolated from seafood. J Appl Microbiol 2016; 119:970-80. [PMID: 26249136 DOI: 10.1111/jam.12924] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/13/2015] [Accepted: 06/27/2015] [Indexed: 11/30/2022]
Abstract
AIMS To investigate the differential expression of virulence genes and role of gyrA mutations in quinolone resistant and susceptible strains of Salmonella isolated from seafood. METHODS AND RESULTS Forty Salmonella isolates from seafood were tested for antibiotic sensitivity. Minimal inhibitory concentration (MIC) was determined and two nalidixic acid-resistant isolates, viz Salmonella Weltevreden (SW9) and Salmonella Newport (SN36) were selected for identifying the mechanism of resistance. SW9 showed mutation in the gyrA gene at codon 83 (Ser to Tyr) while SN36 presented at codon 87 (Asp to Asn). Experimental induction of resistance to a sensitive Salm. Newport (SN71) showed point mutation at codon 87 (Asp to Gly) in the gyrA gene, and was designated SN71R. All the isolates resistant to nalidixic acid had a single mutation at different positions in the gyrA gene. However, induction of resistance to a sensitive Salm. Weltevreden (SW30) was exceptional in that it did not show any mutation in the gyrA region. Use of Phe-Arg-β-naphthylamide (PAβN) also could not reduce MIC below the Clinical and Laboratory Standards Institute guidelines revealing the absence of efflux mediated resistance. Thus, the resistance mechanism in SW30R is unknown. The growth rate of quinolone resistant isolates was slower than the susceptible ones. The resistant isolates showed decreased epithelial cell invasion and intracellular replication. The mRNA expression levels of some of the genes were significantly (P < 0·005) reduced in SN71R compared to the sensitive strain (SN71). CONCLUSIONS Nalidixic acid-resistant Salmonella strains are associated with lower virulence and pathogenicity than the sensitive strains. SIGNIFICANCE AND IMPACT OF THE STUDY This study provided valuable information on the difference in the growth, cytotoxicity, infectivity and expression of virulence genes in resistant and susceptible strains. Furthermore, the gyrA mutation was shown to be the main mechanism of quinolone resistance in Salmonella other than the overexpression of efflux pumps or the presence of plasmid mediated quinolone resistance genes.
Collapse
Affiliation(s)
- V K Deekshit
- Department of Biomedical Sciences, Nitte University Center for Science Education and Research, UNESCO MIRCEN for Marine Biotechnology, University Enclave, Mangalore-575018, India
| | - B K Kumar
- Department of Biomedical Sciences, Nitte University Center for Science Education and Research, UNESCO MIRCEN for Marine Biotechnology, University Enclave, Mangalore-575018, India
| | - P Rai
- Department of Biomedical Sciences, Nitte University Center for Science Education and Research, UNESCO MIRCEN for Marine Biotechnology, University Enclave, Mangalore-575018, India
| | - I Karunasagar
- Department of Biomedical Sciences, Nitte University Center for Science Education and Research, UNESCO MIRCEN for Marine Biotechnology, University Enclave, Mangalore-575018, India
| | - I Karunasagar
- Department of Biomedical Sciences, Nitte University Center for Science Education and Research, UNESCO MIRCEN for Marine Biotechnology, University Enclave, Mangalore-575018, India
| |
Collapse
|
17
|
Almeida F, Medeiros MIC, Rodrigues DDP, Falcão JP. Genotypic diversity, pathogenic potential and the resistance profile of Salmonella Typhimurium strains isolated from humans and food from 1983 to 2013 in Brazil. J Med Microbiol 2015; 64:1395-1407. [DOI: 10.1099/jmm.0.000158] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Fernanda Almeida
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas – Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s/n°, Ribeirão Preto, SP, Brasil
| | | | - Dália dos Prazeres Rodrigues
- Laboratório de Enterobactérias, FIOCRUZ/Fundação Instituto Oswaldo Cruz, Avenida Brasil, 4365, Pavilhão Rocha Lima, 3°andar, Manguinhos, 21040-360 Rio de Janeiro, RJ, Brasil
| | - Juliana Pfrimer Falcão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas – Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s/n°, Ribeirão Preto, SP, Brasil
| |
Collapse
|
18
