1
|
Zhao M, Wang X, Wang K, Li Y, Wang Y, Zhou P, Wang L, Zhu W. Recombinant polymerase amplification combined with lateral flow strips for the detection of deep-seated Candida krusei infections. Front Cell Infect Microbiol 2022; 12:958858. [PMID: 36004333 PMCID: PMC9394440 DOI: 10.3389/fcimb.2022.958858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022] Open
Abstract
The incidence of Candida infections in intensive care units (ICU) has significantly increased in recent years, and these infections have become one of the most serious complications threatening the lives of ICU patients. The proportion of non-Candida albicans infections, such as Candida krusei and Candida glabrata infections, which are resistant to fluconazole, is increasing each year. Early identification of the strains causing Candida infections is important for the timely implementation of targeted treatments to save patients’ lives. However, the current methods of direct microscopy, culture, and histopathology, as well as other diagnostic methods, have many shortcomings, such as their low sensitivity and long assay times; therefore, they cannot meet the needs for early clinical diagnosis. Recombinant polymerase amplification (RPA) is a promising isothermal amplification technique that can be performed without sophisticated instruments and equipment, and is suitable for use in resource-poor areas. RPA combined with lateral flow strips (LFS) can be used to rapidly amplify and visualize target genes within 20 min. In this study, RPA-LFS was used to amplify the internal transcribed spacer 2 (ITS2) region of C. krusei. The primer-probe design was optimized by introduction of base mismatches (probe modification of five bases) to obtain a specific and sensitive primer-probe combination for the detection of clinical specimens. Thirty-five common clinical pathogens were tested with RPA-LFS to determine the specificity of the detection system. The RPA-LFS system specifically detected C. krusei without cross-reaction with other fungi or bacteria. A gradient dilution of the template was tested to explore the lower limit of detection and sensitivity of the assay. The sensitivity was 10 CFU/50 µL per reaction, without interference from genomic DNA of other species. The RPA-LFS and qPCR assays were performed on 189 clinical specimens to evaluate the detection performance of the RPA-LFS system. Seventy-six specimens were identified as C. krusei, indicating a detection rate of 40.2%. The results were consistent with those of qPCR and conventional culture methods. The RPA-LFS system established in our study provides a reliable molecular diagnostic method for the detection of C. krusei, thus meeting the urgent need for rapid, specific, sensitive, and portable clinical field testing.
Collapse
Affiliation(s)
- Mengdi Zhao
- Department of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Xizhen Wang
- Department of Medicine Laboratory, The Second People’s Hospital of Lianyungang (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Kun Wang
- Department of Medicine Laboratory, The Second People’s Hospital of Lianyungang (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Yuanyuan Li
- Department of Medicine Laboratory, The Second People’s Hospital of Lianyungang (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Yan Wang
- Department of Medicine Laboratory, The Second People’s Hospital of Lianyungang (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Ping Zhou
- Department of Medicine Laboratory, The Second People’s Hospital of Lianyungang (Cancer Hospital of Lianyungang), Lianyungang, China
- *Correspondence: Ping Zhou, ; Lei Wang, ; Wenjun Zhu,
| | - Lei Wang
- Department of Medicine Laboratory, The Second People’s Hospital of Lianyungang (Cancer Hospital of Lianyungang), Lianyungang, China
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- *Correspondence: Ping Zhou, ; Lei Wang, ; Wenjun Zhu,
| | - Wenjun Zhu
- Department of Medicine Laboratory, The Second People’s Hospital of Lianyungang (Cancer Hospital of Lianyungang), Lianyungang, China
- *Correspondence: Ping Zhou, ; Lei Wang, ; Wenjun Zhu,
| |
Collapse
|
2
|
