1
|
Wu J, Wan Z, Qian K, Shao H, Ye J, Qin A. The amino acid variation at hemagglutinin sites 145, 153, 164 and 200 modulate antigenicity andreplication of H9N2 avian influenza virus. Vet Microbiol 2024; 296:110188. [PMID: 39018942 DOI: 10.1016/j.vetmic.2024.110188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
H9N2 avian influenza virus (AIV), one of the predominant subtypes circulating in the poultry industry, inflicts substantial economic damage. Mutations in the hemagglutinin (HA) and neuraminidase (NA) proteins of H9N2 frequently alter viral antigenicity and replication. In this paper, we analyzed the HA genetic sequences and antigenic properties of 26 H9N2 isolates obtained from chickens in China between 2012 and 2019. The results showed that these H9N2 viruses all belonged to h9.4.2.5, and were divided into two clades. We assessed the impact of amino acid substitutions at HA sites 145, 149, 153, 164, 167, 168, and 200 on antigenicity, and found that a mutation at site 164 significantly modified antigenic characteristics. Amino acid variations at sites 145, 153, 164 and 200 affected virus's hemagglutination and the growth kinetics in mammalian cells. These results underscore the critical need for ongoing surveillance of the H9N2 virus and provide valuable insights for vaccine development.
Collapse
Affiliation(s)
- Jinsen Wu
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China
| | - Zhimin Wan
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China
| | - Kun Qian
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China
| | - Hongxia Shao
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China
| | - Jianqiang Ye
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China
| | - Aijian Qin
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
2
|
Huang Q, Yang X, Zhao X, Han X, Sun S, Xu C, Cui N, Lu M. Co-infection of H9N2 subtype avian influenza virus and QX genotype live attenuated infectious bronchitis virus increase the pathogenicity in SPF chickens. Vet Microbiol 2024; 295:110163. [PMID: 38959807 DOI: 10.1016/j.vetmic.2024.110163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
Avian influenza virus (AIV) infection and vaccination against live attenuated infectious bronchitis virus (aIBV) are frequent in poultry worldwide. Here, we evaluated the clinical effect of H9N2 subtype AIV and QX genotype aIBV co-infection in specific-pathogen-free (SPF) white leghorn chickens and explored the potential mechanisms underlying the observed effects using by 4D-FastDIA-based proteomics. The results showed that co-infection of H9N2 AIV and QX aIBV increased mortality and suppressed the growth of SPF chickens. In particular, severe lesions in the kidneys and slight respiratory signs similar to the symptoms of virulent QX IBV infection were observed in some co-infected chickens, with no such clinical signs observed in single-infected chickens. The replication of H9N2 AIV was significantly enhanced in both the trachea and kidneys, whereas there was only a slight effect on the replication of the QX aIBV. Proteomics analysis showed that the IL-17 signaling pathway was one of the unique pathways enriched in co-infected chickens compared to single infected-chickens. A series of metabolism and immune response-related pathways linked with co-infection were also significantly enriched. Moreover, co-infection of the two pathogens resulted in the enrichment of the negative regulation of telomerase activity. Collectively, our study supports the synergistic effect of the two pathogens, and pointed out that aIBV vaccines might increased IBV-associated lesions due to pathogenic co-infections. Exacerbation of the pathogenicity and mortality in H9N2 AIV and QX aIBV co-infected chickens possibly occurred because of an increase in H9N2 AIV replication, the regulation of telomerase activity, and the disturbance of cell metabolism and the immune system.
Collapse
Affiliation(s)
- Qinghua Huang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China; Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China
| | - Xiao Yang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China; Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China; College of Veterinary Medicine, Shandong Agricultural University, Tai'an, PR China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, PR China
| | - Xiaoran Zhao
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China; Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China; College of Veterinary Medicine, Shandong Agricultural University, Tai'an, PR China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, PR China
| | - Xiaoxia Han
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China; Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China; College of Life Sciences, Shandong Normal University, Jinan, PR China
| | - Shouli Sun
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China; Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China
| | - Chuantian Xu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China; Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China
| | - Ning Cui
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China; Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China.
| | - Mei Lu
- Weifang Engineering Vocational College, Qingzhou, China.
