1
|
Krishnagopal A, van Drunen Littel-van den Hurk S. The biology and development of vaccines for bovine alphaherpesvirus 1. Vet J 2024; 306:106152. [PMID: 38821207 DOI: 10.1016/j.tvjl.2024.106152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Bovine alphaherpesvirus type 1 (BoAHV-1) infections lead to compromised herd health and significantly reduced productivity of affected cattle. While BoAHV-1 may cause rhinotracheitis, conjunctivitis, genital infections, and abortions, respiratory tract infections constitute the predominant clinical disease. Immune suppression induced by BoAHV-1 may contribute to co-infections initiating the bovine respiratory disease complex. In this review, the emphasis is to recapitulate the biology and the vaccine technologies currently in use and in development for BoAHV-1, and to discuss the major limitations. Studies on the life cycle and host interactions of BoAHV-1 have resulted in the identification of virulence factors. While several vaccine types, such as vectored vaccines and subunit vaccines, are under investigation, modified live and inactivated BoAHV-1 vaccines are still most frequently used in most areas of the world, whereas attenuated and inactivated marker vaccines are in use in Europe. The knowledge gained from studies on the biology of BoAHV-1 can form a basis for the rational design of future vaccines.
Collapse
Affiliation(s)
- Akshaya Krishnagopal
- Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Sylvia van Drunen Littel-van den Hurk
- Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada.
| |
Collapse
|
2
|
El-mayet FS, Jones C. A cell cycle regulator, E2F2, and glucocorticoid receptor cooperatively transactivate the bovine alphaherpesvirus 1 immediate early transcription unit 1 promoter. J Virol 2024; 98:e0042324. [PMID: 38771044 PMCID: PMC11237710 DOI: 10.1128/jvi.00423-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
Bovine alphaherpesvirus 1 (BoHV-1) infection causes respiratory tract disorders and immune suppression and may induce bacterial pneumonia. BoHV-1 establishes lifelong latency in sensory neurons after acute infection. Reactivation from latency consistently occurs following stress or intravenous injection of the synthetic corticosteroid dexamethasone (DEX), which mimics stress. The immediate early transcription unit 1 (IEtu1) promoter drives expression of infected cell protein 0 (bICP0) and bICP4, two viral transcriptional regulators necessary for productive infection and reactivation from latency. The IEtu1 promoter contains two glucocorticoid receptor (GR) responsive elements (GREs) that are transactivated by activated GR. GC-rich motifs, including consensus binding sites for specificity protein 1 (Sp1), are in the IEtu1 promoter sequences. E2F family members bind a consensus sequence (TTTCCCGC) and certain specificity protein 1 (Sp1) sites. Consequently, we hypothesized that certain E2F family members activate IEtu1 promoter activity. DEX treatment of latently infected calves increased the number of E2F2+ TG neurons. GR and E2F2, but not E2F1, E2F3a, or E2F3b, cooperatively transactivate a 436-bp cis-regulatory module in the IEtu1 promoter that contains both GREs. A luciferase reporter construct containing a 222-bp fragment downstream of the GREs was transactivated by E2F2 unless two adjacent Sp1 binding sites were mutated. Chromatin immunoprecipitation studies revealed that E2F2 occupied IEtu1 promoter sequences when the BoHV-1 genome was transfected into mouse neuroblastoma (Neuro-2A) or monkey kidney (CV-1) cells. In summary, these findings revealed that GR and E2F2 cooperatively transactivate IEtu1 promoter activity, which is predicted to influence the early stages of BoHV-1 reactivation from latency. IMPORTANCE Bovine alpha-herpesvirus 1 (BoHV-1) acute infection in cattle leads to establishment of latency in sensory neurons in the trigeminal ganglia (TG). A synthetic corticosteroid dexamethasone consistently initiates BoHV-1 reactivation in latently infected calves. The BoHV-1 immediate early transcription unit 1 (IEtu1) promoter regulates expression of infected cell protein 0 (bICP0) and bICP4, two viral transcriptional regulators. Hence, the IEtu1 promoter must be activated for the reactivation to occur. The number of TG neurons expressing E2F2, a transcription factor and cell cycle regulator, increased during early stages of reactivation from latency. The glucocorticoid receptor (GR) and E2F2, but not E2F1, E2F3a, or E2F3b, cooperatively transactivated a 436-bp cis-regulatory module (CRM) in the IEtu1 promoter that contains two GR responsive elements. Chromatin immunoprecipitation studies revealed that E2F2 occupies IEtu1 promoter sequences in cultured cells. GR and E2F2 mediate cooperative transactivation of IEtu1 promoter activity, which is predicted to stimulate viral replication following stressful stimuli.
Collapse
Affiliation(s)
- Fouad S. El-mayet
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
- Department of Virology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Kaliobyia, Egypt
| | - Clinton Jones
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
3
|
Camargo L, Franklin YV, da Silva GFR, Santos JF, Parreño VG, Wigdorovitz A, Gomes V. Serological Responses of Guinea Pigs and Heifers to Eight Different BoAHV-1 Vaccine Formulations. Vaccines (Basel) 2024; 12:615. [PMID: 38932344 PMCID: PMC11209089 DOI: 10.3390/vaccines12060615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 06/28/2024] Open
Abstract
Bovine alphaherpesvirus 1 (BoAHV-1) infection affects the production and reproductive performance of dairy and beef livestock, resulting in considerable economic losses. In addition to biosecurity measures, vaccination programs are effective strategies for controlling and preventing BoAHV-1 infection and transmission. We evaluated the serological immune response against BoAHV-1 induced by eight different formulations of commercial vaccines: three modified live vaccines and five killed vaccines containing BoAHV type 1 or types 1 and 5. In the first experiment, 50 BoAHV-1-seronegative guinea pigs were assigned to eight groups; each individual in the treatment groups received two doses (one-fifth of the bovine dose). The second experiment was conducted using 29 crossbred Holstein × Gir heifers in four groups of six to nine animals each. The serological immune response against BoAHV-1 was measured using virus neutralization and enzyme-linked immunosorbent assays to measure the total IgG against BoAHV. We evaluated the effects of the vaccine, time, and interaction of the vaccine and time on neutralizing antibodies against BoAHV-1. Killed vaccines produced low levels of antibodies against BoAHV-1, whereas modified live vaccines produced high levels of antibodies capable of providing neutralizing titers in the vaccinated animals, with the thermosensitive modified live vaccine showing the highest levels of antibodies.