|
Ballesté-Delpierre C, Fàbrega A, Ferrer-Navarro M, Mathur R, Ghosh S, Vila J. Attenuation of in vitro host-pathogen interactions in quinolone-resistant Salmonella Typhi mutants. J Antimicrob Chemother 2015; 71:111-22. [PMID: 26446080 DOI: 10.1093/jac/dkv299] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/22/2015] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES The relationship between quinolone resistance acquisition and invasion impairment has been studied in some Salmonella enterica serovars. However, little information has been reported regarding the invasive human-restricted pathogen Salmonella Typhi. The aim of this study was to investigate the molecular mechanisms of quinolone resistance acquisition and its impact on virulence in this serovar. METHODS Two antibiotic-resistant mutants (Ty_c1 and Ty_c2) were generated from a Salmonella Typhi clinical isolate (Ty_wt). The three strains were compared in terms of antimicrobial susceptibility, molecular mechanisms of resistance, gene expression of virulence-related factors, ability to invade eukaryotic cells (human epithelial cells and macrophages) and cytokine production. RESULTS Multidrug resistance in Ty_c2 was attributed to AcrAB/TolC overproduction, decreased OmpF (both mediated by the mar regulon) and decreased OmpC. The two mutants showed a gradually reduced expression of virulence-related genes (invA, hilA, hilD, fliC and fimA), correlating with decreased motility, reduced infection of HeLa cells and impaired uptake by and intracellular survival in human macrophages. Moreover, Ty_c2 also showed reduced tviA expression. Additionally, we revealed a significant reduction in TNF-α and IL-1β production and decreased NF-κB activation. CONCLUSIONS In this study, we provide an in-depth characterization of the molecular mechanisms of antibiotic resistance in the Salmonella Typhi serovar and evidence that acquisition of antimicrobial resistance is concomitantly detected with a loss of virulence (epithelial cell invasion, macrophage phagocytosis and cytokine production). We suggest that the low prevalence of clinical isolates of Salmonella Typhi highly resistant to ciprofloxacin is due to poor immunogenicity and impaired dissemination ability of these isolates.
Collapse
Affiliation(s)
- Clara Ballesté-Delpierre
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Rosselló 149-153 Barcelona, 08036, Spain
| | - Anna Fàbrega
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Rosselló 149-153 Barcelona, 08036, Spain
| | - Mario Ferrer-Navarro
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Rosselló 149-153 Barcelona, 08036, Spain
| | - Ramkumar Mathur
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, 701 West 168th Street, New York City, NY 10032, USA
| | - Sankar Ghosh
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, 701 West 168th Street, New York City, NY 10032, USA
| | - Jordi Vila
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Rosselló 149-153 Barcelona, 08036, Spain
| |
Collapse
|
19
|
Thavanathan J, Huang NM, Thong KL. Colorimetric biosensing of targeted gene sequence using dual nanoparticle platforms. Int J Nanomedicine 2015; 10:2711-22. [PMID: 25897217 PMCID: PMC4396418 DOI: 10.2147/ijn.s74753] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have developed a colorimetric biosensor using a dual platform of gold nanoparticles and graphene oxide sheets for the detection of Salmonella enterica. The presence of the invA gene in S. enterica causes a change in color of the biosensor from its original pinkish-red to a light purplish solution. This occurs through the aggregation of the primary gold nanoparticles–conjugated DNA probe onto the surface of the secondary graphene oxide–conjugated DNA probe through DNA hybridization with the targeted DNA sequence. Spectrophotometry analysis showed a shift in wavelength from 525 nm to 600 nm with 1 μM of DNA target. Specificity testing revealed that the biosensor was able to detect various serovars of the S. enterica while no color change was observed with the other bacterial species. Sensitivity testing revealed the limit of detection was at 1 nM of DNA target. This proves the effectiveness of the biosensor in the detection of S. enterica through DNA hybridization.
