1
|
Qi J, Wang Y, Li H, Shang Y, Gao S, Ding C, Liu X, Wang S, Li T, Tian M, Yu S. Mycoplasma synoviae dihydrolipoamide dehydrogenase is an immunogenic fibronectin/plasminogen binding protein and a putative adhesin. Vet Microbiol 2021; 265:109328. [PMID: 35032790 DOI: 10.1016/j.vetmic.2021.109328] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/23/2020] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
Abstract
Mycoplasma synoviae (M. synoviae) is an important avian pathogen that causes arthritis and airsacculitis in young chickens and turkeys. Infection by M. synoviae results in considerable economic losses to the poultry industry worldwide. Cytoadherence is a crucial stage during mycoplasma infection. Dihydrolipoamide dehydrogenase (PdhD) is a flavin-dependent enzyme that is critical for energy metabolism and redox balance. To date, its role in cytoadherence is poorly understood. In this study, recombinant PdhD from M. synoviae (rMSPdhD) was expressed in the supernatant component of E. coli BL21 and rabbit anti-rMSPdhD serum was prepared. rMSPdhD was shown to be an immunogenic protein by immunoblot assays, while the mycoplasmacidal assay revealed that the rabbit anti-rMSPdhD serum had a high complement-dependent mycoplasmacidal rate (88.5 %). Using a suspension immunofluorescence assay and subcellular localization analysis, MSPdhD was shown to be a surface-localized protein distributed in both the cytoplasm and cell membrane of M. synoviae. The enzymatic activity of rMSPdhD was determined by measuring its ability to reduce lipoamide to dihydrolipoamide and convert NADH to NAD+. Using an indirect immunofluorescence assay, rMSPdhD was shown to adhere to DF-1 chicken embryo fibroblast cells. Furthermore, the attachment of M. synoviae to DF-1 cells was significantly inhibited by rabbit anti-rMSPdhD serum. Western blot and ELISA binding assays confirmed that rMSPdhD also bound to fibronectin (Fn) and plasminogen (Plg) in a dose-dependent manner. In conclusion, our data show that MSPdhD is not only a biological enzyme, but also an immunogenic surface-exposed protein that can bind to Fn and Plg as well as adhere to host cells. In addition, we show that rabbit anti-rMSPdhD serum can inhibit the adhesion of M. synoviae to DF-1 cells and has a significant complement-dependent bactericidal activity. Our findings suggest that MSPdhD may be involved in the pathogenesis of M. synoviae.
Collapse
Affiliation(s)
- Jingjing Qi
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China
| | - Yu Wang
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China; College of Veterinary Medicine, Yangzhou University, No. 88 University South Road, Yangzhou, Jiangsu 225009, PR China
| | - Haoran Li
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China; College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei, Anhui, PR China
| | - Yuanbing Shang
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China; College of Animal Husbandry and Veterinary Medicine, Jin Zhou Medical University, No. 40 Section 3 Songpo Road, Linghe District, Jinzhou City, Liaoning 121001, PR China
| | - Song Gao
- College of Veterinary Medicine, Yangzhou University, No. 88 University South Road, Yangzhou, Jiangsu 225009, PR China
| | - Chan Ding
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China
| | - Xiaohan Liu
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China
| | - Tao Li
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China
| | - Mingxing Tian
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, PR China.
| |
Collapse
|
2
|
Bao S, Chen D, Yu S, Chen H, Tan L, Hu M, Qiu X, Song C, Ding C. Characterization of triosephosphate isomerase from Mycoplasma gallisepticum. FEMS Microbiol Lett 2015; 362:fnv140. [PMID: 26319024 DOI: 10.1093/femsle/fnv140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2015] [Indexed: 11/12/2022] Open
Abstract
Triosephosphate isomerase (Tpi) is a glycolytic enzyme that is essential for efficient energy production in many pathogens. However, its function in Mycoplasma gallisepticum has not been fully elucidated. In this study, the mga0357 gene of M. gallisepticum, which encodes TpiA (MGTpiA), was amplified and expressed in Escherichia coli by IPTG induction. The purified recombinant MGTpiA protein exhibited catalytic activity that was similar to TPI from rabbit muscle, reducing NAD(+) to NADH. The MGTpiA was also found to be a surface-exposed protein by western blotting and immunofluorescence assays. In addition, cytadherence inhibition assays confirmed that the cytadherence of M. gallisepticum to the DF-1 cells was significantly inhibited by the anti-MGTpiA serum. The results of the study suggested that MGTpiA plays an important role in the metabolism and closely related to the M. gallisepticum pathogenicity.
