1
|
Yuan X, Sun J, Kadowaki T. Aspartyl protease in the secretome of honey bee trypanosomatid parasite contributes to infection of bees. Parasit Vectors 2024; 17:60. [PMID: 38341595 PMCID: PMC10859015 DOI: 10.1186/s13071-024-06126-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND The exoproteome, which consists of both secreted proteins and those originating from cell surfaces and lysed cells, is a critical component of trypanosomatid parasites, facilitating interactions with host cells and gut microbiota. However, its specific roles in the insect hosts of these parasites remain poorly understood. METHODS We conducted a comprehensive characterization of the exoproteome in Lotmaria passim, a trypanosomatid parasite infecting honey bees, under culture conditions. We further investigated the functions of two conventionally secreted proteins, aspartyl protease (LpAsp) and chitinase (LpCht), as representative models to elucidate the role of the secretome in L. passim infection of honey bees. RESULTS Approximately 48% of L. passim exoproteome proteins were found to share homologs with those found in seven Leishmania spp., suggesting the existence of a core exoproteome with conserved functions in the Leishmaniinae lineage. Bioinformatics analyses suggested that the L. passim exoproteome may play a pivotal role in interactions with both the host and its microbiota. Notably, the deletion of genes encoding two secretome proteins revealed the important role of LpAsp, but not LpCht, in L. passim development under culture conditions and its efficiency in infecting the honey bee gut. CONCLUSIONS Our results highlight the exoproteome as a valuable resource for unraveling the mechanisms employed by trypanosomatid parasites to infect insect hosts by interacting with the gut environment.
Collapse
Affiliation(s)
- Xuye Yuan
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, 215123, Jiangsu, China
| | - Jianying Sun
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, 215123, Jiangsu, China
| | - Tatsuhiko Kadowaki
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, 215123, Jiangsu, China.
| |
Collapse
|
2
|
Karaoğlu ŞA, Bıyık S, Nisbet C, Akpınar R, Bozdeveci A, Suyabatmaz Ş, Güler A, Kaya S, Yeşilyurt A, Batan N, Yaylı N. Use of Dicranum polysetum extract against Paenibacillus larvae causing American Foulbrood under in vivo and in vitro conditions. Int Microbiol 2023; 26:1087-1101. [PMID: 37097489 DOI: 10.1007/s10123-023-00361-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 04/26/2023]
Abstract
Recent research shows that Dicranum species can be used to ameliorate the negative effects of honeybee bacterial diseases and that novel compounds isolated from these species may have the potential to treat bacterial diseases. This study aimed to investigate the efficacy of Dicranum polysetum Sw. against American Foulbrood using toxicity and larval model. The effectiveness of D. polysetum Sw. ethanol extract in combating AFB was investigated in vitro and in vivo. This study is important in finding an alternative treatment or prophylactic method to prevent American Foulbrood disease in honey bee colonies. Spore and vegetative forms of Paenibacillus larvae PB31B with ethanol extract of D. polysetum were tested on 2040 honey bee larvae under controlled conditions. Total phenolic and flavonoid contents of D. polysetum ethanol extracts were determined as 80.72 mg/GAE(Gallic acid equivalent) and 303.20 µg/mL, respectively. DPPH(2,2-diphenyl-1-picrylhydrazyl) radical scavenging percent inhibition value was calculated as 4.32%. In Spodoptera frugiperda (Sf9) and Lymantria dispar (LD652) cell lines, the cytotoxic activities of D. polysetum extract were below 20% at 50 µg/mL. The extract was shown to considerably decrease infection in the larvae, and the infection was clinically halted when the extract was administered during the first 24 h after spore contamination. The fact that the extract contains potent antimicrobial/antioxidant activity does not reduce larval viability and live weight, and does not interact with royal jelly is a promising development, particularly regarding its use to treat early-stage AFB infection.