Collapse
Affiliation(s)
- Jeevan Thavanathan
- Low Dimension Material Research Center, Department of Physics, University of Malaya, Kuala Lumpur, Malaysia
| | - Nay Ming Huang
- Low Dimension Material Research Center, Department of Physics, University of Malaya, Kuala Lumpur, Malaysia
| | - Kwai Lin Thong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Moura M, Oliveira R, Melo R, Mendonça E, Fonseca B, Rossi D. Genes de virulência e diversidade genética em Salmonella spp. isoladas de amostras de origem suína. ARQ BRAS MED VET ZOO 2014. [DOI: 10.1590/1678-6809] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A diversificação da produção industrial de alimentos de origem suína e o intercâmbio comercial de animais e seus derivados destinados ao consumo humano podem ser importantes disseminadores de sorovares de Salmonella spp. na cadeia alimentar. Objetivou-se avaliar em 86 cepas de Salmonella spp., isoladas em granja de terminação e no abate de suínos, a ocorrência de três genes de virulência (invA, agfA e lpfA), bem como a similaridade genética entre elas. A ocorrência do gene invA foi verificada em 100% das amostras. O gene lpfA foi detectado em 80,23% (69/86) das cepas, não foi detectado em S. Panama e estava presente em todas as cepas de S. Infantis. O gene agfA foi detectado em 63,95% (55/86) das amostras. S. Agona apresentou positividade para todos os genes de virulência estudados. A análise de homologia entre as cepas agrupou os diferentes sorovares em clusters. A similaridade foi independente do local de isolamento, o que demonstra a presença de clones ao longo da cadeia de produção e a existência de multiplicidade de fontes para a infecção dos animais, como a ração, e a contaminação cruzada das carcaças. A pesquisa de genes de virulência e a avaliação da proximidade gênica permitem a caracterização e um maior entendimento sobre cepas de Salmonella circulantes na cadeia produtiva de suínos e, assim, podem subsidiar medidas de controle durante o processo produtivo com o objetivo de garantir a saúde do consumidor.
Collapse
|
21
|
Zhang DX, Tian K, Han LM, Wang QX, Liu YC, Tian CL, Liu MC. Resistance to β-lactam antibiotic may influence nanH gene expression in Trueperella pyogenes isolated from bovine endometritis. Microb Pathog 2014; 71-72:20-4. [PMID: 24803199 DOI: 10.1016/j.micpath.2014.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 04/13/2014] [Accepted: 04/18/2014] [Indexed: 11/28/2022]
Abstract
Virulence could be modulated by many instinctive and environmental factors including oxygen, osmolarity and antimicrobial agents. This study aimed to investigate the correlation between drug resistance and the nanH expression in Trueperella pyogenes (T. pyogenes). Minimum inhibitory concentrations (MICs) of 6 β-lactam antimicrobial agents (penicillin G, amoxicillin, oxacillin, cefazolin, ceftiofur, and ampicillin) against T. pyogenes were tested by standard broth dilution method according to the protocols of the Clinical and Laboratory Standards Institute (CLSI), and real-time fluorescent quantitative reverse transcription-polymerase chain reaction (RT-PCR) was selected to investigate the mRNA expression levels of the nanH in T. pyogenes. All the isolates were resistant to atleast 2 of antimicrobial agents, and multidrug resistance (resistance to atleast 3 antimicrobials) was observed in 84.38% (27/32) of isolates. The mRNA expression levels of the nanH were significantly higher in comparison with that in ATCC19411, as the resistance profile enlarged, the nanH mRNA expression levels decreased in T. pyogenes. These results indicated that β-lactam antibiotic resistance in T. pyogenes may alter the expression of the nanH.
Collapse
Affiliation(s)
- De-Xian Zhang
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Kai Tian
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Li-Mei Han
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Qiu-Xia Wang
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Yao-Chuan Liu
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Chun-Lian Tian
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Ming-Chun Liu
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China.