Collapse
Affiliation(s)
- Shijun Bao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, P.R. China
| | - Danqing Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China
| | - Meirong Hu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, P.R. China
| |
Collapse
|
3
|
Menegatti ACO, Vernal J, Terenzi H. The unique serine/threonine phosphatase from the minimal bacterium Mycoplasma synoviae: biochemical characterization and metal dependence. J Biol Inorg Chem 2015; 20:61-75. [PMID: 25370051 DOI: 10.1007/s00775-014-1209-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/24/2014] [Indexed: 01/12/2023]
Abstract
Serine/threonine protein phosphatases have been described in many pathogenic bacteria as essential enzymes involved in phosphorylation-dependent signal transduction pathways and frequently associated with the virulence of these organisms. An inspection of Mycoplasma synoviae genome revealed the presence of a gene (prpC) encoding a putative protein phosphatase of the protein phosphatase 2C (PP2C) subfamily. Here, we report a complete biochemical characterization of M. synoviae phosphatase (PrpC) and the particular role of metal ions in the structure-function relationship of this enzyme. PrpC amino acid sequence analysis revealed that all the residues involved in the dinuclear metal center and the putative third metal ion-coordinating residues, conserved in PP2C phosphatases, are present in PrpC. PrpC is a monomeric protein able to dephosphorylate phospho-substrates with Mn(2+) ions' dependence. Thermal stability analysis demonstrated the enzyme stability at mild temperatures and the influence of Mn(2+) ions in this property. Mass spectrometry analysis suggested that three metal ions bind to PrpC, two of which with an apparent high-affinity constant. Mutational analysis of the putative third metal-coordinating residues, Asp122 and Arg164, revealed that these variants exhibited a weaker binding of manganese ions, and that both mutations affected PrpC phosphatase activity. According to these results, PrpC is a metal-dependent protein phosphatase member with an improved stability in the holo form and with Asp122, possibly implicated in the third metal-binding site, essential to catalytic activity.
Collapse
Affiliation(s)
- Angela C O Menegatti
- Departamento de Bioquímica-CCB, Centro de Biologia Molecular Estrutural, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Javier Vernal
- Departamento de Bioquímica-CCB, Centro de Biologia Molecular Estrutural, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Hernán Terenzi
- Departamento de Bioquímica-CCB, Centro de Biologia Molecular Estrutural, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
4
|
Bao S, Guo X, Yu S, Ding J, Tan L, Zhang F, Sun Y, Qiu X, Chen G, Ding C. Mycoplasma synoviae enolase is a plasminogen/fibronectin binding protein. BMC Vet Res 2014; 10:223. [PMID: 25253294 PMCID: PMC4189797 DOI: 10.1186/s12917-014-0223-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 09/18/2014] [Indexed: 12/25/2022] Open
Abstract
Background Mycoplasma synoviae is an avian pathogen that can lead to respiratory tract infections and arthritis in chickens and turkeys, resulting in serious economic losses to the poultry industry. Enolase reportedly plays important roles in several bacterial pathogens, but its role in M. synoviae has not been established. Therefore, in this study, the enolase encoding gene (eno) of M. synoviae was amplified from strain WVU1853 and expressed in E. coli BL21 cells. Then the enzymatic activity, immunogenicity and binding activity with chicken plasminogen (Plg) and human fibronectin (Fn) was evaluated. Results We demonstrated that the recombinant M. synoviae enolase protein (rMsEno) can catalyze the conversion of 2-phosphoglycerate (2-PGA) to phosphoenolpyruvate (PEP), the Km and Vmax values of rMsEno were 1.1 × 10−3 M and 0.739 μmol/L/min, respectively. Western blot and immuno-electron microscopy analyses confirmed that enolase was distributed on the surface and within the cytoplasm of M. synoviae cells. The binding assays demonstrated that rMsEno was able to bind to chicken Plg and human Fn proteins. A complement-dependent mycoplasmacidal assay demonstrated that rabbit anti–rMsEno serum had distinct mycoplasmacidal efficacy in the presence of complement, which also confirmed that enolase was distributed on the surface of M. synoviae. An inhibition assay showed that the adherence of M. synoviae to DF-1 cells pre-treated with Plg could be effectively inhibited by treatment with rabbit anti-rMsEno serum. Conclusion These results reveal that M. synoviae enolase has good catalytic activity for conversion of 2-PGA to PEP, and binding activity with chicken Plg and human Fn. Rabbit anti–rMsEno serum displayed an obvious complement-dependent mycoplasmacidal effect and adherent inhibition effect. These results suggested that the M. synoviae enolase plays an important role in M. synoviae metabolism, and could potentially impact M. synoviae infection and immunity. Electronic supplementary material The online version of this article (doi:10.1186/s12917-014-0223-6) contains supplementary material, which is available to authorized users.