Collapse
Affiliation(s)
- Şengül Alpay Karaoğlu
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, 53100, Rize, Turkey.
| | - Selim Bıyık
- Department of Animal Science, Faculty of Agriculture, Ondokuz Mayıs University, 55200, Samsun, Turkey
| | - Cevat Nisbet
- Department of Biochemistry, Faculty of Veterinary Medicine, Ondokuz Mayıs University, 55200, Samsun, Turkey
| | - Rahşan Akpınar
- Laboratory of Bee Diseases, Samsun Veterinary Control Institute, 55200, Samsun, Turkey
| | - Arif Bozdeveci
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, 53100, Rize, Turkey.
| | - Şeyma Suyabatmaz
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, 53100, Rize, Turkey
| | - Ahmet Güler
- Department of Animal Science, Faculty of Agriculture, Ondokuz Mayıs University, 55200, Samsun, Turkey
| | - Selma Kaya
- Laboratory of Bee Diseases, Samsun Veterinary Control Institute, 55200, Samsun, Turkey
| | - Aydın Yeşilyurt
- Tonya Vocational School, Trabzon University, 61500, Trabzon, Turkey
| | - Nevzat Batan
- Molecular Biology and Genetics, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Nurettin Yaylı
- Faculty of Pharmacy, Karadeniz Technical University, 61080, Trabzon, Turkey
| |
Collapse
|
3
|
Paletti Rovey MF, Sotelo JP, Carezzano ME, Huallpa C, Oliva MDLM. Hexanic extract of Achyrocline satureioides: antimicrobial activity and in vitro inhibitory effect on mechanisms related to the pathogenicity of Paenibacillus larvae. Vet Res Commun 2023; 47:1379-1391. [PMID: 36809600 DOI: 10.1007/s11259-023-10086-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/15/2023] [Indexed: 02/23/2023]
Abstract
INTRODUCTION Paenibacillus larvae is a spore-forming bacillus, the most important bacterial pathogen of honeybee larvae and the causative agent of American foulbrood (AFB). Control measures are limited and represent a challenge for both beekeepers and researchers. For this reason, many studies focus on the search for alternative treatments based on natural products. AIM The objective of this study was to determine the antimicrobial activity of the hexanic extract (HE) of Achyrocline satureioides on P. larvae and the inhibitory activity on some mechanisms related to pathogenicity. MATERIAL AND METHODS The Minimum Inhibitory Concentration (MIC) of the HE was determined by the broth microdilution technique and the Minimum Bactericidal Concentration (MBC) by the microdrop technique. Swimming and swarming motility was evaluated in plates with 0.3 and 0.5% agar, respectively. Biofilm formation was evaluated and quantified by the Congo red and crystal violet method. The protease activity was evaluated by the qualitative technique on skim milk agar plates. RESULTS It was determined that the MIC of the HE on four strains of P. larvae ranged between 0.3 and 9.37 µg/ml and the MBC between 1.17 and 150 µg/ml. On the other hand, sub-inhibitory concentrations of the HE were able to decrease swimming motility, biofilm formation and the proteases production of P. larvae.
Collapse
Affiliation(s)
- María Fernanda Paletti Rovey
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Fisico-Químicas y Naturales, Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto, Ruta Nacional 36 - Km. 601, X5804BYA, Río Cuarto, Córdoba, Argentina.
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), 2290, C1425FQB CABA, Godoy Cruz, Buenos Aires, Argentina.