Collapse
Affiliation(s)
- Luana Camargo
- Department of Medical Clinic, Universidade de São Paulo (USP), São Paulo 05508270, SP, Brazil; (L.C.); (Y.V.F.); (J.F.S.)
| | - Yasmin Vieira Franklin
- Department of Medical Clinic, Universidade de São Paulo (USP), São Paulo 05508270, SP, Brazil; (L.C.); (Y.V.F.); (J.F.S.)
| | | | - Janaína Ferreira Santos
- Department of Medical Clinic, Universidade de São Paulo (USP), São Paulo 05508270, SP, Brazil; (L.C.); (Y.V.F.); (J.F.S.)
| | - Viviana Gladys Parreño
- Institute of Virology, ICCVyA-INTA, Cdad. Autónoma de Buenos Aires C1033, Argentina; (V.G.P.); (A.W.)
| | - Andrés Wigdorovitz
- Institute of Virology, ICCVyA-INTA, Cdad. Autónoma de Buenos Aires C1033, Argentina; (V.G.P.); (A.W.)
| | - Viviani Gomes
- Department of Medical Clinic, Universidade de São Paulo (USP), São Paulo 05508270, SP, Brazil; (L.C.); (Y.V.F.); (J.F.S.)
| |
Collapse
|
4
|
Xu L, Ge G, Li D, Li J, Gong Q, Shi K, Liu F, Diao N, Cui Z, Liu Y, Leng X, Du R. Establishment of a real-time fluorescent quantitative PCR detection method and phylogenetic analysis of BoAHV-1. BMC Vet Res 2024; 20:180. [PMID: 38715028 PMCID: PMC11075196 DOI: 10.1186/s12917-024-04025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Infectious bovine rhinotracheitis (IBR), caused by Bovine alphaherpesvirus-1 (BoAHV-1), is an acute, highly contagious disease primarily characterized by respiratory tract lesions in infected cattle. Due to its severe pathological damage and extensive transmission, it results in significant economic losses in the cattle industry. Accurate detection of BoAHV-1 is of paramount importance. In this study, we developed a real-time fluorescent quantitative PCR detection method for detecting BoAHV-1 infections. Utilizing this method, we tested clinical samples and successfully identified and isolated a strain of BoAHV-1.1 from positive samples. Subsequently, we conducted a genetic evolution analysis on the isolate strain's gC, TK, gG, gD, and gE genes. RESULTS The study developed a real-time quantitative PCR detection method using SYBR Green II, achieving a detection limit of 7.8 × 101 DNA copies/μL. Specificity and repeatability analyses demonstrated no cross-reactivity with other related pathogens, highlighting excellent repeatability. Using this method, 15 out of 86 clinical nasal swab samples from cattle were found to be positive (17.44%), which was higher than the results obtained from conventional PCR detection (13.95%, 12/86). The homology analysis and phylogenetic tree analysis of the gC, TK, gG, gD, and gE genes of the isolated strain indicate that the JL5 strain shares high homology with the BoAHV-1.1 reference strains. Amino acid sequence analysis revealed that gC, gE, and gG each had two amino acid mutations, while the TK gene had one synonymous mutation and one H to Y mutation, with no amino acid mutations observed in the gD gene. Phylogenetic tree analysis indicated that the JL5 strain belongs to the BoAHV-1.1 genotype and is closely related to American strains such as C33, C14, and C28. CONCLUSIONS The established real-time fluorescent quantitative PCR detection method exhibits good repeatability, specificity, and sensitivity. Furthermore, genetic evolution analysis of the isolated BoAHV-1 JL-5 strain indicates that it belongs to the BoAHV-1.1 subtype. These findings provide a foundation and data for the detection, prevention, and control Infectious Bovine Rhinotracheitis.
Collapse
Affiliation(s)
- Lihui Xu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Guiyang Ge
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Dongli Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Jianming Li
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Qinglong Gong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Kun Shi
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Fei Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Naichao Diao
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Zhenzhen Cui
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Yingyu Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Xue Leng
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| | - Rui Du
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| |
Collapse
|
5
|
Sun F, Ma W, Wang H, He H. Tegument protein UL3 of bovine herpesvirus 1 suppresses antiviral IFN-I signaling by targeting STING for autophagic degradation. Vet Microbiol 2024; 291:110031. [PMID: 38412580 DOI: 10.1016/j.vetmic.2024.110031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
Bovine herpesvirus 1 (BoHV-1) is a highly contagious pathogen which causes infectious bovine rhinotracheitis in cattle worldwide. Although it has the ability to evade the host's antiviral innate immune response and establish persistent latent infections, the mechanisms are not fully understood, especially the function of the tegument protein to escape innate immunity and participate in viral replication. In this study, we showed that overexpression of tegument protein UL3 facilitates BoHV-1 replication and suppresses the expression of type-I interferon (IFN-I) and IFN-stimulated genes. Then, STING was identified as the target by which UL3 inhibits the IFN-I signaling pathway, and STING was degraded through the UL3-induced autophagy pathway. Furthermore, overexpression of UL3 promotes the expression of the autophagy-related protein ATG101, thereby inducing autophagy. Further study showed that UL3 enhances the interaction between ATG101 and STING, and then the degradation of STING was reversed following ATG101 silencing in UL3-overexpressing cells during BoHV-1 infection. Our research results demonstrate a novel function of UL3 in regulating host's antiviral response and provide a potential mechanism for BoHV-1 immune evasion.
Collapse
Affiliation(s)
- Fachao Sun
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250358, People's Republic of China
| | - Wenqing Ma
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250358, People's Republic of China
| | - Hongmei Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250358, People's Republic of China.
| | - Hongbin He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250358, People's Republic of China; Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, People's Republic of China.