| |
Collapse
|
3
|
Wu H, Zhou Q, Xiong H, Wang C, Cui Y, Qi K, Liu H. Goose surfactant protein A inhibits the growth of avian pathogenic Escherichia coli via an aggregation-dependent mechanism that decreases motility and increases membrane permeability. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104592. [PMID: 36414098 DOI: 10.1016/j.dci.2022.104592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Pulmonary collectins have been reported to bind carbohydrates on pathogens and inhibit infection by agglutination, neutralization, and opsonization. In this study, surfactant protein A (SP-A) was identified from goose lung and characterized at expression- and agglutination-functional levels. The deduced amino acid sequence of goose surfactant protein A (gSP-A) has two characteristic structures: a shorter, collagen-like region and a carbohydrate recognition domain. The latter contains two conserved motifs in its Ca2+-binding site: EPN (Glu-Pro-Asn) and WND (Trp-Asn-Asp). Expression analysis using qRT-PCR and fluorescence IHC revealed that gSP-A was highly expressed in the air sac and present in several other tissues, including the lung and trachea. We went on to produce recombinant gSP-A (RgSP-A) using a baculovirus/insect cell system and purified using a Ni2+ affinity column. A biological activity assay showed that all bacterial strains tested in this study were aggregated by RgSP-A, but only Escherichia coli AE17 (E. coli AE17, O2) and E. coli AE158 (O78) were susceptible to RgSP-A-mediated growth inhibition at 2-6 h. Moreover, the swarming motility of the two bacterial strains were weakened with increasing RgSP-A concentration, and their membrane permeability was compromised at 3 h, as determined by flow cytometry and laser confocal microscopy. Therefore, RgSP-A is capable of reducing bacterial viability of E. coli O2 and O78 via an aggregation-dependent mechanism which involves decreasing motility and increasing the bacterial membrane permeability. These data will facilitate detailed studies into the role of gSP-A in innate immune defense as well as for development of antibacterial agents.
Collapse
Affiliation(s)
- Hanwen Wu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Qian Zhou
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Haifeng Xiong
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Chenxiao Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Yaqian Cui
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Hongmei Liu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China.
| |
Collapse
|
4
|
Wu H, Xiong H, Huang X, Zhou Q, Hu D, Qi K, Liu H. Lung infection of avian pathogenic Escherichia coli co-upregulates the expression of cSP-A and cLL in chickens. Res Vet Sci 2022; 152:99-106. [PMID: 35939885 DOI: 10.1016/j.rvsc.2022.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/22/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022]
Abstract
The host innate defense-pathogen interaction in the lung has always been a topic of concern. The respiratory tract is a common entry route for Avian pathogenic Escherichia coli (APEC). Chicken surfactant protein A (cSP-A) and chicken lung lectin (cLL) can bind to the carbohydrate moieties of various microorganisms. Despite their detection in chickens, their role in the innate immune response is largely unknown. This study aimed to examine whether the expression levels of cSP-A and cLL in the chicken respiratory system were affected by APEC infection. A lung colonization model was established in vivo using 5-day-old specific-pathogen-free chickens infected intratracheally with APEC. The chickens were euthanized 12 h post-infection (hpi) and 1-3 days post-infection (dpi) to detect various indicators. The results of quantitative reverse transcription-polymerase chain reaction and fluorescence multiplex immunohistochemical staining showed that the mRNA and protein expression levels of cSP-A and cLL in the lung and trachea were significantly co-upregulated at 2dpi.Transcriptome RNA-sequencing analysis indicated that the inoculation with APEC AE17 at 2 dpi resulted in differential gene expression of approximately 810 genes compared with control birds, but only a few genes were expressed with astatistically significant ≧2-fold difference. cLL and cSP-A were among the significantly upregulated genes involved in innate immunity. These findings indicated that cSP-A and cLL might play an important role in lung innate host defense against APEC infection at the early stage.
Collapse
Affiliation(s)
- Hanwen Wu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Haifeng Xiong
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Xueting Huang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Qian Zhou
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Dongmei Hu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Hongmei Liu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China.