| | - Jesica Paola Sotelo
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Fisico-Químicas y Naturales, Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto, Ruta Nacional 36 - Km. 601, X5804BYA, Río Cuarto, Córdoba, Argentina
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), 2290, C1425FQB CABA, Godoy Cruz, Buenos Aires, Argentina
| | - María Evangelina Carezzano
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Fisico-Químicas y Naturales, Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto, Ruta Nacional 36 - Km. 601, X5804BYA, Río Cuarto, Córdoba, Argentina
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), 2290, C1425FQB CABA, Godoy Cruz, Buenos Aires, Argentina
| | - Carlos Huallpa
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Fisico-Químicas y Naturales, Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto, Ruta Nacional 36 - Km. 601, X5804BYA, Río Cuarto, Córdoba, Argentina
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), 2290, C1425FQB CABA, Godoy Cruz, Buenos Aires, Argentina
| | - María de Las Mercedes Oliva
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Fisico-Químicas y Naturales, Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto, Ruta Nacional 36 - Km. 601, X5804BYA, Río Cuarto, Córdoba, Argentina
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), 2290, C1425FQB CABA, Godoy Cruz, Buenos Aires, Argentina
| |
Collapse
|
4
|
Felicioli A, Turchi B, Fratini F, Giusti M, Nuvoloni R, Dani FR, Sagona S. Proteinase pattern of honeybee prepupae from healthy and American Foulbrood infected bees investigated by zymography. Electrophoresis 2018; 39:2160-2167. [PMID: 29761912 DOI: 10.1002/elps.201800112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 11/05/2022]
Abstract
American foulbrood disease (AFB) is the main devastating disease that affects honeybees' brood, caused by Paenibacillus larvae. The trend of the research on AFB has addressed the mechanisms by which P. larvae bacteria kill honeybee larvae. Since prepupae could react to the infection of AFB by increasing protease synthesis, the aim of this work was to compare protease activity in worker prepupae belonging to healthy colonies and to colonies affected by AFB. This investigation was performed by zymography. In gel, proteolytic activity was observed in prepupae extracts belonging only to the healthy colonies. In the prepupae extracts, 2D zimography followed by protein identification by MS allowed to detect Trypsin-1 and Chymotrypsin-1, which were not observed in diseased specimens. Further investigations are needed to clarify the involvement of these proteinases in the immune response of honeybee larvae and the mechanisms by which P. larvae inhibits protease production in its host.
Collapse
Affiliation(s)
| | - Barbara Turchi
- Department of Veterinary Science, Pisa University, Pisa, Italy
| | - Filippo Fratini
- Department of Veterinary Science, Pisa University, Pisa, Italy
| | - Matteo Giusti
- Department of Veterinary Science, Pisa University, Pisa, Italy
| | | | - Francesca Romana Dani
- Department of Biology, University of Firenze, Sesto Fiorentino, Italy.,Mass Spectrometry Centre (CISM) of Florence University, Sesto Fiorentino, Italy
| | - Simona Sagona
- Department of Veterinary Science, Pisa University, Pisa, Italy
| |
Collapse
|
5
|
Merrill BD, Grose JH, Breakwell DP, Burnett SH. Characterization of Paenibacillus larvae bacteriophages and their genomic relationships to firmicute bacteriophages. BMC Genomics 2014; 15:745. [PMID: 25174730 PMCID: PMC4168068 DOI: 10.1186/1471-2164-15-745] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 08/26/2014] [Indexed: 01/10/2023] Open
Abstract
Background Paenibacillus larvae is a Firmicute bacterium that causes American Foulbrood, a lethal disease in honeybees and is a major source of global agricultural losses. Although P. larvae phages were isolated prior to 2013, no full genome sequences of P. larvae bacteriophages were published or analyzed. This report includes an in-depth analysis of the structure, genomes, and relatedness of P. larvae myoviruses Abouo, Davis, Emery, Jimmer1, Jimmer2, and siphovirus phiIBB_Pl23 to each other and to other known phages. Results P. larvae phages Abouo, Davies, Emery, Jimmer1, and Jimmer2 are myoviruses with ~50 kbp genomes. The six P. larvae phages form three distinct groups by dotplot analysis. An annotated linear genome map of these six phages displays important identifiable genes and demonstrates the relationship between phages. Sixty phage assembly or structural protein genes and 133 regulatory or other non-structural protein genes were identifiable among the six P. larvae phages. Jimmer1, Jimmer2, and Davies formed stable lysogens resistant to superinfection by genetically similar phages. The correlation between tape measure