| |
Collapse
|
6
|
El-mayet FS, Jones C. Specificity protein 1 (Sp1) and glucocorticoid receptor (GR) stimulate bovine alphaherpesvirus 1 (BoHV-1) replication and cooperatively transactivate the immediate early transcription unit 1 promoter. J Virol 2024; 98:e0143623. [PMID: 38084958 PMCID: PMC10804982 DOI: 10.1128/jvi.01436-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/22/2023] [Indexed: 01/24/2024] Open
Abstract
Bovine alphaherpesvirus 1 (BoHV-1) infections cause respiratory tract disorders and suppress immune responses, which can culminate in bacterial pneumonia. Following acute infection, BoHV-1 establishes lifelong latency in sensory neurons present in trigeminal ganglia (TG) and unknown cells in pharyngeal tonsil. Latently infected calves consistently reactivate from latency after an intravenous injection of the synthetic corticosteroid dexamethasone (DEX), which mimics the effects of stress. The immediate early transcription unit 1 (IEtu1) promoter drives expression of infected cell protein 0 (bICP0) and bICP4, two key viral transcriptional regulators. The IEtu1 promoter contains two functional glucocorticoid receptor (GR) response elements (GREs), and this promoter is transactivated by GR, DEX, and certain Krüppel transcription factors that interact with GC-rich motifs, including consensus specificity protein 1 (Sp1) binding sites. Based on these observations, we hypothesized that Sp1 stimulates productive infection and transactivates key BoHV-1 promoters. DEX treatment of latently infected calves increased the number of Sp1+ TG neurons and cells in pharyngeal tonsil indicating that Sp1 expression is induced by stress. Silencing Sp1 protein expression with siRNA or mithramycin A, a drug that preferentially binds GC-rich DNA, significantly reduced BoHV-1 replication. Moreover, BoHV-1 infection of permissive cells increased Sp1 steady-state protein levels. In transient transfection studies, GR and Sp1 cooperatively transactivate IEtu1 promoter activity unless both GREs are mutated. Co-immunoprecipitation studies revealed that GR and Sp1 interact in mouse neuroblastoma cells (Neuro-2A) suggesting this interaction stimulates IEtu1 promoter activity. Collectively, these studies suggested that the cellular transcription factor Sp1 enhances productive infection and stress-induced BoHV-1 reactivation from latency.IMPORTANCEFollowing acute infection, bovine alphaherpesvirus 1 (BoHV-1) establishes lifelong latency in sensory neurons in trigeminal ganglia (TG) and pharyngeal tonsil. The synthetic corticosteroid dexamethasone consistently induces BoHV-1 reactivation from latency. The number of TG neurons and cells in pharyngeal tonsil expressing the cellular transcription factor specificity protein 1 (Sp1) protein increases during early stages of dexamethasone-induced reactivation from latency. Silencing Sp1 expression impairs BoHV-1 replication in permissive cells. Interestingly, mithramycin A, a neuroprotective antibiotic that preferentially binds GC-rich DNA, impairs Sp1 functions and reduces BoHV-1 replication suggesting that it is a potential antiviral drug. The glucocorticoid receptor (GR) and Sp1 cooperatively transactivate the BoHV-1 immediate early transcript unit 1 (IEtu1) promoter, which drives expression of infected cell protein 0 (bICP0) and bICP4. Mithramycin A also reduced Sp1- and GR-mediated transactivation of the IEtu1 promoter. These studies revealed that GR and Sp1 trigger viral gene expression and replication following stressful stimuli.
Collapse
Affiliation(s)
- Fouad S. El-mayet
- Department of Veterinary Pathobiology, Oklahoma State University, College of Veterinary Medicine, Stillwater, Oklahoma, USA
- Department of Virology, Benha University, Faculty of Veterinary Medicine, Benha, Egypt
| | - Clinton Jones
- Department of Veterinary Pathobiology, Oklahoma State University, College of Veterinary Medicine, Stillwater, Oklahoma, USA
| |
Collapse
|
7
|
Calado AM, Seixas F, Dos Anjos Pires M. Virus as Teratogenic Agents. Methods Mol Biol 2024; 2753:105-142. [PMID: 38285335 DOI: 10.1007/978-1-0716-3625-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Viral infectious diseases are important causes of reproductive disorders, as abortion, fetal mummification, embryonic mortality, stillbirth, and congenital abnormalities in animals and in humans. In this chapter, we provide an overview of some virus, as important agents in teratology.We begin by describing the Zika virus, whose infection in humans had a very significant impact in recent years and has been associated with major health problems worldwide. This virus is a teratogenic agent in humans and has been classified as a public health emergency of international concern (PHEIC).Then, some viruses associated with reproductive abnormalities on animals, which have a significant economic impact on livestock, are described, as bovine herpesvirus, bovine viral diarrhea virus, Schmallenberg virus, Akabane virus, and Aino virus.For all viruses mentioned in this chapter, the teratogenic effects and the congenital malformations associated with fetus and newborn are described, according to the most recent scientific publications.
Collapse
Affiliation(s)
- Ana Margarida Calado
- Animal and Veterinary Research Centre (CECAV), UTAD, and Associate Laboratory for Animal and Veterinary Science (AL4Animals), Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Fernanda Seixas
- Animal and Veterinary Research Centre (CECAV), UTAD, and Associate Laboratory for Animal and Veterinary Science (AL4Animals), Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Maria Dos Anjos Pires
- Animal and Veterinary Research Centre (CECAV), UTAD, and Associate Laboratory for Animal and Veterinary Science (AL4Animals), Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.
| |
Collapse
|
8
|
Liu C, Yuan W, Yang H, Ni J, Tang L, Zhao H, Neumann D, Ding X, Zhu L. Associating bovine herpesvirus 1 envelope glycoprotein gD with activated phospho-PLC-γ1(S1248). Microbiol Spectr 2023; 11:e0196323. [PMID: 37655900 PMCID: PMC10580943 DOI: 10.1128/spectrum.01963-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/23/2023] [Indexed: 09/02/2023] Open
Abstract
Phospholipase C gamma 1 (PLC-γ1) may locate at distinct subcellular locations, such as cytosol, plasma membrane, and nucleus for varied biological functions. Bovine herpesvirus 1 (BoHV-1) productive infection activates PLC-γ1 signaling, as demonstrated by increased protein levels of phosphorylated-PLC-γ1 at Ser1248 [p-PLC-γ1(S1248)], which benefits virus productive infection. Here, for the first time, we reported that Golgi apparatus also contains activated p-PLC-γ1(S1248). And BoHV-1 productive infection at later stages (24 hpi) increased the accumulation of p-PLC-γ1(S1248) in the Golgi apparatus, where p-PLC-γ1(S1248) forms highlighted puncta observed via a confocal microscope. Coimmunoprecipitation studies demonstrated that the Golgi p-PLC-γ1(S1248) is specifically associated with the viral protein gD but not gC. In addition, we found that p-PLC-γ1(S1248) is consistently associated with both the plasma membrane-associated virions and the released virions. When the virus-infected cells were treated with PLC-γ1-specific inhibitor, U73122, for a short duration of 4 hours prior to the endpoint of virus infection, we found that the viral protein gD was trapped in the Golgi apparatus, suggesting that the PLC-γ1 signaling may facilitate trafficking of progeny virions out of this organelle. These findings provide a novel insight into the interplay between PLC-γ1 signaling and BoHV-1 replication. IMPORTANCE Bovine herpesvirus 1 (BoHV-1) productive infection increases protein levels of phosphorylated-phospholipase C gamma 1 at Ser1248 [p-PLC-γ1(S1248)]. However, whether it causes any variations to p-PLC-γ1(S1248) localization is not well understood. Here, for the first time, we found that partial p-PLC-γ1(S1248) is residing in the Golgi apparatus, where the accumulation is enhanced by virus infection. p-PLC-γ1(S1248) is consistently associated with virions, partially via binding to gD, in both the Golgi apparatus and cytoplasm membranes. Surprisingly, it also associates with the released virions. Of note, this is the first evidenced BoHV-1 virion-bound host protein. It seems that p-PLC-γ1(S1248) works as an escort during trafficking of progeny virions out of Golgi apparatus to the plasma membranes as well as releasing outside of the cell membranes. Furthermore, we showed that the activated p-PLC-γ1(S1248) is potentially implicated in the transport of virions out of Golgi apparatus, which may represent a novel mechanism to regulate virus productive infection.