| |
Collapse
|
22
|
Yang X, Brisbin J, Yu H, Wang Q, Yin F, Zhang Y, Sabour P, Sharif S, Gong J. Selected lactic acid-producing bacterial isolates with the capacity to reduce Salmonella translocation and virulence gene expression in chickens. PLoS One 2014; 9:e93022. [PMID: 24728092 PMCID: PMC3984083 DOI: 10.1371/journal.pone.0093022] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 02/27/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Probiotics have been used to control Salmonella colonization/infection in chickens. Yet the mechanisms of probiotic effects are not fully understood. This study has characterized our previously-selected lactic acid-producing bacterial (LAB) isolates for controlling Salmonella infection in chickens, particularly the mechanism underlying the control. METHODOLOGY/PRINCIPAL FINDINGS In vitro studies were conducted to characterize 14 LAB isolates for their tolerance to low pH (2.0) and high bile salt (0.3-1.5%) and susceptibility to antibiotics. Three chicken infection trials were subsequently carried out to evaluate four of the isolates for reducing the burden of Salmonella enterica serovar Typhimurium in the broiler cecum. Chicks were gavaged with LAB cultures (10(6-7) CFU/chick) or phosphate-buffered saline (PBS) at 1 day of age followed by Salmonella challenge (10(4) CFU/chick) next day. Samples of cecal digesta, spleen, and liver were examined for Salmonella counts on days 1, 3, or 4 post-challenge. Salmonella in the cecum from Trial 3 was also assessed for the expression of ten virulence genes located in its pathogenicity island-1 (SPI-1). These genes play a role in Salmonella intestinal invasion. Tested LAB isolates (individuals or mixed cultures) were unable to lower Salmonella burden in the chicken cecum, but able to attenuate Salmonella infection in the spleen and liver. The LAB treatments also reduced almost all SPI-1 virulence gene expression (9 out of 10) in the chicken cecum, particularly at the low dose. In vitro treatment with the extracellular culture fluid from a LAB culture also down-regulated most SPI-1 virulence gene expression. CONCLUSIONS/SIGNIFICANCE The possible correlation between attenuation of Salmonella infection in the chicken spleen and liver and reduction of Salmonella SPI-1 virulence gene expression in the chicken cecum by LAB isolates is a new observation. Suppression of Salmonella virulence gene expression in vivo can be one of the strategies for controlling Salmonella infection in chickens.
Collapse
Affiliation(s)
- Xiaojian Yang
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Jennifer Brisbin
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Hai Yu
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Qi Wang
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Fugui Yin
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Yonggang Zhang
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Parviz Sabour
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Shayan Sharif
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Joshua Gong
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| |
Collapse
|
23
|
Fàbrega A, Soto SM, Ballesté-Delpierre C, Fernández-Orth D, Jiménez de Anta MT, Vila J. Impact of quinolone-resistance acquisition on biofilm production and fitness in Salmonella enterica. J Antimicrob Chemother 2014; 69:1815-24. [PMID: 24706735 DOI: 10.1093/jac/dku078] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To investigate the potential relationship between quinolone resistance and biofilm production in a collection of Salmonella enterica clinical isolates and in S. enterica serovar Typhimurium serial mutants with increasing resistance to ciprofloxacin. METHODS Nalidixic acid susceptibility and biofilm formation were assessed in a collection of 122 S. enterica clinical isolates. An in vitro quinolone-resistant mutant, 59-64, was obtained from a biofilm-producing and quinolone-susceptible clinical isolate, 59-wt, in a multistep selection process after increasing ciprofloxacin concentrations. The quinolone resistance mechanisms [target gene and multidrug resistance (MDR) regulatory mutations, MICs of several antibiotics, cell envelope protein analysis, real-time PCR and ciprofloxacin accumulation] were characterized for mutant strains. In addition, analysis of fitness, biofilm formation, rdar morphotype and expression of biofilm-related genes by real-time PCR were also determined. RESULTS Nalidixic acid-susceptible S. enterica strains were more prevalent in producing biofilm than the resistant counterparts. Strain 59-64 acquired five target gene mutations and showed an MDR phenotype. AcrAB and acrF overexpression were ruled out, whereas TolC did show increased expression in 59-64, which, in addition, accumulated less ciprofloxacin. Consistently, increased ramA expression was seen in 59-64 and attributed to a mutation within its promoter. Reduced biofilm production related to diminished csgB expression as well as reduced fitness was seen for 59-64, which was unable to form the rdar morphotype. CONCLUSIONS Quinolone resistance acquisition may be associated with decreased production of biofilm due to lower csgB expression. Efflux, biofilm production and fitness seem to be interrelated.