Gilroy C, Raab O, Hanna P. Pathology in Practice. J Am Vet Med Assoc 2021; 257:161-164. [PMID: 32597735 DOI: 10.2460/javma.257.2.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Keikha N, Shafaghat M, Mousavia SM, Moudi M, Keshavarzi F. Antifungal effects of ethanolic and aqueous extracts of Vitexagnus-castus against vaginal isolates of Candida albicans. Curr Med Mycol 2018; 4:1-5. [PMID: 30186986 PMCID: PMC6101154 DOI: 10.18502/cmm.4.1.26] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background and Purpose Vulvovaginal candidiasis is one of the most common infections in female genital organs, which is caused by Candida species. Candida albicans is the causative agent of more than 80% of infections, and the role of non-Candida strains in the disease etiology is less prominent. The expansion of Azoles resistance among C. albicans strains is considered an important medical problem. According to previous studies, Vitex agnus-castus (vitex) has some antimicrobial effects. We aimed to evaluate the anti-fungal effects of aqueous and alcoholic extracts of vitex against clinical vaginal isolates of C. albicans in comparison with fluconazole. Materials and Methods Gas chromatography-mass spectrometry analysis was performed on vitex to identify its possible bioactive components. Forty C. albicans clinical isolates were identified by using germ tube, chlamydospore production, culture on CHROMagar, and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Finally, after the extraction of vitex, drug susceptibility test was carried out according to the clinical laboratory standards institute (CLSI) M27-S4 document guidelines. Results The major chemical components of vitex leaf as determined by gas chromatography included α-Pinene, isoterpinolene, caryophyllene, and azulene. The minimum inhibitory concentrations (MICs) of aqueous and alcoholic extracts of vitex, as well as fluconazole were within the ranges of 15.62-62.5, 7.81-15.62, and 0.25-8 μg/mL, respectively. Conclusion Our findings showed that the alcoholic and aqueous extracts of vitex had antifungal activity against clinical isolates of C. albicans. Moreover, the alcoholic extract of vitex and fluconazole were more effective against clinical vaginal isolates of C. albicans compared to the aqueous extract of vitex.
Collapse
Affiliation(s)
- Nasser Keikha
- Medical Laboratory Sciences Department, Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahdieh Shafaghat
- Plant Biology Department, Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Seyed Mohamad Mousavia
- Plant Biology Department, Zabol Medicinal Plant Research Center, Zabol University of Medical Sciences, Zabol, Iran
| | - Mahdiyeh Moudi
- Medical Genetics Department, Genetics of Non-Communicable Disease Researc Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Farshid Keshavarzi
- Clinical Biochemistry Department, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
4
|
Brilhante RSN, Silva ALD, Monteiro FOB, Guedes GMDM, Sales JA, Oliveira JSD, Maia Junior JE, Miranda SA, Sidrim JJC, Alencar LPD, Castelo-Branco DSCM, Cordeiro RDA, Pereira Neto WDA, Rocha MFG. Yeasts from Scarlet ibises (Eudocimus ruber): A focus on monitoring the antifungal susceptibility of Candida famata and closely related species. Med Mycol 2018; 55:725-732. [PMID: 28204651 DOI: 10.1093/mmy/myw144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 01/17/2017] [Indexed: 11/12/2022] Open
Abstract
This study aimed to identify yeasts from the gastrointestinal tract of scarlet ibises (Eudocimus ruber) and from plant material collected from the environment where they live. Then, the isolates phenotypically identified as Candida famata were submitted to molecular identification of their closely related species and evaluated for their antifungal susceptibility and possible resistance mechanisms to antifungal drugs. Cloacal swabs from 20 scarlet ibises kept in captivity at Mangal das Garças Park (Brazil), pooled stool samples (n = 20) and samples of trunks and hollow of trees (n = 20) obtained from their enclosures were collected. The samples were seeded on Sabouraud agar supplemented with chloramphenicol. The 48 recovered isolates were phenotypically identified as 15 Candida famata, 13 Candida catenulata, 2 Candida intermedia, 1 Candida lusitaniae, 2 Candida guilliermondii, 1 Candida kefyr, 1 Candida amapae, 1 Candida krusei, 8 Trichosporon spp., and 4 Rhodotorula spp. The C. famata isolates were further identified as 3 C. famata, 8 Debaryomyces nepalensis, and 4 C. palmioleophila. All C. famata and C. palmioleophila were susceptible to caspofungin and itraconazole, while one D. nepalensis was resistant to fluconazole and voriconazole. This same isolate and another D. nepalensis had lower amphotericin B susceptibility. The azole resistant strain had an increased efflux of rhodamine 6G and an alteration in the membrane sterol content, demonstrating multifactorial resistance mechanism. Finally, this research shows that scarlet ibises and their environment harbor C. famata and closely related species, including antifungal resistant isolates, emphasizing the need of monitoring the antifungal susceptibility of these yeast species.