Collapse
Affiliation(s)
- Chang Liu
- College of Life Sciences, Hebei University, Baoding, China
| | - Weifeng Yuan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hao Yang
- College of Life Sciences, Hebei University, Baoding, China
| | - Junqing Ni
- Animal Husbandry and Improved Breeds Work Station of Hebei Province, Shijiazhuang, China
| | - Linke Tang
- College of Life Sciences, Hebei University, Baoding, China
| | - Heci Zhao
- College of Life Sciences, Hebei University, Baoding, China
| | - Donna Neumann
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Xiuyan Ding
- College of Life Sciences, Hebei University, Baoding, China
| | - Liqian Zhu
- College of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science, Hebei University, Baoding, China
| |
Collapse
|
9
|
Liu C, Lin J, Yang H, Li N, Tang L, Neumann D, Ding X, Zhu L. NFAT5 Restricts Bovine Herpesvirus 1 Productive Infection in MDBK Cell Cultures. Microbiol Spectr 2023; 11:e0011723. [PMID: 37227295 PMCID: PMC10434061 DOI: 10.1128/spectrum.00117-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
Bovine herpesvirus 1 (BoHV-1), an important bovine viral pathogen, causes severe disease in the upper respiratory tract and reproductive system. Tonicity-responsive enhancer-binding protein (TonEBP), also known as nuclear factor of activated T cells 5 (NFAT5), is a pleiotropic stress protein involved in a range of cellular processes. In this study, we showed that the knockdown of NFAT5 by siRNA increased BoHV-1 productive infection and overexpression of NFAT5 via plasmid transfection decreased virus production in bovine kidney (MDBK) cells. Virus productive infection at later stages significantly increased transcription of NFAT5 but not appreciably alter measurable NFAT5 protein levels. Virus infection relocalized NFAT5 protein and decreased the cytosol accumulation. Importantly, we found a subset of NFAT5 resides in mitochondria, and virus infection led to the depletion of mitochondrial NFAT5. In addition to full-length NFAT5, another two isoforms with distinct molecular weights were exclusively detected in the nucleus, where the accumulation was differentially affected following virus infection. In addition, virus infection differentially altered mRNA levels of PGK1, SMIT, and BGT-1, the canonical downstream targets regulated by NFAT5. Taken together, NFAT5 is a potential host factor that restricts BoHV-1 productive infection, and virus infection hijacks NFAT5 signaling transduction by relocalization of NFAT5 molecules in cytoplasm, nucleus, and mitochondria, as well as altered expression of its downstream targets. IMPORTANCE Accumulating studies have revealed that NFAT5 regulates disease development due to infection of numerous viruses, underlying the importance of the host factor in virus pathogenesis. Here, we report that NFAT5 has capacity to restrict BoHV-1 productive infection in vitro. And virus productive infection at later stages may alter NFAT5 signaling pathway as observed by relocalization of NFAT5 protein, reduced accumulation of NFAT5 in cytosol, and differential expression of NFAT5 downstream targets. Importantly, for the first time, we found that a subset of NFAT5 resides in mitochondria, implying that NFAT5 may regulate mitochondrial functions, which will extend our knowledge on NFAT5 biological activities. Moreover, we found two NFAT5 isoforms with distinct molecular weights were exclusively detected in the nucleus, where the accumulation was differentially affected following virus infection, representing a novel regulation mechanism on NFAT5 function in response to BoHV-1infection.
Collapse
Affiliation(s)
- Chang Liu
- College of Life Sciences, Hebei University, Baoding, China
| | - Jiayu Lin
- College of Life Sciences, Hebei University, Baoding, China
| | - Hao Yang
- College of Life Sciences, Hebei University, Baoding, China
| | - Ningxi Li
- College of Life Sciences, Hebei University, Baoding, China
| | - Linke Tang
- College of Life Sciences, Hebei University, Baoding, China
| | - Donna Neumann
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Xiuyan Ding
- College of Life Sciences, Hebei University, Baoding, China
| | - Liqian Zhu
- College of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science, Hebei University, Baoding, China
| |
Collapse
|
10
|
Righi C, Franzoni G, Feliziani F, Jones C, Petrini S. The Cell-Mediated Immune Response against Bovine alphaherpesvirus 1 (BoHV-1) Infection and Vaccination. Vaccines (Basel) 2023; 11:vaccines11040785. [PMID: 37112697 PMCID: PMC10144493 DOI: 10.3390/vaccines11040785] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Bovine Alphaherpesvirus 1 (BoHV-1) is one of the major respiratory pathogens in cattle worldwide. Infection often leads to a compromised host immune response that contributes to the development of the polymicrobial disease known as “bovine respiratory disease”. After an initial transient phase of immunosuppression, cattle recover from the disease. This is due to the development of both innate and adaptive immune responses. With respect to adaptive immunity, both humoral and cell-mediated immunity are required to control infection. Thus, several BoHV-1 vaccines are designed to trigger both branches of the adaptive immune system. In this review, we summarize the current knowledge on cell-mediated immune responses directed against BoHV-1 infection and vaccination.
Collapse
Affiliation(s)
- Cecilia Righi
- National Reference Centre for Infectious Bovine Rhinotracheitis (IBR), Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, 06126 Perugia, Italy
| | - Giulia Franzoni
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Francesco Feliziani
- National Reference Centre for Infectious Bovine Rhinotracheitis (IBR), Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, 06126 Perugia, Italy
| | - Clinton Jones
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Stefano Petrini
- National Reference Centre for Infectious Bovine Rhinotracheitis (IBR), Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, 06126 Perugia, Italy
| |
Collapse
|
11
|
Response to Bovine Viral Diarrhea Virus in Heifers Vaccinated with a Combination of Multivalent Modified Live and Inactivated Viral Vaccines. Viruses 2023; 15:v15030703. [PMID: 36992412 PMCID: PMC10054639 DOI: 10.3390/v15030703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Bovine viral vaccines contain both live or inactivated/killed formulations, but few studies have evaluated the impact of vaccinating with either live or killed antigens and re-vaccinating with the reciprocal. Commercial dairy heifers were utilized for the study and randomly assigned to three treatment groups. Treatment groups received a commercially available modified-live viral (MLV) vaccine containing BVDV and were revaccinated with a commercially available killed viral (KV) vaccine containing BVDV, another group received the same KV vaccine and was revaccinated with the same MLV vaccine, and yet another group served as negative controls and did not receive any viral vaccines. Heifers in KV/MLV had higher virus neutralizing titers (VNT) at the end of the vaccination period than heifers in MLV/KV and control groups. The frequency of IFN-γ mRNA positive CD4+, CD8+, and CD335+ populations, as well as increased mean fluorescent intensity of CD25+ cells was increased for the MLV/KV heifers as compared to KV/MLV and controls. The data from this study would suggest that differences in initial antigen presentation such as live versus killed could augment CMI and humoral responses and could be useful in determining vaccination programs for optimizing protective responses, which is critical for promoting lifetime immunity.