Collapse
Affiliation(s)
- Anna Fàbrega
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Sara M Soto
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Clara Ballesté-Delpierre
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Dietmar Fernández-Orth
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - M Teresa Jiménez de Anta
- Department of Clinical Microbiology, Hospital Clínic, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Jordi Vila
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain Department of Clinical Microbiology, Hospital Clínic, School of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
24
|
Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin Microbiol Rev 2013; 26:308-41. [PMID: 23554419 DOI: 10.1128/cmr.00066-12] [Citation(s) in RCA: 460] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is a primary enteric pathogen infecting both humans and animals. Infection begins with the ingestion of contaminated food or water so that salmonellae reach the intestinal epithelium and trigger gastrointestinal disease. In some patients the infection spreads upon invasion of the intestinal epithelium, internalization within phagocytes, and subsequent dissemination. In that case, antimicrobial therapy, based on fluoroquinolones and expanded-spectrum cephalosporins as the current drugs of choice, is indicated. To accomplish the pathogenic process, the Salmonella chromosome comprises several virulence mechanisms. The most important virulence genes are those located within the so-called Salmonella pathogenicity islands (SPIs). Thus far, five SPIs have been reported to have a major contribution to pathogenesis. Nonetheless, further virulence traits, such as the pSLT virulence plasmid, adhesins, flagella, and biofilm-related proteins, also contribute to success within the host. Several regulatory mechanisms which synchronize all these elements in order to guarantee bacterial survival have been described. These mechanisms govern the transitions from the different pathogenic stages and drive the pathogen to achieve maximal efficiency inside the host. This review focuses primarily on the virulence armamentarium of this pathogen and the extremely complicated regulatory network controlling its success.
Collapse
|
25
|
Ioannidis A, Papavasileiou K, Papavasileiou E, Bersimis S, Chatzipanagiotou S. Distribution of six effector protein virulence genes among Salmonella enterica enterica serovars isolated from children and their correlation with biofilm formation and antimicrobial resistance. Mol Diagn Ther 2013; 17:311-7. [PMID: 23733519 DOI: 10.1007/s40291-013-0039-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Salmonella enterica enterica encodes a variety of virulence factors. Among them, the type III secretion system (TTSS) encoded in the Salmonella pathogenicity islands (SPIs) is required for induction of proinflammatory responses, invasion of intestinal epithelial cells, induction of cell death in macrophages, and elicitation of diarrhea. The presence of the effector protein genes sopB, sopD, sopE, sopE2, avrA, and sptP of the SPIs was analyzed in 194 S. enterica enterica strains belonging to 19 serovars. METHODS S. enterica enterica strains were collected from children with gastroenteritis, either hospitalized or attending the outpatient clinic, aged 1-14 years. Nineteen different serotypes were included in the study. Serotyping, biofilm formation determination, and antimicrobial resistance of the planktonic as well as the biofilm forms of the strains have been reported previously. RESULTS At least one virulence gene was present in all Salmonella isolates. Biofilm formation was statistically independent of any of the six genes. Strains lacking sopE and sopE2 were more resistant to all the antimicrobials. CONCLUSIONS The association of the virulence genes with the antimicrobial resistance of Salmonella in general has been previously reported and is a matter of further investigation. For the clinical expression of pathogenicity in humans, the contribution of these genes is questionable, as some strains bearing only a single gene (either sptP or avrA) were still capable of causing gastroenteritis.