protein gene length and phage tail length allowed identification of co-isolated phages Emery and Abouo in electron micrographs. A Phamerator database was assembled with the P. larvae phage genomes and 107 genomes of Firmicute-infecting phages, including 71 Bacillus phages. Phamerator identified conserved domains in 1,501 of 6,181 phamilies (only 24.3%) encoded by genes in the database and revealed that P. larvae phage genomes shared at least one phamily with 72 of the 107 other phages. The phamily relationship of large terminase proteins was used to indicate putative DNA packaging strategies. Analyses from CoreGenes, Phamerator, and electron micrograph measurements indicated Jimmer1, Jimmer2, Abouo and Davies were related to phages phiC2, EJ-1, KC5a, and AQ113, which are small-genome myoviruses that infect Streptococcus, Lactobacillus, and Clostridium, respectively. Conclusions This paper represents the first comparison of phage genomes in the Paenibacillus genus and the first organization of P. larvae phages based on sequence and structure. This analysis provides an important contribution to the field of bacteriophage genomics by serving as a foundation on which to build an understanding of the natural predators of P. larvae. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-745) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Sandra H Burnett
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
6
|
Sood S, Steinmetz H, Beims H, Mohr KI, Stadler M, Djukic M, von der Ohe W, Steinert M, Daniel R, Müller R. Paenilarvins: Iturin family lipopeptides from the honey bee pathogen Paenibacillus larvae. Chembiochem 2014; 15:1947-55. [PMID: 25069424 DOI: 10.1002/cbic.201402139] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Indexed: 11/09/2022]
Abstract
The bacterium Paenibacillus larvae has been extensively studied as it is an appalling honey bee pathogen. In the present work, we screened crude extracts derived from fermentations of P. larvae genotypes ERIC I and II for antimicrobial activity, following the detection of four putative secondary metabolite gene clusters that show high sequence homology to known biosynthetic gene clusters for the biosynthesis of antibiotics. Low molecular weight metabolites produced by P. larvae have recently been shown to have toxic effects on honey bee larvae. Moreover, a novel tripeptide, sevadicin, was recently characterized from laboratory cultures of P. larvae. In this study, paenilarvins, which are iturinic lipopeptides exhibiting strong antifungal activities, were obtained by bioassay-guided fractionation from cultures of P. larvae, genotype ERIC II. Their molecular structures were determined by extensive 2D NMR spectroscopy, high resolution mass spectrometry, and other methods. Paenilarvins are the first antifungal secondary metabolites to be identified from P. larvae. In preliminary experiments, these lipopeptides also affected honey bee larvae and might thus play a role in P. larvae survival and pathogenesis. However, further studies are needed to investigate their function.
Collapse
Affiliation(s)
- Sakshi Sood
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig (Germany)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Schild HA, Fuchs SW, Bode HB, Grünewald B. Low-molecular-weight metabolites secreted by Paenibacillus larvae as potential virulence factors of American foulbrood. Appl Environ Microbiol 2014; 80:2484-92. [PMID: 24509920 PMCID: PMC3993163 DOI: 10.1128/aem.04049-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/04/2014] [Indexed: 11/20/2022] Open
Abstract
The spore-forming bacterium Paenibacillus larvae causes a severe and highly infective bee disease, American foulbrood (AFB). Despite the large economic losses induced by AFB, the virulence factors produced by P. larvae are as yet unknown. To identify such virulence factors, we experimentally infected young, susceptible larvae of the honeybee, Apis mellifera carnica, with different P. larvae isolates. Honeybee larvae were reared in vitro in 24-well plates in the laboratory after isolation from the brood comb. We identified genotype-specific differences in the etiopathology of AFB between the tested isolates of P. larvae, which were revealed by differences in the median lethal times. Furthermore, we confirmed that extracts of P. larvae cultures contain low-molecular-weight compounds, which are toxic to honeybee larvae. Our data indicate that P. larvae secretes metabolites into the medium with a potent honeybee toxic activity pointing to a novel pathogenic factor(s) of P. larvae. Genome mining of P. larvae subsp. larvae BRL-230010 led to the identification of several biosynthesis gene clusters putatively involved in natural product biosynthesis, highlighting the potential of P. larvae to produce such compounds.