| |
Collapse
|
5
|
Hemagglutinin Gene Variation Rate of H9N2 Avian Influenza Virus by Vaccine Intervention in China. Viruses 2022; 14:v14051043. [PMID: 35632783 PMCID: PMC9146883 DOI: 10.3390/v14051043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
H9N2 subtype avian influenza virus (AIV) is widespread globally, with China being the main epidemic center. Inactivated virus vaccination was adopted as the main prevention method in China. In this study, 22 hemagglutinin (HA) sequences were obtained from all inactivated vaccine strains of H9N2 subtype AIVs in China since its introduction. A phylogenetic analysis of the vaccine sequences and HA sequences of all published H9N2 subtype AIVs was conducted to investigate the relationship between vaccine use and the virus genetic diversity of the virus. We found that during 2002–2006, when fewer vaccines were used, annual genetic differences between the HA sequences were mainly distributed between 0.025 and 0.075 and were mainly caused by point mutations. From 2009 to 2013, more vaccines were used, and the genetic distance between sequences was about 10 times greater than between 2002 and 2006, especially in 2013. In addition to the accumulation of point mutations, insertion mutations may be the main reason for the large genetic differences between sequences from 2009 to 2013. These findings suggest that the use of inactivated vaccines affected point mutations in the HA sequences and that the contribution of high-frequency replacement vaccine strains to the rate of virus evolution is greater than that of low-frequency replacement vaccine strains. The selection pressure of the vaccine antibody plays a certain role in regulating the variation of HA sequences in H9N2 subtype AIV.
Collapse
|
6
|
Zamzam SH, Ghalyanchilangeroudi A, Khosravi AR. Comparative trachea transcriptome analysis in SPF broiler chickens infected with avian infectious bronchitis and avian influenza viruses. Virus Genes 2022; 58:203-213. [PMID: 35301621 DOI: 10.1007/s11262-022-01893-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/02/2022] [Indexed: 11/30/2022]
Abstract
Infectious bronchitis virus (IBV) and avian influenza virus (AIV) are two major respiratory infections in chickens. The coinfection of these viruses can cause significant financial losses and severe complications in the poultry industry across the world. To examine transcriptome profile changes during the early stages of infection, differential transcriptional profiles in tracheal tissue of three infected groups (i.e., IBV, AIV, and coinfected) were compared with the control group. Specific-pathogen-free chickens were challenged with Iranian variant-2-like IBV (IS/1494), UT-Barin isolates of H9N2 (A/chicken/Mashhad/UT-Barin/2017), and IBV-AIV coinfection; then, RNA was extracted from tracheal tissue. The Illumina RNA-sequencing (RNA-seq) technique was employed to investigate changes in the Transcriptome. Up- and downregulated differentially expressed genes (DEGs) were detected in the trachea transcriptome of all groups. The Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology databases were examined to identify possible relationships between DEGs. In the experimental groups, upregulated genes were higher compared to downregulated genes. A more severe immune response was observed in the coinfected group; further, cytokine-cytokine receptor interaction, RIG-I-like receptor signaling, Toll-like receptor signaling, NOD-like receptor signaling, Janus kinase/signal transducer, and activator of transcription, and apoptotic pathways were important upregulated genes in this group. The findings of this paper may give a better understanding of transcriptome changes in the trachea during the early stages of infection with these viruses.
Collapse
Affiliation(s)
- Seyed Hossein Zamzam
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, PO Box: 1419963111, Tehran, Islamic Republic of Iran
| | - Arash Ghalyanchilangeroudi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, PO Box: 1419963111, Tehran, Islamic Republic of Iran.
| | - Ali Reza Khosravi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, PO Box: 1419963111, Tehran, Islamic Republic of Iran
| |
Collapse
|
7
|
Wang S, Jiang N, Shi W, Yin H, Chi X, Xie Y, Hu J, Zhang Y, Li H, Chen JL. Co-infection of H9N2 Influenza A Virus and Escherichia coli in a BALB/c Mouse Model Aggravates Lung Injury by Synergistic Effects. Front Microbiol 2021; 12:670688. [PMID: 33968006 PMCID: PMC8097157 DOI: 10.3389/fmicb.2021.670688] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/30/2021] [Indexed: 12/24/2022] Open
Abstract
Pathogens that cause respiratory diseases in poultry are highly diversified, and co-infections with multiple pathogens are prevalent. The H9N2 strain of avian influenza virus (AIV) and Escherichia coli (E. coli) are common poultry pathogens that limit the development of the poultry industry. This study aimed to clarify the interaction between these two pathogens and their pathogenic mechanism using a mouse model. Co-infection with H9N2 AIV and E. coli significantly increased the mortality rate of mice compared to single viral or bacterial infections. It also led to the development of more severe lung lesions compared to single viral or bacterial infections. Co-infection further causes a storm of cytokines, which aggravates the host's disease by dysregulating the JAK/STAT/SOCS and ERK1/2 pathways. Moreover, co-infection mutually benefited the virus and the bacteria by increasing their pathogen loads. Importantly, nitric oxide synthase 2 (NOS2) expression was also significantly enhanced by the co-infection. It played a key role in the rapid proliferation of E. coli in the presence of the co-infecting H9N2 virus. Therefore, our study underscores the role of NOS2 as a determinant for bacteria growth and illustrates its importance as an additional mechanism that enhances influenza virus-bacteria synergy. It further provides a scientific basis for investigating the synergistic infection mechanism between viruses and bacteria.