Collapse
Affiliation(s)
- A Ioannidis
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta General Hospital Building Complex, Sparta, Greece
| | | | | | | | | |
Collapse
|
26
|
Li L, Yang YR, Liao XP, Lei CY, Sun J, Li LL, Liu BT, Yang SS, Liu YH. Development of Ceftriaxone Resistance Affects the Virulence Properties ofSalmonella entericaSerotype Typhimurium Strains. Foodborne Pathog Dis 2013; 10:28-34. [DOI: 10.1089/fpd.2012.1216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Liang Li
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (SCAU), South China Agricultural University, Guangzhou, China
| | - Yu-Rong Yang
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (SCAU), South China Agricultural University, Guangzhou, China
| | - Xiao-Ping Liao
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (SCAU), South China Agricultural University, Guangzhou, China
| | - Chun-Yin Lei
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (SCAU), South China Agricultural University, Guangzhou, China
| | - Jian Sun
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (SCAU), South China Agricultural University, Guangzhou, China
| | - Lu-Lu Li
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (SCAU), South China Agricultural University, Guangzhou, China
| | - Bao-Tao Liu
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (SCAU), South China Agricultural University, Guangzhou, China
| | - Shou-Shen Yang
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (SCAU), South China Agricultural University, Guangzhou, China
| | - Ya-Hong Liu
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (SCAU), South China Agricultural University, Guangzhou, China
| |
Collapse
|
27
|
Ricci V, Loman N, Pallen M, Ivens A, Fookes M, Langridge GC, Wain J, Piddock LJV. The TCA cycle is not required for selection or survival of multidrug-resistant Salmonella. J Antimicrob Chemother 2011; 67:589-99. [PMID: 22186876 DOI: 10.1093/jac/dkr515] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The initial aim of this study was to use a systems biology approach to analyse a ciprofloxacin-selected multidrug-resistant (MDR) Salmonella enterica serotype Typhimurium, L664. METHODS The whole genome sequence and transcriptome of L664 were analysed. Site-directed mutagenesis to recreate each mutation was carried out, followed by phenotypic characterization and mutation frequency analysis. As a mutation in the TCA cycle was detected we tested the controversial hypothesis regarding the bacterial response to bactericidal antibiotics, put forward by Kohanski et al. (Cell 2007; 130: 797-810 and Mol Cell 2010; 37: 311-20), that exposure of bacteria to agents such as ciprofloxacin produces reactive oxygen species (ROS), which transiently increase the mutation rate giving rise to MDR bacteria. RESULTS L664 contained a mutation in ramR that conferred MDR. A mutation in tctA affected the TCA cycle and conferred the inability to grow on minimal agar. The virulence of L664 was not attenuated. Ciprofloxacin exposure produced ROS in L664 and SL1344 (tctA::aph), but it was reduced and occurred later. There were no significant differences in the rates of killing or mutations per generation to antibiotic resistance between the strains. CONCLUSIONS Whilst we confirm production of ROS in response to ciprofloxacin, we have no data to support the hypothesis that this leads to selection of MDR strains. Our results indicate that the mutations in tctA and glgA were random as they did not pre-exist in the parental strain, and that the mutation in tctA did not provide a survival advantage or disadvantage in the presence of antibiotic.
Collapse
Affiliation(s)
- Vito Ricci
- Antimicrobial Agents Research Group, School of Immunity and Infection, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Rodrigues D, Cerca N, Teixeira P, Oliveira R, Ceri H, Azeredo J. Listeria monocytogenesandSalmonella entericaEnteritidis Biofilms Susceptibility to Different Disinfectants and Stress-Response and Virulence Gene Expression of Surviving Cells. Microb Drug Resist 2011; 17:181-9. [DOI: 10.1089/mdr.2010.0183] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Diana Rodrigues
- IBB—Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Nuno Cerca
- IBB—Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Pilar Teixeira
- IBB—Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Rosário Oliveira
- IBB—Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Howard Ceri
- Biofilm Research Group, Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Joana Azeredo
- IBB—Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
29
|
Ye Y, Wang B, Huang F, Song Y, Yan H, Alam MJ, Yamasaki S, Shi L. Application of in situ loop-mediated isothermal amplification method for detection of Salmonella in foods. Food Control 2011. [DOI: 10.1016/j.foodcont.2010.09.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
30
|
Vranakis I, De Bock PJ, Papadioti A, Tselentis Y, Gevaert K, Tsiotis G, Psaroulaki A. Identification of Potentially Involved Proteins in Levofloxacin Resistance Mechanisms in Coxiella burnetii. J Proteome Res 2010; 10:756-62. [DOI: 10.1021/pr100906v] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Iosif Vranakis
- Department of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, Medical School, University of Crete, GR-71110 Heraklion, Greece, Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium, Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium, and Division of Biochemistry, Department of Chemistry, University of Crete, P.O. Box 2208, GR-71003 Voutes, Greece