Collapse
Affiliation(s)
- Hedwig-Annabell Schild
- Institut für Bienenkunde, Polytechnische Gesellschaft, Oberursel, Germany
- Institut für Zellbiologie und Neurowissenschaft, Fachbereich Biowissenschaften, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Sebastian W. Fuchs
- Merck-Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Helge B. Bode
- Merck-Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Bernd Grünewald
- Institut für Bienenkunde, Polytechnische Gesellschaft, Oberursel, Germany
| |
Collapse
|
8
|
De Smet L, De Koker D, Hawley AK, Foster LJ, De Vos P, de Graaf DC. Effect of bodily fluids from honey bee (Apis mellifera) larvae on growth and genome-wide transcriptional response of the causal agent of American Foulbrood disease (Paenibacillus larvae). PLoS One 2014; 9:e89175. [PMID: 24586572 PMCID: PMC3930689 DOI: 10.1371/journal.pone.0089175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/16/2014] [Indexed: 11/18/2022] Open
Abstract
Paenibacillus larvae, the causal agent of American Foulbrood disease (AFB), affects honey bee health worldwide. The present study investigates the effect of bodily fluids from honey bee larvae on growth velocity and transcription for this Gram-positive, endospore-forming bacterium. It was observed that larval fluids accelerate the growth and lead to higher bacterial densities during stationary phase. The genome-wide transcriptional response of in vitro cultures of P. larvae to larval fluids was studied by microarray technology. Early responses of P. larvae to larval fluids are characterized by a general down-regulation of oligopeptide and sugar transporter genes, as well as by amino acid and carbohydrate metabolic genes, among others. Late responses are dominated by general down-regulation of sporulation genes and up-regulation of phage-related genes. A theoretical mechanism of carbon catabolite repression is discussed.
Collapse
Affiliation(s)
- Lina De Smet
- Ghent University, Laboratory of Zoophysiology, Department of Physiology, Ghent, Belgium
| | - Dieter De Koker
- Ghent University, Laboratory of Zoophysiology, Department of Physiology, Ghent, Belgium
| | - Alyse K. Hawley
- University of British Columbia, Department of Microbiology & Immunology, Vancouver, Canada
| | - Leonard J. Foster
- University of British Columbia, Department of Biochemistry & Molecular Biology, Vancouver, Canada
| | - Paul De Vos
- Ghent University, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent, Belgium
| | - Dirk C. de Graaf
- Ghent University, Laboratory of Zoophysiology, Department of Physiology, Ghent, Belgium
- * E-mail:
| |
Collapse
|
9
|
Rebollo Couto MS, Klein CS, Voss-Rech D, Terenzi H. Extracellular Proteins of Mycoplasma synoviae. ISRN VETERINARY SCIENCE 2012; 2012:802308. [PMID: 23762591 PMCID: PMC3671734 DOI: 10.5402/2012/802308] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 08/09/2012] [Indexed: 11/23/2022]
Abstract
Mycoplasma synoviae is a Gram positive bacteria lacking of cell wall that affects chickens and turkeys causing infection in the upper respiratory tract and in some cases arthritis, with economical impact to broiler breeders. Treatment and prevention of avian synovitis depend on knowledge of the infectious process. Secreted or surface-exposed proteins play a critical role in disease because they often mediate interactions between host and pathogen. In the present work, we sought to identify possible M. synoviae secreted proteins by cultivating the bacteria in a modified protein-free Frey medium. Using this approach, we were able to detect in the cell-free fraction a number of proteins that have been shown in other organisms to be secreted, suggesting that they may also be secreted by M. synoviae.