Collapse
|
8
|
Lv L, Lu H, Wang K, Shao H, Mei N, Ye JQ, Chen HJ. Emerging of a novel natural recombinant fowl adenovirus in China. Transbound Emerg Dis 2020; 68:283-288. [PMID: 32657542 DOI: 10.1111/tbed.13730] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/15/2020] [Accepted: 07/08/2020] [Indexed: 01/03/2023]
Abstract
Outbreaks of hydropericardium syndrome and inclusion body hepatitis caused by fowl adenovirus (FAdV) have occurred in China since June 2015, resulting in significant economic loss to poultry industry. In this study, a novel FAdV, designated as AH720, with recombination among serotype FAdV-8a and FAdV-8b was isolated and characterized in China. Full genome analysis revealed that the AH720 has the genome backbone from FAdV-8b and the fibre gene from FAdV-8a. In an infection study, although AH720 was not lethal to chickens, AH720 did cause characteristic lesions of inclusion body hepatitis in the infected chickens. All these data not only provide strong evidences for the recombination among different serotype FAdVs, but also highlight the necessary for monitoring the molecular epidemiology of such recombinant FAdV to develop efficient strategies against FAdV.
Collapse
Affiliation(s)
- Lu Lv
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Shanghai, China.,Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Hao Lu
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Kai Wang
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Hongxia Shao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Nan Mei
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jian-Qiang Ye
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Hong-Jun Chen
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
9
|
Liu H, Huang X, Xiong H, Liu M, Hu D, Wei C, Wang G, Qi K. Co-expression of surfactant protein A and chicken lung lectin in chicken respiratory system. Mol Immunol 2020; 122:49-53. [PMID: 32298874 DOI: 10.1016/j.molimm.2020.03.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/18/2020] [Accepted: 03/26/2020] [Indexed: 01/04/2023]
Abstract
Chicken surfactant protein A (cSP-A) and chicken lung lectin (cLL) are C-type lectins that play important roles in pulmonary host defense responses. Herein, we explored the localization of cSP-A and cLL in the chicken respiratory system. Six tissues from 30-days-old SPF chickens were used to quantify the expression of cSP-A and cLL using the quantitative real-time reverse transcriptional polymerase chain reaction (qRT-PCR) and fluorescence multiplex immunohistochemistry staining (fluorescence mIHC staining). Results showed that cSP-A and cLL mRNA were highly expressed in lungs compared to other tissues. cSP-A mRNA expression levels in all tissues were higher compared with cLL expression levels as analyzed using qRT-PCR. Fluorescence mIHC co-expression of cSP-A and cLL were mainly detected in lung parabronchial epithelia, and mucosal epithelia of larynx, trachea, syrinx, bronchus and air sac, with cSP-A showing a stronger positive staining compared with cLL. cLL is expressed on both mucosal surfaces, some individual lung epithelial cells and cartilage cells, while cSP-A is mainly restricted to mucosal surfaces of the respiratory tract. These histological findings may be useful for understanding the biological significance of this pulmonary lectins in future studies.
Collapse
Affiliation(s)
- Hongmei Liu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China.
