1
|
Drolet BS, Reister-Hendricks L, Mayo C, Rodgers C, Molik DC, McVey DS. Increased Virulence of Culicoides Midge Cell-Derived Bluetongue Virus in IFNAR Mice. Viruses 2024; 16:1474. [PMID: 39339950 PMCID: PMC11437402 DOI: 10.3390/v16091474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Bluetongue (BT) is a Culicoides midge-borne hemorrhagic disease affecting cervids and ruminant livestock species, resulting in significant economic losses from animal production and trade restrictions. Experimental animal infections using the α/β interferon receptor knockout IFNAR mouse model and susceptible target species are critical for understanding viral pathogenesis, virulence, and evaluating vaccines. However, conducting experimental vector-borne transmission studies with the vector itself are logistically difficult and experimentally problematic. Therefore, experimental infections are induced by hypodermic injection with virus typically derived from baby hamster kidney (BHK) cells. Unfortunately, for many U.S. BTV serotypes, it is difficult to replicate the severity of the disease seen in natural, midge-transmitted infections by injecting BHK-derived virus into target host animals. Using the IFNAR BTV murine model, we compared the virulence of traditional BHK cell-derived BTV-17 with C. sonorensis midge (W8) cell-derived BTV-17 to determine whether using cells of the transmission vector would provide an in vitro virulence aspect of vector-transmitted virus. At both low and high doses, mice inoculated with W8-BTV-17 had an earlier onset of viremia, earlier onset and peak of clinical signs, and significantly higher mortality compared to mice inoculated with BHK-BTV-17. Our results suggest using a Culicoides W8 cell-derived inoculum may provide an in vitro vector-enhanced infection to more closely represent disease levels seen in natural midge-transmitted infections while avoiding the logistical and experimental complexity of working with live midges.
Collapse
Affiliation(s)
- Barbara S. Drolet
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (L.R.-H.); (D.C.M.)
| | - Lindsey Reister-Hendricks
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (L.R.-H.); (D.C.M.)
| | - Christie Mayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (C.M.); (C.R.)
| | - Case Rodgers
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (C.M.); (C.R.)
| | - David C. Molik
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (L.R.-H.); (D.C.M.)
| | - David Scott McVey
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, P.O. Box 830905, Lincoln, NE 68583, USA;
| |
Collapse
|
2
|
Spedicato M, Di Teodoro G, Teodori L, Iorio M, Leone A, Bonfini B, Testa L, Pisciella M, Casaccia C, Portanti O, Rossi E, Di Febo T, Ferri N, Savini G, Lorusso A. Intravenous Infection of Small Ruminants Suggests a Goat-Restricted Host Tropism and Weak Humoral Immune Response for an Atypical Bluetongue Virus Isolate. Viruses 2023; 15:257. [PMID: 36680297 PMCID: PMC9864981 DOI: 10.3390/v15010257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Bluetongue virus (BTV) is the etiologic agent of bluetongue (BT), a viral WOAH-listed disease affecting wild and domestic ruminants, primarily sheep. The outermost capsid protein VP2, encoded by S2, is the virion's most variable protein, and the ability of reference sera to neutralize an isolate has so far dictated the differentiation of 24 classical BTV serotypes. Since 2008, additional novel BTV serotypes, often referred to as "atypical" BTVs, have been documented and, currently, the full list includes 36 putative serotypes. In March 2015, a novel atypical BTV strain was detected in the blood of asymptomatic goats in Sardinia (Italy) and named BTV-X ITL2015. The strain re-emerged in the same region in 2021 (BTV-X ITL2021). In this study, we investigated the pathogenicity and kinetics of infection of BTV-X ITL2021 following subcutaneous and intravenous infection of small ruminants. We demonstrated that, in our experimental settings, BTV-X ITL2021 induced a long-lasting viraemia only when administered by the intravenous route in goats, though the animals remained healthy and, apparently, did not develop a neutralizing immune response. Sheep were shown to be refractory to the infection by either route. Our findings suggest a restricted host tropism of BTV-X and point out goats as reservoirs for this virus in the field.