Collapse
Affiliation(s)
- Manuel Sebastián Rebollo Couto
- Centro de Biologia Molecular Estrutural, Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | | | | | | |
Collapse
|
10
|
Psychrotolerant Paenibacillus tundrae isolates from barley grains produce new cereulide-like depsipeptides (paenilide and homopaenilide) that are highly toxic to mammalian cells. Appl Environ Microbiol 2012; 78:3732-43. [PMID: 22407690 DOI: 10.1128/aem.00049-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Paenilide is a novel, heat-stable peptide toxin from Paenibacillus tundrae, which colonizes barley. P. tundrae produced 20 to 50 ng of the toxin mg(-1) of cells (wet weight) throughout a range of growth temperatures from +5°C to +28°C. Paenilide consisted of two substances of 1,152 Da and 1,166 Da, with masses and tandem mass spectra identical to those of cereulide and a cereulide homolog, respectively, produced by Bacillus cereus NS-58. The two components of paenilide were separated from those of cereulide by high-performance liquid chromatography (HPLC), showing a structural difference suggesting the replacement of O-Leu (cereulide) by O-Ile (paenilide). The exposure of porcine spermatozoa and kidney tubular epithelial (PK-15) cells to subnanomolar concentrations of paenilide resulted in inhibited motility, the depolarization of mitochondria, excessive glucose consumption, and metabolic acidosis. Paenilide was similar to cereulide in eight different toxicity endpoints with porcine and murine cells. In isolated rat liver mitochondria, nanomolar concentrations of paenilide collapsed respiratory control, zeroed the mitochondrial membrane potential, and induced swelling. The toxic effect of paenilide depended on its high lipophilicity and activity as a high-affinity potassium ion carrier. Similar to cereulide, paenilide formed lipocations, i.e., lipophilic cationic compounds, with K(+) ions already at 4 mM [K(+)], rendering lipid membranes electroconductive. Paenilide-producing P. tundrae was negative in a PCR assay with primers specific for the cesB gene, indicating that paenilide was not a product of plasmid pCER270, encoding the biosynthesis of cereulide in B. cereus. Paenilide represents the first potassium ionophoric compound described for Paenibacillus. The findings in this paper indicate that paenilide from P. tundrae is a potential food-poisoning agent.
Collapse
|
11
|
Chan QWT, Cornman RS, Birol I, Liao NY, Chan SK, Docking TR, Jackman SD, Taylor GA, Jones SJM, de Graaf DC, Evans JD, Foster LJ. Updated genome assembly and annotation of Paenibacillus larvae, the agent of American foulbrood disease of honey bees. BMC Genomics 2011; 12:450. [PMID: 21923906 PMCID: PMC3188533 DOI: 10.1186/1471-2164-12-450] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 09/16/2011] [Indexed: 01/13/2023] Open
Abstract
Abstract Results We used the Illumina GAIIx platform and conventional Sanger sequencing to generate a 182-fold sequence coverage of the P. larvae genome, and assembled the data using ABySS into a total of 388 contigs spanning 4.5 Mbp. Comparative genomics analysis against fully-sequenced soil bacteria P. JDR2 and P. vortex showed that regions of poor conservation may contain putative virulence factors. We used GLIMMER to predict 3568 gene models, and named them based on homology revealed by BLAST searches; proteases, hemolytic factors, toxins, and antibiotic resistance enzymes were identified in this way. Finally, mass spectrometry was used to provide experimental evidence that at least 35% of the genes are expressed at the protein level. Conclusions This update on the genome of P. larvae and annotation represents an immense advancement from what we had previously known about this species. We provide here a reliable resource that can be used to elucidate the mechanism of infection, and by extension, more effective methods to control and cure this widespread honey bee disease.