Collapse
|
12
|
Ostler JB, Jones C. The Bovine Herpesvirus 1 Latency-Reactivation Cycle, a Chronic Problem in the Cattle Industry. Viruses 2023; 15:552. [PMID: 36851767 PMCID: PMC9966457 DOI: 10.3390/v15020552] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023] Open
Abstract
Bovine alphaherpesvirus 1 (BoHV-1) is a persistent and recurring disease that affects cattle worldwide. It is a major contributor to bovine respiratory disease and reproductive failure in the US. A major complication of BoHV-1 arises from the lifelong latent infection established in the sensory ganglia of the peripheral nervous system following acute infection. Lifelong latency is marked by periodic reactivation from latency that leads to virus transmission and transient immunosuppression. Physiological and environmental stress, along with hormone fluctuations, can drive virus reactivation from latency, allowing the virus to spread rapidly. This review discusses the mechanisms of the latency/reactivation cycle, with particular emphasis on how different hormones directly regulate BoHV-1 gene expression and productive infection. Glucocorticoids, including the synthetic corticosteroid dexamethasone, are major effectors of the stress response. Stress directly regulates BoHV-1 gene expression through multiple pathways, including β-catenin dependent Wnt signaling, and the glucocorticoid receptor. Related type 1 nuclear hormone receptors, the androgen and progesterone receptors, also drive BoHV-1 gene expression and productive infection. These receptors form feed-forward transcription loops with the stress-induced Krüppel-like transcription factors KLF4 and KLF15. Understanding these molecular pathways is critical for developing novel therapeutics designed to block reactivation and reduce virus spread and disease.
Collapse
Affiliation(s)
| | - Clinton Jones
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
13
|
Phospholipase C-γ1 potentially facilitates subcellular localization of activated β-catenin, p-β-catenin(S552), during bovine herpesvirus 1 productive infection in MDBK cells. Vet Microbiol 2023; 276:109626. [PMID: 36502739 DOI: 10.1016/j.vetmic.2022.109626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/24/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Bovine herpesvirus 1 (BoHV-1) is a significant risk factor for the bovine respiratory disease complex (BRDC), a severe disease causing great economic losses to the cattle industry worldwide. Previous studies have reported that both phospholipase C-γ1 (PLC-γ1) and β-catenin are activated during BoHV-1 infection for efficient replication. However, the interplay between PLC-γ1 and β-catenin as a consequence of virus infection remains to be elucidated. Here, we reported that PLC-γ1 interacted with β-catenin, which was enhanced following virus infection. PLC-γ1-specific inhibitor, U73122, significantly reduced the mRNA levels of β-catenin in BoHV-1-infected cells; however, the steady-state protein levels were not affected due to the virus infection. Interestingly, the treatment of virus-infected cells with U73122 reduced the accumulation of activated β-catenin [p-β-catenin(S552)] in fractions of the cytoplasmic membrane as that observed with the treatment of methyl-β-cyclodextrin (MβCD), which can disrupt cytoplasmic membrane structure via sequestering cholesterol. Nucleus accumulation of p-β-catenin(S552) was increased following U73122 treatment in virus-infected cells. In addition, the association of p-β-catenin(S552) with cytoplasmic membrane induced by the virus infection was significantly disrupted by the treatment of U73122 and MβCD. These data indicated that the PLC-γ1 signaling is potentially involved in the regulation of β-catenin signaling stimulated by BoHV-1 infection partially via affecting the subcellular localization of p-β-catenin(S552).
Collapse
|
14
|
Toomer G, Workman A, Harrison KS, Stayton E, Hoyt PR, Jones C. Stress Triggers Expression of Bovine Herpesvirus 1 Infected Cell Protein 4 (bICP4) RNA during Early Stages of Reactivation from Latency in Pharyngeal Tonsil. J Virol 2022; 96:e0101022. [PMID: 36416585 PMCID: PMC9749472 DOI: 10.1128/jvi.01010-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1), an important pathogen of cattle, establishes lifelong latency in sensory neurons within trigeminal ganglia (TG) after acute infection. The BoHV-1 latency-reactivation cycle, like other alphaherpesvirinae subfamily members, is essential for viral persistence and transmission. Notably, cells within pharyngeal tonsil (PT) also support a quiescent or latent BoHV-1 infection. The synthetic corticosteroid dexamethasone, which mimics the effects of stress, consistently induces BoHV-1 reactivation from latency allowing early stages of viral reactivation to be examined in the natural host. Based on previous studies, we hypothesized that stress-induced cellular factors trigger expression of key viral transcriptional regulatory genes. To explore this hypothesis, RNA-sequencing studies compared viral gene expression in PT during early stages of dexamethasone-induced reactivation from latency. Strikingly, RNA encoding infected cell protein 4 (bICP4), which is translated into an essential viral transcriptional regulatory protein, was detected 30 min after dexamethasone treatment. Ninety minutes after dexamethasone treatment bICP4 and, to a lesser extent, bICP0 RNA were detected in PT. All lytic cycle viral transcripts were detected within 3 h after dexamethasone treatment. Surprisingly, the latency related (LR) gene, the only viral gene abundantly expressed in latently infected TG neurons, was not detected in PT during latency. In TG neurons, bICP0 and the viral tegument protein VP16 are expressed before bICP4 during reactivation, suggesting distinct viral regulatory genes mediate reactivation from latency in PT versus TG neurons. Finally, these studies confirm PT is a biologically relevant site for BoHV-1 latency, reactivation from latency, and virus transmission. IMPORTANCE BoHV-1, a neurotropic herpesvirus, establishes, maintains, and reactivates from latency in neurons. BoHV-1 DNA is also detected in pharyngeal tonsil (PT) from latently infected calves. RNA-sequencing studies revealed the viral infected cell protein 4 (bICP4) RNA was expressed in PT of latently infected calves within 30 min after dexamethasone was used to initiate reactivation. As expected, bICP4 RNA was not detected during latency. All lytic cycle viral genes were expressed within 3 h after dexamethasone treatment. Conversely, bICP0 and the viral tegument protein VP16 are expressed prior to bICP4 in trigeminal ganglionic neurons during reactivation. The viral latency related gene, which is abundantly expressed in latently infected neurons, was not abundantly expressed in PT during latency. These studies provide new evidence PT is a biologically relevant site for BoHV-1 latency and reactivation. Finally, we predict other alphaherpesvirinae subfamily members utilize PT as a site for latency and reactivation.