Collapse
Affiliation(s)
- Massimo Spedicato
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Spedicato M, Compagni ED, Caporale M, Teodori L, Leone A, Ancora M, Mangone I, Perletta F, Portanti O, Di Giallonardo F, Bonfini B, Savini G, Lorusso A. Reemergence of an atypical bluetongue virus strain in goats, Sardinia, Italy. Res Vet Sci 2022; 151:36-41. [PMID: 35853329 DOI: 10.1016/j.rvsc.2022.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 11/19/2022]
Abstract
Bluetongue virus (BTV) is the etiologic agent of bluetongue, a WOAH (founded as Office International des Épizooties, OIE)-notifiable economically important disease of ruminants. BTV is transmitted by Culicoides biting midges and 24 different "classical" serotypes have been reported to date. In recent years, several putative novel BTV serotypes, often referred to as "atypical" BTVs, have been documented. These are characterized by unusual biological characteristics, most notably avirulence and vector-independent transmission. Here, we describe the recurrence of such an atypical virus strain BTV-X ITL2021 detected in goats six years after its first discovery in Sardinia, Italy. Combined serological and genome analysis results clearly suggest that the two strains belong to the same BTV serotype. However, unlike the 2015 strain, BTV-X ITL2021 was successfully isolated in BSR cell-culture allowing further serological characterization. Lastly, seropositivity for BTV-X ITL2021 was detected by virus-neutralization in approximately 74% of animals tested, suggesting that this atypical BTV serotype has been circulating undetected in asymptomatic animals for years.
Collapse
Affiliation(s)
- Massimo Spedicato
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise (IZS-Teramo), Teramo, Italy.
| | | | - Marialuigia Caporale
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise (IZS-Teramo), Teramo, Italy
| | - Liana Teodori
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise (IZS-Teramo), Teramo, Italy
| | - Alessandra Leone
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise (IZS-Teramo), Teramo, Italy
| | - Massimo Ancora
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise (IZS-Teramo), Teramo, Italy
| | - Iolanda Mangone
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise (IZS-Teramo), Teramo, Italy
| | - Fabrizia Perletta
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise (IZS-Teramo), Teramo, Italy
| | - Ottavio Portanti
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise (IZS-Teramo), Teramo, Italy
| | | | - Barbara Bonfini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise (IZS-Teramo), Teramo, Italy
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise (IZS-Teramo), Teramo, Italy
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise (IZS-Teramo), Teramo, Italy
| |
Collapse
|
4
|
Yang H, Gu W, Li Z, Zhang L, Liao D, Song J, Shi B, Hasimu J, Li Z, Yang Z, Zhong Q, Li H. Novel putative bluetongue virus serotype 29 isolated from inapparently infected goat in Xinjiang of China. Transbound Emerg Dis 2021; 68:2543-2555. [PMID: 33190404 DOI: 10.1111/tbed.13927] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/29/2020] [Accepted: 11/10/2020] [Indexed: 02/04/2023]
Abstract
Bluetongue virus (BTV) is the 'type' species of the genus Orbivirus causing bluetongue (BT) in sheep, bovine and other ruminants. Twenty-four serotypes and several atypical serotypes of BTV were identified worldwide. In present study, a novel strain of BTV (V196/XJ/2014) was isolated from an asymptomatic sentinel goat in Yuli County, Xinjiang of China. Serotype identification of this isolate exhibited uniform negative results by serotype-specific conventional RT-PCR and real-time RT-PCR for BTV-1 to BTV-27, and virus neutralization tests using reference sera of BTV-1 to BTV-24. Genomic analysis showed V196/XJ/2014 grouped with atypical serotypes of BTV-25 to BTV-28, BTV-X/XJ1407, BTV-X/ITL2015 and BTV-Y/TUN2017, while segment 2 and VP2 protein of V196/XJ/2014 shared <63.4%/61.4% nucleic acids and amino acids sequence identities with other recognized BTV serotypes and its segment 2 formed a separate 'nucleotype' in phylogenetic tree. These results indicated V196/XJ/2014 does not belong to any reported serotypes of BTV. Further studies of infectivity and pathogenicity showed that goats infected with V196/XJ/2014 did not exhibit observed clinical symptoms, but high level of virus amplification and homologous neutralization antibodies were detected post-infection. Our studies suggested a novel putative serotype of BTV-29 was isolated in Xinjiang of China, which expands our knowledge about the diversity of BTV.