| | - Xueting Huang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Haifeng Xiong
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Miaomiao Liu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Dongmei Hu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Changqing Wei
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Guijun Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
10
|
Characterization and pathogenicity of fowl adenovirus serotype 4 isolated from eastern China. BMC Vet Res 2019; 15:373. [PMID: 31660972 PMCID: PMC6816224 DOI: 10.1186/s12917-019-2092-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 09/16/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fowl adenovirus outbreaks have occurred in China since June 2015. This virus is an emerging infectious disease that causes hydropericardium syndrome and inclusion body hepatitis (HPS-IBH), resulting in significant economic loss to poultry farmers. Five fowl adenovirus (FAdV) strains (HN, AQ, AH726, JS07 and AH712) were isolated from Jiangsu and Anhui provinces. RESULTS Phylogenetic analysis revealed that the five isolates belonged to species C fowl adenovirus serotype 4. An 11 amino-acid deletion in ORF29, relative to an older viral isolate, JSJ13, was observed for all five strains described here. In chicken experiments, 80-100% birds died after intramuscular inoculation and displayed lesions characteristic of HPS-IBH. The viral DNA copies were further detected by hexon-probe based real-time polymerase chain reaction (PCR) in the chicken samples. The viral loads and cytokine profiles were recorded in all the organs after infections. Despite minor genetic differences, the 5 strains displayed significantly different tissue tropisms and cytokine profiles. CONCLUSIONS Our data enhance the current understanding some of the factors involved in the pathogenicity and genetic diversity of the FAdV serotype 4 (FAdV-4) in China. Our work provides theoretical support for the prevention and control of HPS-IBH in chickens.
Collapse
|
11
|
Sultan HA, Ali A, El Feil WK, Bazid AHI, Zain El-Abideen MA, Kilany WH. Protective Efficacy of Different Live Attenuated Infectious Bronchitis Virus Vaccination Regimes Against Challenge With IBV Variant-2 Circulating in the Middle East. Front Vet Sci 2019; 6:341. [PMID: 31649942 PMCID: PMC6794438 DOI: 10.3389/fvets.2019.00341] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/20/2019] [Indexed: 01/16/2023] Open
Abstract
Six vaccination regimes using classical (Mass-type) and variant (IB-VAR2 and IB-793B) live vaccines were evaluated against Middle Eastern variant-2 infectious bronchitis virus challenge. Six groups of SPF chicks (30 birds/group) were vaccinated using prime-boost regimes at day-1 and day-14 using; IB-M41:IB-VAR2, IB-VAR2:IB-VAR2, IB-VAR2:IB-M41, IB-Ma5:IB-793B, IB-793B:IB-793B, and IB-793B:IB-Ma5, respectively. Ciliostasis and lesion scores were evaluated at day-5 after each vaccination. Birds were challenged intranasally at 14-day post 2nd vaccination using 105EID50/0.1 ml/bird of wild-type IBV (Eg/1212B/2012). At 3, 5, and 7-day post challenge (DPC) virus shedding was monitored by real-time RT-PCR. Five chicks/group were euthanized at 7DPC for ciliostasis and lesion scoring and histopathology was conducted on 3 chicks/group. Seroconversion was evaluated at 14 DPC. All groups primed with the 793B vaccine showed relatively higher ciliostasis scores compared to other groups. The IB-VAR2 vaccinated groups showed the highest protection rates (80–100%) and high protection score (67.6–73.2%) compared to the 793B vaccine groups (50–60%). The virus shedding was significantly reduced at 3 and 5DPC in groups received the IBV-VAR2 (prime or booster) compared to those received the 793B vaccine. In conclusion, the homologous IBV-VAR2 vaccine showed superior results compared to 793B or Mass-type vaccines confirming the importance of IBV vaccine seed homology to the circulating IBV strains.
Collapse
Affiliation(s)
- Hesham A Sultan
- Birds and Rabbit Diseases Department, Faculty of Veterinary Medicine, Sadat City University, Sadat City, Egypt
| | - Ahmed Ali
- Poultry Diseases Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Wael K El Feil
- Poultry Diseases Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Abdel Hamid I Bazid
- Virology Department, Faculty of Veterinary Medicine, Sadat City University, Sadat City, Egypt
| | - Mohamed A Zain El-Abideen
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza, Egypt
| | - Walid H Kilany
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza, Egypt
| |
Collapse
|
12
|
Rim A, Nacira L, Jihene N, Said S, Khaled M, Ahmed R, Abdeljelil G. Viral interference between H9N2-low pathogenic avian influenza virus and avian infectious bronchitis virus vaccine strain H120 in vivo. Comp Immunol Microbiol Infect Dis 2019; 65:219-225. [PMID: 31300117 PMCID: PMC7112602 DOI: 10.1016/j.cimid.2019.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/10/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022]
Abstract
AIV and IBV co-infection led to decreased growth of both viruses. During super-infection, the second virus decreased the growth of the first virus. ELISA antibody titers, depending on the experimental conditions. Histopathological findings showed important lesions.