Collapse
Affiliation(s)
- Gabriela Toomer
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Aspen Workman
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Kelly S. Harrison
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Erin Stayton
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Peter R. Hoyt
- Oklahoma State University, Department of Biochemistry and Molecular Biology, Stillwater, Oklahoma, USA
| | - Clinton Jones
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| |
Collapse
|
15
|
Thompson BH, Sharp CP, Dry IR, Dalziel RG, Gaunt ER. 1 Cellular protein TTC4 and its cofactor HSP90 are pro-viral for bovine herpesvirus 1. Virus Res 2022; 321:198927. [PMID: 36100007 DOI: 10.1016/j.virusres.2022.198927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 12/24/2022]
Abstract
Bovine Herpesvirus Type 1 (BoHV-1) infection causes infectious bovine rhinotracheitis and genital disease in cattle, with significant economic and welfare impacts. However, the role of cellular host factors during viral replication remains poorly characterised. A previously performed genome-wide CRISPR knockout screen identified pro- and antiviral host factors acting during BoHV-1 replication. Herein we validate a pro-viral role for a candidate from this screen: the cellular protein tetracopeptide repeat protein 4 (TTC4). We show that TTC4 transcript production is upregulated during BoHV-1 infection. Depletion of TTC4 protein impairs BoHV-1 protein production but does not reduce production of infectious virions, whereas overexpression of exogenous TTC4 results in a significant increase in production of infectious BoHV-1 virions. TTC4 itself is poorly characterized (especially in the context of virus infection), but is a known co-chaperone of heat shock protein 90 (HSP90). HSP90 has a well-characterized pro-viral role during the replication of diverse herpesviruses, and we therefore hypothesized that HSP90 is also pro-viral for BoHV-1. Drug-mediated inhibition of HSP90 using geldanamycin at sub-cytotoxic concentrations inhibited both BoHV-1 protein production and viral genome replication, indicating a pro-viral role for HSP90 during BoHV-1 infection. Our data demonstrates pro-viral roles for both TTC4 and HSP90 during BoHV-1 replication; possibly, interactions between these two proteins are required for optimal BoHV-1 replication, or the two proteins may have independent pro-viral roles.
Collapse
Affiliation(s)
- Beth H Thompson
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian EH25 9RG, UK
| | - Colin P Sharp
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian EH25 9RG, UK
| | - Inga R Dry
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian EH25 9RG, UK
| | - Robert G Dalziel
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian EH25 9RG, UK
| | - Eleanor R Gaunt
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian EH25 9RG, UK.
| |
Collapse
|
16
|
Hou LN, Wang FX, Wang YX, Guo H, Liu CY, Zhao HZ, Yu MH, Wen YJ. Subunit vaccine based on glycoprotein B protects pattern animal guinea pigs from tissue damage caused by infectious bovine rhinotracheitis virus. Virus Res 2022; 320:198899. [PMID: 36030927 DOI: 10.1016/j.virusres.2022.198899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/15/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022]
Abstract
Infectious bovine rhinotracheitis (IBR) is caused by Bovine herpesvirus type 1 (BoHV-1), which seriously threatens the global cattle industry. Only vaccination to improve immunity is the most direct and effective means to prevent IBR. Attempts are being made to use subunit vaccines, deleted or recombinant viral vaccines to reduce or eradicate IBR. For investigating the immunological characteristics of glycoprotein B subunit vaccine in pattern animal guinea pigs, the partial glycoprotein B (gB) of BoHV-1 with dominant antigenic characteristic was selected. A recombinant prokaryotic expression vector pET-32a-gB with the truncated gB gene was constructed, expressed, identified and the purified proteins were used to immunize guinea pigs. The immune effect of the subunit vaccine was assessed by monitoring clinical symptoms, viral load, antibody secretion, and histopathological changes. The results indicated that guinea pigs immunized with the gB subunit vaccine produced high levels of anti-gB antibodies and virus-neutralizing antibodies. The gB subunit vaccine significantly reduced viral shedding and lung tissue damage after IBRV challenge. The animals inoculated the gB subunit vaccine also had less virus reactivation. Its protective effect on viral shedding and tissue damage was similar to that of inactivated BoHV-1 vaccine. This work is a proof-of-concept study of subunit vaccine-induced protection against BoHV-1. And it is expected to be a candidate vaccine for the prevention of IBR.
Collapse
Affiliation(s)
- Li-Na Hou
- Key Laboratory of Clinical diagnosis and treatment of Animal Diseases, Department of Agriculture and villages, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, Hohhot 010018, China
| | - Feng-Xue Wang
- Key Laboratory of Clinical diagnosis and treatment of Animal Diseases, Department of Agriculture and villages, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, Hohhot 010018, China
| | - Ya-Xin Wang
- Key Laboratory of Clinical diagnosis and treatment of Animal Diseases, Department of Agriculture and villages, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, Hohhot 010018, China
| | - Hao Guo
- Key Laboratory of Clinical diagnosis and treatment of Animal Diseases, Department of Agriculture and villages, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, Hohhot 010018, China
| | - Chun-Yu Liu
- Key Laboratory of Clinical diagnosis and treatment of Animal Diseases, Department of Agriculture and villages, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, Hohhot 010018, China
| | - Hong-Zhe Zhao
- Key Laboratory of Clinical diagnosis and treatment of Animal Diseases, Department of Agriculture and villages, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, Hohhot 010018, China
| | - Ming-Hua Yu
- Key Laboratory of Clinical diagnosis and treatment of Animal Diseases, Department of Agriculture and villages, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, Hohhot 010018, China
| | - Yong-Jun Wen
- Key Laboratory of Clinical diagnosis and treatment of Animal Diseases, Department of Agriculture and villages, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, Hohhot 010018, China.
| |
Collapse
|
17
|
Ortiz-González AD, Buitrago HAL, Bulla-Castañeda DM, Lancheros-Buitrago DJ, Garcia-Corredor DJ, Díaz-Anaya AM, Tobón-Torreglosa JC, Ortiz-Ortega D, Pulido-Medellín MO. Seroprevalence and risk factors associated with bovine herpesvirus 1 in dairy herds of Colombia. Vet World 2022; 15:1550-1556. [PMID: 35993084 PMCID: PMC9375214 DOI: 10.14202/vetworld.2022.1550-1556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Infectious bovine rhinotracheitis (IBR) is an infectious disease widely distributed globally and is considered the main cause of various reproductive and respiratory tract diseases in cattle and buffaloes. This study aimed to estimate seroprevalence and determine risk factors associated with the presentation of IBR in the municipality of Sotaquirá, Boyacá (Colombia).
Materials and Methods: A descriptive cross-sectional study with simple random sampling was performed, and the sample size was 1,000 cattle. Blood samples were obtained by coccygeal venipuncture and processed through indirect enzyme-linked immunosorbent assay using the Synbiotics® kit (Zoetis, New Jersey, USA) with a sensitivity and specificity of 96% and 98%, respectively. Data were processed using the statistical program EpiInfo® (Centers for Disease Control and Prevention; Atlanta, Georgia).
Results: A high seroprevalence of 57.5% was established. Seroprevalence was the highest in cattle >4 years of age (65.0% apparent seroprevalence [AS]; 67% true seroprevalence [TS]) and in the Holstein breed (65.5% AS; 67.8% TS). The breed and age of the animals were significantly associated with each other. The Holstein breed, age group >4 years, uncertified semen, and fetal death were established as risk factors for IBR. In comparison, the age groups of <1 and 1–2 years and the Normande breed were established as protective factors against the bovine herpesvirus-1 virus.