Collapse
|
5
|
Matiollo C, Ecco G, Menegatti ACO, Razzera G, Vernal J, Terenzi H. S-nitrosylation of Mycobacterium tuberculosis tyrosine phosphatase A (PtpA) induces its structural instability. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:191-6. [PMID: 23102706 DOI: 10.1016/j.bbapap.2012.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/04/2012] [Accepted: 10/07/2012] [Indexed: 02/06/2023]
Abstract
S-nitrosylation is associated with signal transduction and microbicidal activity of nitric oxide (NO). We have recently described the S-nitrosylation of Mycobacterium tuberculosis protein tyrosine phosphatase A, PtpA, an enzyme that plays an important role in mycobacteria survival inside macrophages. This post-translational modification decreases the activity of the enzyme upon modification of a single Cys residue, C53. The aim of the present work was the investigation of the effect of S-nitrosylation in PtpA kinetic parameters, thermal stability and structure. It was observed that the K(M) of nitrosylated PtpA was similar to its unmodified form, but the V(max) was significantly reduced. In contrast, treatment of PtpA C53A with GSNO, did not alter either K(M) or V(max). These results confirmed that PtpA S-nitrosylation occurs specifically in the non-catalytic C53 and that this modification does not affect substrate affinity. Using circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy techniques it was shown that PtpA S-nitrosylation decreased protein thermal stability and promoted a local effect in the surroundings of the C53 residue, which interfered in both protein stability and function.
Collapse
Affiliation(s)
- Camila Matiollo
- Centro de Biologia Molecular Estrutural-INBEB, Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | | | | | | | | |
Collapse
|
6
|
Rebollo Couto MS, Klein CS, Voss-Rech D, Terenzi H. Extracellular Proteins of Mycoplasma synoviae. ISRN VETERINARY SCIENCE 2012; 2012:802308. [PMID: 23762591 PMCID: PMC3671734 DOI: 10.5402/2012/802308] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 08/09/2012] [Indexed: 11/23/2022]
Abstract
Mycoplasma synoviae is a Gram positive bacteria lacking of cell wall that affects chickens and turkeys causing infection in the upper respiratory tract and in some cases arthritis, with economical impact to broiler breeders. Treatment and prevention of avian synovitis depend on knowledge of the infectious process. Secreted or surface-exposed proteins play a critical role in disease because they often mediate interactions between host and pathogen. In the present work, we sought to identify possible M. synoviae secreted proteins by cultivating the bacteria in a modified protein-free Frey medium. Using this approach, we were able to detect in the cell-free fraction a number of proteins that have been shown in other organisms to be secreted, suggesting that they may also be secreted by M. synoviae.