Collapse
Affiliation(s)
- Raimunda Sâmia Nogueira Brilhante
- Posgraduate Program in Medical Microbiology; Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Aline Lobão da Silva
- Posgraduate Program in Veterinary Sciences, School of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Glaucia Morgana de Melo Guedes
- Posgraduate Program in Medical Microbiology; Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Jamille Alencar Sales
- Posgraduate Program in Veterinary Sciences, School of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Jonathas Sales de Oliveira
- Posgraduate Program in Medical Microbiology; Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - José Erisvaldo Maia Junior
- Posgraduate Program in Veterinary Sciences, School of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | | | - José Júlio Costa Sidrim
- Posgraduate Program in Medical Microbiology; Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Lucas Pereira de Alencar
- Posgraduate Program in Veterinary Sciences, School of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Rossana de Aguiar Cordeiro
- Posgraduate Program in Medical Microbiology; Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Waldemiro de Aquino Pereira Neto
- Posgraduate Program in Medical Microbiology; Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Marcos Fábio Gadelha Rocha
- Posgraduate Program in Medical Microbiology; Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil.,Posgraduate Program in Veterinary Sciences, School of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
5
|
Liu S, Song P, Ou R, Fang W, Lin M, Ruan J, Yang X, Hu K. Sequence analysis and typing of Saprolegnia strains isolated from freshwater fish from Southern Chinese regions. AQUACULTURE AND FISHERIES 2017. [DOI: 10.1016/j.aaf.2017.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Ebani VV, Nardoni S, Bertelloni F, Najar B, Pistelli L, Mancianti F. Antibacterial and Antifungal Activity of Essential Oils against Pathogens Responsible for Otitis Externa in Dogs and Cats. MEDICINES (BASEL, SWITZERLAND) 2017; 4:medicines4020021. [PMID: 28930236 PMCID: PMC5590057 DOI: 10.3390/medicines4020021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/07/2017] [Accepted: 04/18/2017] [Indexed: 04/12/2023]
Abstract
Background: Essential oils (EOs) are recommended by some veterinarians to treat otitis externa in pets, but data about their efficacy in scientific literature are very scant. Methods: Nine commercial EOs, from roman chamomile (Anthemis nobilis L.), star anise (Illicium verum), lavender (Lavandula hybrida), litsea (Litsea cubeba (Lour.) Pers.), basil (Ocimum basilicum L.), oregano (Origanum vulgare L. subsp. hirticum), rosemary (Rosmarinus officinalis L.), clary sage (Salvia sclarea L.), and thyme (Thymus vulgaris L.) were tested against bacterial and fungal pathogens previously isolated from dogs and cats with otitis externa. In particular, the analyses were carried out against Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus pseudointermedius, Aspergillus niger, Aspergillus fumigatus, Aspergillus terreus, Candida albicans, Candida tropicalis, Trichosporon sp., and Rhodotorula sp. Results:O. vulgare and S. sclarea showed superior antibacterial activity, even if not against all the strains. Trichosporon sp., C. albicans, and A. terreus were insensitive to most Eos, while other yeasts and molds showed different degrees of sensitivity. In particular, most fungi were inhibited by O. vulgare and R. officinalis. Conclusions: The obtained results suggest that some EOs could be included in treatment as an alternative therapeutic option in bacterial otitis complicated by fungi, in association with conventional drugs.
Collapse
Affiliation(s)
- Valentina V Ebani
- Department of Veterinary Science, University of Pisa, viale delle Piagge 2, 56124 Pisa, Italy.
- Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute", University of Pisa, via del Borghetto 80, 56124 Pisa, Italy.
| | - Simona Nardoni
- Department of Veterinary Science, University of Pisa, viale delle Piagge 2, 56124 Pisa, Italy.
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy.
| | - Fabrizio Bertelloni
- Department of Veterinary Science, University of Pisa, viale delle Piagge 2, 56124 Pisa, Italy.
| | - Basma Najar
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy.
| | - Luisa Pistelli
- Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute", University of Pisa, via del Borghetto 80, 56124 Pisa, Italy.
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy.
| | - Francesca Mancianti
- Department of Veterinary Science, University of Pisa, viale delle Piagge 2, 56124 Pisa, Italy.
- Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute", University of Pisa, via del Borghetto 80, 56124 Pisa, Italy.
| |
Collapse
|
7
|
Techaparin A, Thanonkeo P, Klanrit P. High-temperature ethanol production using thermotolerant yeast newly isolated from Greater Mekong Subregion. Braz J Microbiol 2017; 48:461-475. [PMID: 28365094 PMCID: PMC5498443 DOI: 10.1016/j.bjm.2017.01.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 11/24/2022] Open
Abstract
The application of high-potential thermotolerant yeasts is a key factor for successful ethanol production at high temperatures. Two hundred and thirty-four yeast isolates from Greater Mekong Subregion (GMS) countries, i.e., Thailand, The Lao People's Democratic Republic (Lao PDR) and Vietnam were obtained. Five thermotolerant yeasts, designated Saccharomyces cerevisiae KKU-VN8, KKU-VN20, and KKU-VN27, Pichia kudriavzevii KKU-TH33 and P. kudriavzevii KKU-TH43, demonstrated high temperature and ethanol tolerance levels up to 45 °C and 13% (v/v), respectively. All five strains produced higher ethanol concentrations and exhibited greater productivities and yields than the industrial strain S. cerevisiae TISTR5606 during high-temperature fermentation at 40 °C and 43 °C. S. cerevisiae KKU-VN8 demonstrated the best performance for ethanol production from glucose at 37 °C with an ethanol concentration of 72.69 g/L, a productivity of 1.59 g/L/h and a theoretical ethanol yield of 86.27%. The optimal conditions for ethanol production of S. cerevisiae KKU-VN8 from sweet sorghum juice (SSJ) at 40 °C were achieved using the Box–Behnken experimental design (BBD). The maximal ethanol concentration obtained during fermentation was 89.32 g/L, with a productivity of 2.48 g/L/h and a theoretical ethanol yield of 96.32%. Thus, the newly isolated thermotolerant S. cerevisiae KKU-VN8 exhibits a great potential for commercial-scale ethanol production in the future.
Collapse
Affiliation(s)
- Atiya Techaparin
- Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pornthap Thanonkeo
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand; Fermentation Research Center for Value Added Agricultural Products (FerVAAP), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Preekamol Klanrit
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand; Fermentation Research Center for Value Added Agricultural Products (FerVAAP), Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
8
|
PCR-REA as an important tool for the identification of Cryptococcus neoformans and Cryptococcus gattii from human and veterinary sources. Vet Microbiol 2011; 154:180-4. [DOI: 10.1016/j.vetmic.2011.06.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 06/27/2011] [Accepted: 06/30/2011] [Indexed: 11/22/2022]
|
9
|
Candida parapsilosis meningitis as the first manifestation of AIDS: case report. J Med Microbiol 2011; 60:1530-1533. [DOI: 10.1099/jmm.0.031716-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
10
|
Molecular identification of veterinary yeast isolates by use of sequence-based analysis of the D1/D2 region of the large ribosomal subunit. J Clin Microbiol 2010; 48:2140-6. [PMID: 20392917 DOI: 10.1128/jcm.02306-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Conventional methods of yeast identification are often time-consuming and difficult; however, recent studies of sequence-based identification methods have shown promise. Additionally, little is known about the diversity of yeasts identified from various animal species in veterinary diagnostic laboratories. Therefore, in this study, we examined three methods of identification by using 109 yeast samples isolated during a 1-year period from veterinary clinical samples. Comparison of the three methods-traditional substrate assimilation, fatty acid profile analysis, and sequence-based analysis of the region spanning the D1 and D2 regions (D1/D2) of the large ribosomal subunit-showed that sequence analysis provided the highest percent identification among the three. Sequence analysis identified 87% of isolates to the species level, whereas substrate assimilation and fatty acid profile analysis identified only 54% and 47%, respectively. Less-stringent criteria for identification increased the percentage of isolates identified to 98% for sequence analysis, 62% for substrate assimilation, and 55% for fatty acid profile analysis. We also found that sequence analysis of the internal transcribed spacer 2 (ITS2) region provided further identification for 36% of yeast not identified to the species level by D1/D2 sequence analysis. Additionally, we identified a large variety of yeast from animal sources, with at least 30 different species among the isolates tested, and with the majority not belonging to the common Candida spp., such as C. albicans, C. glabrata, C. tropicalis, and the C. parapsilosis group. Thus, we determined that sequence analysis of the D1/D2 region was the best method for identification of the variety of yeasts found in a veterinary population.
Collapse
|
11
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|