Collapse
Affiliation(s)
- Heng Yang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| | - Wenxi Gu
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Autonomous Region, China
| | - Zhanhong Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| | - Ling Zhang
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Autonomous Region, China
| | - Defang Liao
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| | - Jianling Song
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| | - Baoxin Shi
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Autonomous Region, China
| | - Jiapaer Hasimu
- Yuli Animal Husbandry and Veterinary Station, Yuli, Xinjiang Autonomous Region, China
| | - Zhuoran Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| | - Zhenxing Yang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| | - Qi Zhong
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Autonomous Region, China
| | - Huachun Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| |
Collapse
|
5
|
Isolation and Cultivation of a New Isolate of BTV-25 and Presumptive Evidence for a Potential Persistent Infection in Healthy Goats. Viruses 2020; 12:v12090983. [PMID: 32899808 PMCID: PMC7552037 DOI: 10.3390/v12090983] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 01/26/2023] Open
Abstract
Recently, several so-called “atypical” Bluetongue virus (BTV) serotypes were discovered, including BTV-25 (Toggenburg virus), in Switzerland. Most “atypical” BTV were identified in small ruminants without clinical signs. In 2018, two goats from a holding in Germany tested positive for BTV-25 genome by RT-qPCR prior to export. After experimental inoculation of the two goats with the BTV-25 positive field blood samples for generation of reference materials, viremia could be observed in one animal. For the first time, the BTV-25-related virus was isolated in cell culture from EDTA-blood and the full genome of isolate “BTV-25-GER2018” could be generated. BTV-25-GER2018 was only incompletely neutralized by ELISA-positive sera. We could monitor the BTV-25 occurrence in the respective affected goat flock of approximately 120 goats over several years. EDTA blood samples were screened with RT-qPCR using a newly developed BTV-25 specific assay. For serological surveillance, serum samples were screened using a commercial cELISA. BTV-25-GER2018 was detected over 4.5 years in the goat flock with intermittent PCR-positivity in some animals, and with or without concomitantly detected antibodies since 2015. We could demonstrate the viral persistence of BTV-25-GER2018 in goats for up to 4.5 years, and the first BTV-25 isolate is now available for further characterization.
Collapse
|
6
|
van Gennip RGP, Drolet BS, Rozo Lopez P, Roost AJC, Boonstra J, van Rijn PA. Vector competence is strongly affected by a small deletion or point mutations in bluetongue virus. Parasit Vectors 2019; 12:470. [PMID: 31604476 PMCID: PMC6790033 DOI: 10.1186/s13071-019-3722-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/16/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Transmission of vector-borne virus by insects is a complex mechanism consisting of many different processes; viremia in the host, uptake, infection and dissemination in the vector, and delivery of virus during blood-feeding leading to infection of the susceptible host. Bluetongue virus (BTV) is the prototype vector-borne orbivirus (family Reoviridae). BTV serotypes 1-24 (typical BTVs) are transmitted by competent biting Culicoides midges and replicate in mammalian (BSR) and midge (KC) cells. Previously, we showed that genome segment 10 (S10) encoding NS3/NS3a protein is required for virus propagation in midges. BTV serotypes 25-27 (atypical BTVs) do not replicate in KC cells. Several distinct BTV26 genome segments cause this so-called 'differential virus replication' in vitro. METHODS Virus strains were generated using reverse genetics and their growth was examined in vitro. The midge feeding model has been developed to study infection, replication and disseminations of virus in vivo. A laboratory colony of C. sonorensis, a known competent BTV vector, was fed or injected with BTV variants and propagation in the midge was examined using PCR testing. Crossing of the midgut infection barrier was examined by separate testing of midge heads and bodies. RESULTS A 100 nl blood meal containing ±105.3 TCID50/ml of BTV11 which corresponds to ±20 TCID50 infected 50% of fully engorged midges, and is named one Midge Alimentary Infective Dose (MAID50). BTV11 with a small in-frame deletion in S10 infected blood-fed midge midguts but virus release from the midgut into the haemolymph was blocked. BTV11 with S1[VP1] of BTV26 could be adapted to virus growth in KC cells, and contained mutations subdivided into 'corrections' of the chimeric genome constellation and mutations associated with adaptation to KC cells. In particular one amino acid mutation in outer shell protein VP2 overcomes differential virus replication in vitro and in vivo. CONCLUSION Small changes in NS3/NS3a or in the outer shell protein VP2 strongly affect virus propagation in midges and thus vector competence. Therefore, spread of disease by competent Culicoides midges can strongly differ for very closely related viruses.