| | - Pieter-Jan De Bock
- Department of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, Medical School, University of Crete, GR-71110 Heraklion, Greece, Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium, Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium, and Division of Biochemistry, Department of Chemistry, University of Crete, P.O. Box 2208, GR-71003 Voutes, Greece
| | - Anastasia Papadioti
- Department of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, Medical School, University of Crete, GR-71110 Heraklion, Greece, Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium, Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium, and Division of Biochemistry, Department of Chemistry, University of Crete, P.O. Box 2208, GR-71003 Voutes, Greece
| | - Yannis Tselentis
- Department of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, Medical School, University of Crete, GR-71110 Heraklion, Greece, Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium, Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium, and Division of Biochemistry, Department of Chemistry, University of Crete, P.O. Box 2208, GR-71003 Voutes, Greece
| | - Kris Gevaert
- Department of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, Medical School, University of Crete, GR-71110 Heraklion, Greece, Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium, Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium, and Division of Biochemistry, Department of Chemistry, University of Crete, P.O. Box 2208, GR-71003 Voutes, Greece
| | - Georgios Tsiotis
- Department of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, Medical School, University of Crete, GR-71110 Heraklion, Greece, Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium, Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium, and Division of Biochemistry, Department of Chemistry, University of Crete, P.O. Box 2208, GR-71003 Voutes, Greece
| | - Anna Psaroulaki
- Department of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, Medical School, University of Crete, GR-71110 Heraklion, Greece, Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium, Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium, and Division of Biochemistry, Department of Chemistry, University of Crete, P.O. Box 2208, GR-71003 Voutes, Greece
| |
Collapse
|
31
|
Hur J, Kim JH, Park JH, Lee YJ, Lee JH. Molecular and virulence characteristics of multi-drug resistant Salmonella Enteritidis strains isolated from poultry. Vet J 2010; 189:306-11. [PMID: 20822940 DOI: 10.1016/j.tvjl.2010.07.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 07/22/2010] [Accepted: 07/27/2010] [Indexed: 02/07/2023]
Abstract
Forty-six Salmonella enterica subspecies enterica serovar Enteritidis (S. Enteritidis) strains were isolated from chicken meat, faeces, and eggshells collected from hatcheries throughout Korea. The strains were examined for the presence of antimicrobial resistance and virulence genes. All 46 isolates were resistant to at least one of 21 antibiotics used in this study, 30 (65.2%) were resistant to three or more antimicrobials, and a single remarkable isolate was resistant to 15 antimicrobials. The isolates were primarily resistant to penicillins, sulfisoxazole, streptomycin, tetracycline and quinolones. The high rate of resistance in S. Enteritidis strains, sometimes to multiple drugs, may complicate future options for treating human infections. Nineteen of the 21 penicillin resistant isolates carried the bla(TEM) gene, while one strain, resistant both to penicillins and ceftriaxone, carried the bla(CTX-M) gene. Thirty-seven of the 45 sulfisoxazole resistant isolates carried sul2, and 23/24 streptomycin resistant isolates carried both strA and strB. All 10 tetracycline resistant isolates carried the tet(A) gene. Most isolates harboured both SPI-1 and SPI-2-associated genes, and the spv operon, which are known to be associated with human infections. The presence of these genes suggests that these strains could give rise to public health problems if dispersed in the general human population.
Collapse
Affiliation(s)
- Jin Hur
- Veterinary Public Health, College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | | | | | | | | |
Collapse
|
32
|
Kempf I, Zeitouni S. [The cost of antibiotic resistance: analysis and consequences]. ACTA ACUST UNITED AC 2009; 60:e9-14. [PMID: 19942376 DOI: 10.1016/j.patbio.2009.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 10/27/2009] [Indexed: 11/16/2022]
Abstract
Antimicrobial resistance, either by mutation or acquisition of resistance determinants harbored by mobile genetic elements, may confer a biological cost for the bacteria. This biological cost can be evaluated by comparing the resistant mutant to the wild susceptible strain, in the absence of antibiotic selection. This fitness cost can affect the growth rate in vitro or the survival in the host or in the environment or the virulence capacity. Various studies have evidenced this cost, either in vitro or in vivo, in different analysis models. However, bacteria can evolve and adapt to reduce this cost, by compensatory mutations or fine regulation of resistance expression. This compensatory evolution allows resistant bacteria to persist even in the absence of antibiotic selection pressure.