Conclusion: Management factors, such as livestock from other owners and animal purchases, which affect disease presentation, are evident. The implementation and development of novel prevention and control measures for IBR at the national level are necessary.
Collapse
Affiliation(s)
- Aura Daniela Ortiz-González
- Grupo de Investigación en Medicina Veterinaria y Zootecnia, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - H. Alexander Lopez Buitrago
- Grupo de Investigación en Medicina Veterinaria y Zootecnia, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Diana María Bulla-Castañeda
- Grupo de Investigación en Medicina Veterinaria y Zootecnia, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - D. Johana Lancheros-Buitrago
- Grupo de Investigación en Medicina Veterinaria y Zootecnia, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Diego Jose Garcia-Corredor
- Grupo de Investigación en Medicina Veterinaria y Zootecnia, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Adriana Maria Díaz-Anaya
- Grupo de Investigación en Medicina Veterinaria y Zootecnia, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia; Doctoral Program in Biomedical and Pharmaceutical Sciences, University of Namur, Namur, Belgium
| | | | - Diego Ortiz-Ortega
- Corporación Colombiana de Investigación Agropecuaria, Mosquera, Colombia
| | - Martín Orlando Pulido-Medellín
- Grupo de Investigación en Medicina Veterinaria y Zootecnia, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| |
Collapse
|
18
|
Stults AM, Sollars PJ, Heath KD, Sillman SJ, Pickard GE, Smith GA. Bovine Herpesvirus 1 Invasion of Sensory Neurons by Retrograde Axonal Transport Is Dependent on the pUL37 Region 2 Effector. J Virol 2022; 96:e0148621. [PMID: 35420461 PMCID: PMC9093089 DOI: 10.1128/jvi.01486-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 03/15/2022] [Indexed: 11/20/2022] Open
Abstract
Following exposure and replication at mucosal surfaces, most alphaherpesviruses invade the peripheral nervous system by retrograde axonal transport and establish lifelong latent infections in the peripheral ganglia. Reactivation of ganglionic infections is followed by anterograde axonal transport of virions back to body surfaces where viral replication results in disease that can range from moderate to severe in presentation. In the case of bovine herpesvirus 1 (BoHV-1), replication in the epithelial mucosa presents as infectious bovine rhinotracheitis (IBR), a respiratory disease of significant economic impact. In this study, we provide a live-cell analysis of BoHV-1 retrograde axonal transport relative to the model alphaherpesvirus pathogen pseudorabies virus (PRV) and demonstrate that this critical neuroinvasive step is conserved between the two viruses. In addition, we report that the BoHV-1 pUL37 tegument protein supports processive retrograde motion in infected axons and invasion of the calf peripheral nervous system. IMPORTANCE A molecular and cellular understanding of the retrograde axonal transport process that underlies the neuroinvasive properties of the alphaherpesviruses is established from studies of herpes simplex virus and pseudorabies virus. The degree to which this phenotype is conserved in other related viruses has largely not been examined. We provide a time-lapse analysis of the retrograde axonal transport kinetics of bovine herpesvirus 1 and demonstrate that mutation of the pUL37 region 2 effector affords a strategy to produce live-attenuated vaccines for enhanced protection of cattle.
Collapse
Affiliation(s)
- Austin M. Stults
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Patricia J. Sollars
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Kelly D. Heath
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Sarah J. Sillman
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Gary E. Pickard
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Gregory A. Smith
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
19
|
Wang S, Ma X, Guo J, Li F, Chen T, Ma W, He C, Wang H, He H. DDIT3 antagonizes innate immune response to promote bovine alphaherpesvirus 1 replication via the DDIT3-SQSTM1-STING pathway. Virulence 2022; 13:514-529. [PMID: 35259065 PMCID: PMC8920142 DOI: 10.1080/21505594.2022.2044667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
DNA damage-inducible transcript 3 (DDIT3), a transcription factor, is typically involved in virus replication control. We are the first to report that DDIT3 promotes the replication of bovine viral diarrhea virus, an RNA virus, by inhibiting innate immunity. However, whether the DDIT3 gene participates in DNA virus replication by regulating innate immunity remains unclear. This study reported that DDIT3 suppressed the innate immune response caused by DNA viruses to promote bovine herpesvirus 1 (BoHV-1) replication. After BoHV-1 infection of Madin-Darby bovine kidney (MDBK) cells, upregulated expression of DDIT3 induced SQSTM1-mediated autophagy and promoted STING degradation. Overexpression of the SQSTM1 protein effectively reduced STING protein levels, whereas SQSTM1 knockdown increased STING protein levels. Coimmunoprecipitation experiments and confocal laser scanning microscopy revealed that the SQSTM1 protein interacts with and colocalizes with STING. Knockdown of SQSTM1 expression in DDIT3-overexpressing cell lines restored STING protein levels. Moreover, a dual-luciferase reporter assay revealed that DDIT3 directly binds to the bovine SQSTM1 promoter and induces SQSTM1 transcription. Overexpression of SQSTM1 promoted BoHV-1 replication by inhibiting IFN-β and IFN-stimulated genes (ISGs) production; silencing of SQSTM1 promoted the expression of IFN-β and ISGs to inhibit BoHV-1 replication. In conclusion, DDIT3 targets STING via SQSTM1-mediated autophagy to promote BoHV-1 replication. These results suggest a novel mechanism by which DDIT3 regulates DNA virus replication by targeting innate immunity. DDIT3 antagonizes the innate immune response to promote bovine alphaherpesvirus 1 replication via the DDIT3-SQSTM1-STING pathway.