The interaction between a low pathogenic avian influenza virus (A/CK/TUN/145/2012), a H9N2 Tunisian isolate, and a vaccine strain (H120) of avian infectious bronchitis, administered simultaneously or sequentially three days apart to chicks during 20 days, was evaluated using ELISA antibody levels, quantitative reverse transcription–polymerase chain reaction (qRT-PCR) analyses and histopathology examination. First, the in vivo replication interference of avian influenza virus (AIV) and infectious bronchitis virus (IBV) was evaluated using qRT-PCR to detect accurately either AIV or IBV genomes or viral copy numbers during dual infections. Second, we have determined the amount of specific antibodies in sera of chick’s infected with AIV alone, IBV alone, mixed AIV + IBV, IBV then AIV or AIV IBV 3 days later using an ELISA test. Finally, histopathological analyses of internal organs from inoculated chicks were realized. Quantitative results of AIV and IBV co-infection showed that interferences between the two viruses yielded decreased viral growth. However, in the case of super-infection, the second virus, either AIV or IBV, induced a decrease in the growth of the first inoculated virus. According to our results, vaccine application was safe and do not interfere with AIV H9N2 infection, and does not enhance such infection. In conclusion, co-infection of chicks with AIV and IBV, simultaneously or sequentially, affected the clinical signs, the virus replication dynamics as well as the internal organ integrity. The results proposed that infection with heterologous virus may result in temporary competition for cell receptors or competent cells for replication, most likely interferon-mediated.
Collapse
Affiliation(s)
- Aouini Rim
- University Tunis El Manar, Institut Pasteur de Tunis, Laboratory of Epidemiology and Veterinary Microbiology,13 Place Pasteur, 1002 Tunis-Belvedere, Tunisia; University of Carthage, Faculty of Sciences of Bizerte, 7021 Zarzouna-Bizerte, Tunisia.
| | - Laamiri Nacira
- University Tunis El Manar, Institut Pasteur de Tunis, Laboratory of Epidemiology and Veterinary Microbiology,13 Place Pasteur, 1002 Tunis-Belvedere, Tunisia; University of Carthage, Faculty of Sciences of Bizerte, 7021 Zarzouna-Bizerte, Tunisia.
| | - Nsiri Jihene
- University Tunis El Manar, Institut Pasteur de Tunis, Laboratory of Epidemiology and Veterinary Microbiology,13 Place Pasteur, 1002 Tunis-Belvedere, Tunisia.
| | - Salhi Said
- University Tunis El Manar, Institut Pasteur de Tunis, Laboratory of Epidemiology and Veterinary Microbiology,13 Place Pasteur, 1002 Tunis-Belvedere, Tunisia; University of Carthage, Faculty of Sciences of Bizerte, 7021 Zarzouna-Bizerte, Tunisia.
| | - Miled Khaled
- University Tunis El Manar, Institut Pasteur de Tunis, Laboratory of Epidemiology and Veterinary Microbiology,13 Place Pasteur, 1002 Tunis-Belvedere, Tunisia.
| | - Rejab Ahmed
- National School of Veterinary Medicine of Sidi-Thabet, 2020 Sidi-Thabet, Tunisia.
| | - Ghram Abdeljelil
- University Tunis El Manar, Institut Pasteur de Tunis, Laboratory of Epidemiology and Veterinary Microbiology,13 Place Pasteur, 1002 Tunis-Belvedere, Tunisia.
| |
Collapse
|
13
|
Sun H, Wang K, Yao W, Liu Q, Yang J, Teng Q, Li X, Li Z, Chen H. H9N2 Viruses Isolated From Mammals Replicated in Mice at Higher Levels Than Avian-Origin Viruses. Front Microbiol 2019; 10:416. [PMID: 30915048 PMCID: PMC6421276 DOI: 10.3389/fmicb.2019.00416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 02/18/2019] [Indexed: 12/15/2022] Open
Abstract
H9N2 subtype influenza A virus (IAV) has more than 20 genotypes that are able to cross species barriers and expand from birds to mammals and humans. To better understand the impact of different H9N2 genotypes and their characteristics, five H9N2 viruses from different hosts including chickens, geese, pigs, mink, and humans representing the B69 88(Gs/14, Ck/15, and Mi/14), B35 (Sw/08) and G9 genotypes (Hu/04) were infected in chicken and mice. In mice, mammal-origin viruses replicated at higher levels in the lungs compared to avian viruses. The goose-virus replicated at the lowest levels indicating poor adaptation. Increased pro-inflammatory cytokines were positively correlated with viral loads in the lung. In chickens, all viruses were excreted from cloacal and/or oropharyngeal swabs. Interestingly, Mink-origin virus exhibited higher virulence and replication in mice and chickens. Our data indicate that mammal-origin H9N2 viruses are more adapted and virulent in mice than the avian-origin viruses.