Collapse
Affiliation(s)
- I Kempf
- Unite´ mycoplasmologie-bacteriologie, Zoopole-les-Croix, 22440 Ploufragan, France.
| | | |
Collapse
|
33
|
Fàbrega A, du Merle L, Le Bouguénec C, Jiménez de Anta MT, Vila J. Repression of invasion genes and decreased invasion in a high-level fluoroquinolone-resistant Salmonella typhimurium mutant. PLoS One 2009; 4:e8029. [PMID: 19946377 PMCID: PMC2777507 DOI: 10.1371/journal.pone.0008029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 11/02/2009] [Indexed: 11/18/2022] Open
Abstract
Background Nalidixic acid resistance among Salmonella Typhimurium clinical isolates has steadily increased, whereas the level of ciprofloxacin resistance remains low. The main objective of this study was to characterize the fluoroquinolone resistance mechanisms acquired in a S. Typhimurium mutant selected with ciprofloxacin from a susceptible isolate and to investigate its invasion ability. Methodology/Principal Findings Three different amino acid substitutions were detected in the quinolone target proteins of the resistant mutant (MIC of ciprofloxacin, 64 µg/ml): D87G and G81C in GyrA, and a novel mutation, E470K, in ParE. A protein analysis revealed an increased expression of AcrAB/TolC and decreased expression of OmpC. Sequencing of the marRAB, soxRS, ramR and acrR operons did not show any mutation and neither did their expression levels in a microarray analysis. A decreased percentage of invasion ability was detected when compared with the susceptible clinical isolate in a gentamicin protection assay. The microarray results revealed a decreased expression of genes which play a role during the invasion process, such as hilA, invF and the flhDC operon. Of note was the impaired growth detected in the resistant strain. A strain with a reverted phenotype (mainly concerning the resistance phenotype) was obtained from the resistant mutant. Conclusions/Significance In conclusion, a possible link between fluoroquinolone resistance and decreased cell invasion ability may exist explaining the low prevalence of fluoroquinolone-resistant S. Typhimurium clinical isolates. The impaired growth may appear as a consequence of fluoroquinolone resistance acquisition and down-regulate the expression of the invasion genes.
Collapse
Affiliation(s)
- Anna Fàbrega
- Department of Microbiology, Hospital Clínic, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Laurence du Merle
- Institut Pasteur, Pathogénie Bactérienne des Muqueuses, Paris, France
| | | | - M. Teresa Jiménez de Anta
- Department of Microbiology, Hospital Clínic, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Jordi Vila
- Department of Microbiology, Hospital Clínic, School of Medicine, University of Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
34
|
Fitness costs and stability of a high-level ciprofloxacin resistance phenotype in Salmonella enterica serotype enteritidis: reduced infectivity associated with decreased expression of Salmonella pathogenicity island 1 genes. Antimicrob Agents Chemother 2009; 54:367-74. [PMID: 19917752 DOI: 10.1128/aac.00801-09] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The fitness costs associated with high-level fluoroquinolone resistance were examined for phenotypically and genotypically characterized ciprofloxacin-resistant Salmonella enterica serotype Enteritidis mutants (104-cip and 5408-cip; MIC, >32 microg/ml). The stability of the fluoroquinolone resistance phenotype in both mutants was investigated to assess whether clones with better fitness could emerge in the absence of antibiotic selective pressure. Mutants 104-cip and 5408-cip displayed altered morphology on agar and by electron microscopy, reduced growth rates, motility and invasiveness in Caco-2 cells, and increased sensitivity to environmental stresses. Microarray data revealed decreased expression of virulence and motility genes in both mutants. Two clones, 104-revert and 1A-revertC2, with ciprofloxacin MICs of 3 and 2 microg/ml, respectively, were recovered from separate lineages of 104-cip after 20 and 70 passages, respectively, on antibiotic-free agar. All fitness costs, except motility, were reversed in 104-revert. Potential mechanisms associated with reversal of the resistance phenotype were examined. Compared to 104-cip, both 104-revert and 1A-revertC2 showed decreased expression of acrB and soxS but still overexpressed marA. Both acquired additional mutations in SoxR and ParC, and 1A-revertC2 acquired two mutations in MarA. The altered porin and lipopolysaccharide (LPS) profiles observed in 104-cip were reversed. In contrast, 5408-cip showed no reversal in fitness costs and maintained its high-level ciprofloxacin resistance for 200 passages on antibiotic-free agar. In conclusion, high-level ciprofloxacin resistance in S. Enteritidis is associated with fitness costs. In the absence of antibiotic selection pressure, isolates may acquire mutations enabling reversion to an intermediate-level ciprofloxacin resistance phenotype associated with less significant fitness costs.
Collapse
|