Collapse
Affiliation(s)
- René G P van Gennip
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Barbara S Drolet
- Arthropod-Borne Animal Diseases Research Unit, Centre for Grain and Animal Health Research, USDA-ARS, Manhattan, KS, USA
| | - Paula Rozo Lopez
- Arthropod-Borne Animal Diseases Research Unit, Centre for Grain and Animal Health Research, USDA-ARS, Manhattan, KS, USA.,Kansas State University, Manhattan, KS, USA
| | - Ashley J C Roost
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Jan Boonstra
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Piet A van Rijn
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands. .,Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
7
|
Reliable and Standardized Animal Models to Study the Pathogenesis of Bluetongue and Schmallenberg Viruses in Ruminant Natural Host Species with Special Emphasis on Placental Crossing. Viruses 2019; 11:v11080753. [PMID: 31443153 PMCID: PMC6722754 DOI: 10.3390/v11080753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/19/2019] [Accepted: 08/13/2019] [Indexed: 01/03/2023] Open
Abstract
Starting in 2006, bluetongue virus serotype 8 (BTV8) was responsible for a major epizootic in Western and Northern Europe. The magnitude and spread of the disease were surprisingly high and the control of BTV improved significantly with the marketing of BTV8 inactivated vaccines in 2008. During late summer of 2011, a first cluster of reduced milk yield, fever, and diarrhoea was reported in the Netherlands. Congenital malformations appeared in March 2012 and Schmallenberg virus (SBV) was identified, becoming one of the very few orthobunyaviruses distributed in Europe. At the start of both epizootics, little was known about the pathogenesis and epidemiology of these viruses in the European context and most assumptions were extrapolated based on other related viruses and/or other regions of the World. Standardized and repeatable models potentially mimicking clinical signs observed in the field are required to study the pathogenesis of these infections, and to clarify their ability to cross the placental barrier. This review presents some of the latest experimental designs for infectious disease challenges with BTV or SBV. Infectious doses, routes of infection, inoculum preparation, and origin are discussed. Particular emphasis is given to the placental crossing associated with these two viruses.
Collapse
|
8
|
Identification of antigenic epitopes of monoclonal antibodies against the VP2 protein of the 25 serotype of bluetongue virus. Vet Microbiol 2018; 219:136-143. [DOI: 10.1016/j.vetmic.2018.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 11/21/2022]
|
9
|
Analysis of bluetongue serotype 3 spread in Tunisia and discovery of a novel strain related to the bluetongue virus isolated from a commercial sheep pox vaccine. INFECTION GENETICS AND EVOLUTION 2018; 59:63-71. [DOI: 10.1016/j.meegid.2018.01.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 01/23/2018] [Accepted: 01/27/2018] [Indexed: 11/21/2022]
|
10
|
Marcacci M, Sant S, Mangone I, Goria M, Dondo A, Zoppi S, van Gennip RGP, Radaelli MC, Cammà C, van Rijn PA, Savini G, Lorusso A. One after the other: A novel Bluetongue virus strain related to Toggenburg virus detected in the Piedmont region (North-western Italy), extends the panel of novel atypical BTV strains. Transbound Emerg Dis 2018; 65:370-374. [PMID: 29392882 DOI: 10.1111/tbed.12822] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Indexed: 01/16/2023]
Abstract
In this rapid communication, a novel atypical bluetongue virus (BTV) strain detected in goats in the Piedmont region (north-western Italy) is described. This strain, BTV-Z ITA2017, is most related in Seg-2/VP-2 (83.8% nt/82.7% aa) to strain TOV of BTV-25. Reactive antisera of goats positive by cELISA for BTV antibodies failed to neutralize a chimeric virus expressing the outermost protein of TOV. Infected animals displayed low levels of RNAemia and absence of clinical signs consistent with bluetongue infection, a scenario described in animals infected with atypical BTV strains.