Collapse
Affiliation(s)
- Manuel Sebastián Rebollo Couto
- Centro de Biologia Molecular Estrutural, Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | | | | | | |
Collapse
|
7
|
Proteomics characterization of cytoplasmic and lipid-associated membrane proteins of human pathogen Mycoplasma fermentans M64. PLoS One 2012; 7:e35304. [PMID: 22536369 PMCID: PMC3335035 DOI: 10.1371/journal.pone.0035304] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 03/13/2012] [Indexed: 02/06/2023] Open
Abstract
Mycoplasma fermentans is a potent human pathogen which has been implicated in several diseases. Notably, its lipid-associated membrane proteins (LAMPs) play a role in immunomodulation and development of infection-associated inflammatory diseases. However, the systematic protein identification of pathogenic M. fermentans has not been reported. From our recent sequencing results of M. fermentans M64 isolated from human respiratory tract, its genome is around 1.1 Mb and encodes 1050 predicted protein-coding genes. In the present study, soluble proteome of M. fermentans was resolved and analyzed using two-dimensional gel electrophoresis. In addition, Triton X-114 extraction was carried out to enrich amphiphilic proteins including putative lipoproteins and membrane proteins. Subsequent mass spectrometric analyses of these proteins had identified a total of 181 M. fermentans ORFs. Further bioinformatics analysis of these ORFs encoding proteins with known or so far unknown orthologues among bacteria revealed that a total of 131 proteins are homologous to known proteins, 11 proteins are conserved hypothetical proteins, and the remaining 39 proteins are likely M. fermentans-specific proteins. Moreover, Triton X-114-enriched fraction was shown to activate NF-kB activity of raw264.7 macrophage and a total of 21 lipoproteins with predicted signal peptide were identified therefrom. Together, our work provides the first proteome reference map of M. fermentans as well as several putative virulence-associated proteins as diagnostic markers or vaccine candidates for further functional study of this human pathogen.
Collapse
|
8
|
Lidder P, Sonnino A. Biotechnologies for the management of genetic resources for food and agriculture. ADVANCES IN GENETICS 2012; 78:1-167. [PMID: 22980921 DOI: 10.1016/b978-0-12-394394-1.00001-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, the land area under agriculture has declined as also has the rate of growth in agricultural productivity while the demand for food continues to escalate. The world population now stands at 7 billion and is expected to reach 9 billion in 2045. A broad range of agricultural genetic diversity needs to be available and utilized in order to feed this growing population. Climate change is an added threat to biodiversity that will significantly impact genetic resources for food and agriculture (GRFA) and food production. There is no simple, all-encompassing solution to the challenges of increasing productivity while conserving genetic diversity. Sustainable management of GRFA requires a multipronged approach, and as outlined in the paper, biotechnologies can provide powerful tools for the management of GRFA. These tools vary in complexity from those that are relatively simple to those that are more sophisticated. Further, advances in biotechnologies are occurring at a rapid pace and provide novel opportunities for more effective and efficient management of GRFA. Biotechnology applications must be integrated with ongoing conventional breeding and development programs in order to succeed. Additionally, the generation, adaptation, and adoption of biotechnologies require a consistent level of financial and human resources and appropriate policies need to be in place. These issues were also recognized by Member States at the FAO international technical conference on Agricultural Biotechnologies for Developing Countries (ABDC-10), which took place in March 2010 in Mexico. At the end of the conference, the Member States reached a number of key conclusions, agreeing, inter alia, that developing countries should significantly increase sustained investments in capacity building and the development and use of biotechnologies to maintain the natural resource base; that effective and enabling national biotechnology policies and science-based regulatory frameworks can facilitate the development and appropriate use of biotechnologies in developing countries; and that FAO and other relevant international organizations and donors should significantly increase their efforts to support the strengthening of national capacities in the development and appropriate use of pro-poor agricultural biotechnologies.
Collapse
Affiliation(s)
- Preetmoninder Lidder
- Office of Knowledge Exchange, Research and Extension, Research and Extension Branch, Food and Agriculture Organization of the UN (FAO), Viale delle Terme di Caracalla, Rome, Italy
| | - Andrea Sonnino
- Office of Knowledge Exchange, Research and Extension, Research and Extension Branch, Food and Agriculture Organization of the UN (FAO), Viale delle Terme di Caracalla, Rome, Italy
| |
Collapse
|
9
|
Yu Y, Shen H, Yu H, Zhong F, Zhang Y, Zhang C, Zhao J, Li H, Chen J, Liu Y, Yang P. Systematic proteomic analysis of human hepotacellular carcinoma cells reveals molecular pathways and networks involved in metastasis. MOLECULAR BIOSYSTEMS 2011; 7:1908-16. [DOI: 10.1039/c0mb00265h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|