Collapse
Affiliation(s)
- Haiwei Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Kai Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wei Yao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Qinfang Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Animal Influenza Virus Ecology and Pathogenesis Innovation Team, The Agricultural Science and Technology Innovation Program, Shanghai, China
| | - Jianmei Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Animal Influenza Virus Ecology and Pathogenesis Innovation Team, The Agricultural Science and Technology Innovation Program, Shanghai, China
| | - Qiaoyang Teng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Animal Influenza Virus Ecology and Pathogenesis Innovation Team, The Agricultural Science and Technology Innovation Program, Shanghai, China
| | - Xuesong Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Animal Influenza Virus Ecology and Pathogenesis Innovation Team, The Agricultural Science and Technology Innovation Program, Shanghai, China
| | - Zejun Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Animal Influenza Virus Ecology and Pathogenesis Innovation Team, The Agricultural Science and Technology Innovation Program, Shanghai, China
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Animal Influenza Virus Ecology and Pathogenesis Innovation Team, The Agricultural Science and Technology Innovation Program, Shanghai, China
| |
Collapse
|
14
|
Aouini R, Laamiri N, Ghram A. Viral interference between low pathogenic avian influenza H9N2 and avian infectious bronchitis viruses in vitro and in ovo. J Virol Methods 2018; 259:92-99. [PMID: 29940196 PMCID: PMC7119724 DOI: 10.1016/j.jviromet.2018.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Low pathogenic avian influenza (LPAI) H9N2 and infectious bronchitis virus (IBV) are important pathogens of poultry, causing important economic losses for the sector. Replication interference between these two viruses was described using cell cultures (CC) and embryonated chicken eggs (ECE). Chicken embryo lung (CEL) and ECE were simultaneously or sequentially infected with IBV vaccine strain (H120) and LPAIV-H9N2 (A/Ck/TUN/145/2012) to evaluate viral interactionsin vitro and in ovo, respectively. Real-time RT-PCR was developed to specifically quantify both AIV and IBV genomes as well as viral gene copy numbers during mixed infections. The amount of IL-1 beta, in supernatants of co-infected cell cultures, was determined using an ELISA assay. RESULTS Quantitative results of AIV and IBV co-infection showed that interferences between the two viruses yielded decreased viral growth. However, in the case of super-infection, the second virus, either AIV or IBV, induced a decrease in the growth of the first inoculated virus. CONCLUSION It appears that either AIV or IBV has a negative impact on the other virus growth when they are inoculated simultaneously or sequentially. The ELISA results showed that higher level of secreted IL-1beta varies, depending on the viral interference conditions between both viruses, during mixed infections.
Collapse
Affiliation(s)
- Rim Aouini
- University Tunis El Manar, Institut Pasteur de Tunis, Laboratory of Epidemiology and Veterinary Microbiology, 13 Place Pasteur, Tunis, Belvedere, 1002, Tunisia; University of Carthage, Faculty of Sciences of Bizerte, 7021, Zarzouna, Bizerte, Tunisia.
| | - Nacira Laamiri
- University Tunis El Manar, Institut Pasteur de Tunis, Laboratory of Epidemiology and Veterinary Microbiology, 13 Place Pasteur, Tunis, Belvedere, 1002, Tunisia; University of Carthage, Faculty of Sciences of Bizerte, 7021, Zarzouna, Bizerte, Tunisia.
| | - Abdeljelil Ghram
- University Tunis El Manar, Institut Pasteur de Tunis, Laboratory of Epidemiology and Veterinary Microbiology, 13 Place Pasteur, Tunis, Belvedere, 1002, Tunisia.
| |
Collapse
|
15
|
Sun H, Yao W, Wang K, Qian Y, Chen H, Jung YS. Inhibition of neddylation pathway represses influenza virus replication and pro-inflammatory responses. Virology 2018; 514:230-239. [DOI: 10.1016/j.virol.2017.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 02/08/2023]
|