Collapse
Affiliation(s)
- Maurilia Marcacci
- OIE Reference Laboratory for Bluetongue, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise (IZSAM), Teramo, Italy.,National Reference Center for Whole Genome Sequencing of microbial pathogens: database and bioinformatic analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise (IZSAM), Teramo, Italy
| | - Serena Sant
- Istituto Zooprofilattico del Piemonte, Liguria e Valle d'Aosta (IZSTO), Torino, Italy
| | - Iolanda Mangone
- OIE Reference Laboratory for Bluetongue, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise (IZSAM), Teramo, Italy.,National Reference Center for Whole Genome Sequencing of microbial pathogens: database and bioinformatic analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise (IZSAM), Teramo, Italy
| | - Maria Goria
- Istituto Zooprofilattico del Piemonte, Liguria e Valle d'Aosta (IZSTO), Torino, Italy
| | - Alessandro Dondo
- Istituto Zooprofilattico del Piemonte, Liguria e Valle d'Aosta (IZSTO), Torino, Italy
| | - Simona Zoppi
- Istituto Zooprofilattico del Piemonte, Liguria e Valle d'Aosta (IZSTO), Torino, Italy
| | - René G P van Gennip
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | | | - Cesare Cammà
- OIE Reference Laboratory for Bluetongue, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise (IZSAM), Teramo, Italy.,National Reference Center for Whole Genome Sequencing of microbial pathogens: database and bioinformatic analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise (IZSAM), Teramo, Italy
| | - Piet A van Rijn
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands.,Department of Biochemistry, Centre for Human Metabolomics, North-West University, South Africa
| | - Giovanni Savini
- OIE Reference Laboratory for Bluetongue, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise (IZSAM), Teramo, Italy.,National Reference Center for Whole Genome Sequencing of microbial pathogens: database and bioinformatic analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise (IZSAM), Teramo, Italy
| | - Alessio Lorusso
- OIE Reference Laboratory for Bluetongue, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise (IZSAM), Teramo, Italy.,National Reference Center for Whole Genome Sequencing of microbial pathogens: database and bioinformatic analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise (IZSAM), Teramo, Italy
| |
Collapse
|
11
|
van Rijn PA, Daus FJ, Maris-Veldhuis MA, Feenstra F, van Gennip RGP. Bluetongue Disabled Infectious Single Animal (DISA) vaccine: Studies on the optimal route and dose in sheep. Vaccine 2016; 35:231-237. [PMID: 27916409 DOI: 10.1016/j.vaccine.2016.11.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/20/2016] [Accepted: 11/24/2016] [Indexed: 10/20/2022]
Abstract
Bluetongue (BT) is a disease of ruminants caused by bluetongue virus (BTV) transmitted by biting midges of the Culicoides genus. Outbreaks have been controlled successfully by vaccination, however, currently available BT vaccines have several shortcomings. Recently, we have developed BT Disabled Infectious Single Animal (DISA) vaccines based on live-attenuated BTV without expression of dispensable non-structural NS3/NS3a protein. DISA vaccines are non-pathogenic replicating vaccines, do not cause viremia, enable DIVA and are highly protective. NS3/NS3a protein is involved in virus release, cytopathogenic effect and suppression of Interferon-I induction, suggesting that the vaccination route can be of importance. A standardized dose of DISA vaccine for serotype 8 has successfully been tested by subcutaneous vaccination. We show that 10 and 100times dilutions of this previously tested dose did not reduce the VP7 humoral response. Further, the vaccination route of DISA vaccine strongly determined the induction of VP7 directed antibodies (Abs). Intravenous vaccination induced high and prolonged humoral response but is not practical in field situations. VP7 seroconversion was stronger by intramuscular vaccination than by subcutaneous vaccination. For both vaccination routes and for two different DISA vaccine backbones, IgM Abs were rapidly induced but declined after 14days post vaccination (dpv), whereas the IgG response was slower. Interestingly, intramuscular vaccination resulted in an initial peak followed by a decline up to 21dpv and then increased again. This second increase is a steady and continuous increase of IgG Abs. These results indicate that intramuscular vaccination is the optimal route. The protective dose of DISA vaccine has not been determined yet, but it is expected to be significantly lower than of currently used BT vaccines. Therefore, in addition to the advantages of improved safety and DIVA compatibility, the novel DISA vaccines will be cost-competitive to commercially available live attenuated and inactivated vaccines for Bluetongue.
Collapse
Affiliation(s)
- Piet A van Rijn
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands; Department of Biochemistry, Centre for Human Metabolomics, North-West University, South Africa.
| | - Franz J Daus
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | | | - Femke Feenstra
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands; Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - René G P van Gennip
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| |
Collapse
|