Collapse
Affiliation(s)
- Queenie W T Chan
- Department of Biochemistry Ž Molecular Biology, Centre for High-throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, British Columbia, V6T 1Z4 Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Antúnez K, Arredondo D, Anido M, Zunino P. Metalloprotease production by Paenibacillus larvae during the infection of honeybee larvae. MICROBIOLOGY-SGM 2011; 157:1474-1480. [PMID: 21330433 DOI: 10.1099/mic.0.044321-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
American foulbrood is a bacterial disease of worldwide distribution that affects larvae of the honeybee Apis mellifera. The causative agent is the Gram-positive, spore-forming bacterium Paenibacillus larvae. Several authors have proposed that P. larvae secretes metalloproteases that are involved in the larval degradation that occurs after infection. The aim of the present work was to evaluate the production of a metalloprotease by P. larvae during larval infection. First, the complete gene encoding a metalloprotease was identified in the P. larvae genome and its distribution was evaluated by PCR in a collection of P. larvae isolates from different geographical regions. Then, the complete gene was amplified, cloned and overexpressed, and the recombinant metalloprotease was purified and used to generate anti-metalloprotease antibodies. Metalloprotease production was evaluated by immunofluorescence and fluorescence in situ hybridization. The gene encoding a P. larvae metalloprotease was widely distributed in isolates from different geographical origins in Uruguay and Argentina. Metalloprotease was detected inside P. larvae vegetative cells, on the surface of P. larvae spores and secreted to the external growth medium. Its production was also confirmed in vivo, during the infection of honeybee larvae. This protein was able to hydrolyse milk proteins as described for P. larvae, suggesting that could be involved in larval degradation. This work contributes to the knowledge of the pathogenicity mechanisms of a bacterium of great economic significance and is one step in the characterization of potential P. larvae virulence factors.
Collapse
Affiliation(s)
- Karina Antúnez
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda Italia 3318, CP11600 Montevideo, Uruguay
| | - Daniela Arredondo
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda Italia 3318, CP11600 Montevideo, Uruguay
| | - Matilde Anido
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda Italia 3318, CP11600 Montevideo, Uruguay
| | - Pablo Zunino
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda Italia 3318, CP11600 Montevideo, Uruguay
| |
Collapse
|
13
|
Antúnez K, Anido M, Arredondo D, Evans JD, Zunino P. Paenibacillus larvae enolase as a virulence factor in honeybee larvae infection. Vet Microbiol 2010; 147:83-9. [PMID: 20609532 DOI: 10.1016/j.vetmic.2010.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 06/02/2010] [Accepted: 06/04/2010] [Indexed: 11/30/2022]
Abstract
Paenibacillus larvae is a gram-positive spore-forming bacteria, causative agent of American Foulbrood (AFB), a severe disease affecting larvae of the honeybee Apis mellifera. In an attempt to detect potential virulence factors secreted by P. larvae, we identified an enolase among different secreted proteins. Although this protein is a cytosolic enzyme involved in glycolytic pathways, it has been related to virulence. The aim of the present work was to evaluate its role during the infection of honeybee larvae. Toxicity assays showed that enolase was highly toxic and immunogenic to honeybee larvae. Its production was detected inside P. larvae vegetative cells, on the surface of P. larvae spores and secreted to the external growth medium. P. larvae enolase production was also confirmed in vivo, during the infection of honeybee larvae. This protein was able to hydrolyze milk proteins as described for P. larvae, suggesting that could be involved in larval degradation, maybe through the plasmin(ogen) system. These results suggest that P. larvae enolase may have a role in virulence and could contribute to a general insight about insect-pathogen interaction mechanisms.
Collapse
Affiliation(s)
- Karina Antúnez
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, C.P. 11600, Montevideo, Uruguay.
| | | | | | | | | |
Collapse
|