Collapse
Affiliation(s)
- Song Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiaomei Ma
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jin Guo
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Fangxu Li
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Tianhua Chen
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Wenqing Ma
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Chengqiang He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hongmei Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hongbin He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
20
|
Progesterone Sporadically Induces Reactivation from Latency in Female Calves but Proficiently Stimulates Bovine Herpesvirus 1 Productive Infection. J Virol 2022; 96:e0213021. [PMID: 35019726 DOI: 10.1128/jvi.02130-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acute infection of the ocular, oral, or nasal cavity by bovine herpesvirus 1 (BoHV-1) culminates in lifelong latency in sensory neurons within trigeminal ganglia. The BoHV-1 latency reactivation cycle, including calves latently infected with commercially available modified live vaccines, can lead to reproductive complications, including abortions. Recent studies demonstrated progesterone stimulated BoHV-1 productive infection and sporadically induced reactivation from latency in male rabbits. The progesterone receptor (PR) and progesterone transactivate the immediate early transcription unit 1 (IEtu1) promoter and the infected cell protein 0 (bICP0) early promoter. These viral promoters drive expression of two viral transcriptional regulatory proteins (bICP0 and bICP4) that are crucial for productive infection. Based on these observations, we hypothesize that progesterone induces reactivation in a subset of calves latently infected with BoHV-1. These studies demonstrated progesterone was less efficient than dexamethasone at initiating reactivation from latency in female calves. Notably, heat stress correlated with enhancing the ability of progesterone to induce reactivation from latency. Previous studies demonstrated that heat stress activates the glucocorticoid receptor (GR), which suggested GR activation augments progesterone-mediated reactivation from latency. Additional studies revealed GR and PR cooperatively stimulated productive infection and synergistically transactivated the IEtu1 promoter when cultures were treated with dexamethasone. Mutating one or both GR binding sites in the IEtu1 promoter blocked transactivation. Collectively, these studies indicated that progesterone intermittently triggered reactivation from latency, and heat stress augmented reactivation from reactivation. Finally, these studies suggest progesterone enhances virus spread in tissues and cells where PR is abundantly expressed. IMPORTANCE Steroid hormone fluctuations are predicted to enhance or initiate bovine herpesvirus 1 (BoHV-1) replication and virus spread in cattle. For example, stress increases the incidence of BoHV-1 reactivation from latency in cattle, and the synthetic corticosteroid dexamethasone consistently induces reactivation from latency. The glucocorticoid receptor (GR) and dexamethasone stimulate key viral regulatory promoters and productive infection, in part because the viral genome contains numerous consensus GR-responsive elements (GREs). The progesterone receptor (PR) and GR belong to the type I nuclear hormone receptor family. PR and progesterone specifically bind to and transactivate viral promoters that contain GREs and stimulate BoHV-1 productive infection. Although progesterone did not induce reactivation from latency in female calves as efficiently as dexamethasone, heat stress enhanced progesterone-mediated reactivation from latency. Consequently, we predict that low levels of stressful stimuli can cooperate with progesterone to induce reactivation from latency or promote virus spread.
Collapse
|
21
|
Challenges in Veterinary Vaccine Development. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2411:3-34. [PMID: 34816396 DOI: 10.1007/978-1-0716-1888-2_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Animals provide food and clothing in addition to other value-added products. Changes in diet and lifestyle have increased the consumption and the use of animal products. Infectious diseases in animals are a major threat to global animal health and its welfare; their effective control is crucial for agronomic health, for safeguarding food security and also alleviating rural poverty. Development of vaccines has led to increased production of healthy poultry, livestock, and fish. Animal production increases have alleviated food insecurity. In addition, development of effective vaccines has led to healthier companion animals. However, challenges remain including climate change that has led to enhancement in vectors and pathogens that may lead to emergent diseases in animals. Preventing transmission of emerging infectious diseases at the animal-human interface is critically important for protecting the world population from epizootics and pandemics. Hence, there is a need to develop new vaccines to prevent diseases in animals. This review describes the broad challenges to be considered in the development of vaccines for animals.
Collapse
|
22
|
Kornuta CA, Cheuquepán F, Bidart JE, Soria I, Gammella M, Quattrocchi V, Hecker YP, Moore DP, Romera SA, Marin MS, Zamorano PI, Langellotti CA. TLR activation, immune response and viral protection elicited in cattle by a commercial vaccine against Bovine Herpesvirus-1. Virology 2021; 566:98-105. [PMID: 34896902 DOI: 10.1016/j.virol.2021.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/11/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022]
Abstract
The innate and acquired immune response induced by a commercial inactivated vaccine against Bovine Herpesvirus-1 (BoHV-1) and protection conferred against the virus were analyzed in cattle. Vaccination induced high levels of BoHV-1 antibodies at 30, 60, and 90 days post-vaccination (dpv). IgG1 and IgG2 isotypes were detected at 90 dpv, as well as virus-neutralizing antibodies. An increase of anti-BoHV-1 IgG1 in nasal swabs was detected 6 days post-challenge in vaccinated animals. After viral challenge, lower virus excretion and lower clinical score were observed in vaccinated as compared to unvaccinated animals, as well as BoHV-1-specific proliferation of lymphocytes and production of IFNγ, TNFα, and IL-4. Downregulation of the expression of endosome Toll-like receptors 8-9 was detected after booster vaccination. This is the first thorough study of the immunity generated by a commercial vaccine against BoHV-1 in cattle.
Collapse
Affiliation(s)
- Claudia Alejandra Kornuta
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Felipe Cheuquepán
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Instituto de Innovación para La Producción Agropecuaria y El Desarrollo Sostenible (IPADS Balcarce), INTA-CONICET, Balcarce, Buenos Aires, Argentina
| | - Juan Esteban Bidart
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ivana Soria
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Buenos Aires, Argentina
| | - Mariela Gammella
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Buenos Aires, Argentina
| | - Valeria Quattrocchi
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Buenos Aires, Argentina
| | - Yanina Paola Hecker
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Instituto de Innovación para La Producción Agropecuaria y El Desarrollo Sostenible (IPADS Balcarce), INTA-CONICET, Balcarce, Buenos Aires, Argentina
| | - Dadin Prando Moore
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Instituto de Innovación para La Producción Agropecuaria y El Desarrollo Sostenible (IPADS Balcarce), INTA-CONICET, Balcarce, Buenos Aires, Argentina
| | - Sonia Alejandra Romera
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Universidad Del Salvador, Buenos Aires, Argentina
| | - Maia Solange Marin
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Instituto de Innovación para La Producción Agropecuaria y El Desarrollo Sostenible (IPADS Balcarce), INTA-CONICET, Balcarce, Buenos Aires, Argentina
| | - Patricia Inés Zamorano
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Universidad Del Salvador, Buenos Aires, Argentina
| | - Cecilia Ana Langellotti
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
23
|
Sawant L, Ostler JB, Jones C. A Pioneer Transcription Factor and Type I Nuclear Hormone Receptors Synergistically Activate the Bovine Herpesvirus 1 Infected Cell Protein 0 (ICP0) Early Promoter. J Virol 2021; 95:e0076821. [PMID: 34319779 PMCID: PMC8475507 DOI: 10.1128/jvi.00768-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/15/2021] [Indexed: 12/26/2022] Open
Abstract
Following bovine herpesvirus 1 (BoHV-1) acute infection of ocular, oral, or nasal cavities, sensory neurons within trigeminal ganglia are an important site for latency. Stress, as mimicked by the synthetic corticosteroid dexamethasone, consistently induces reactivation from latency. Expression of two key viral transcriptional regulatory proteins, BoHV-1 infected cell protein 0 (bICP0) and bICP4, are regulated by sequences within the immediate early promoter (IEtu1). A separate early promoter also drives bICP0 expression, presumably to ensure sufficient levels of this important transcriptional regulatory protein. Productive infection and bICP0 early promoter activity are cooperatively transactivated by Krüppel-like factor 4 (KLF4) and a type I nuclear hormone receptor (NHR), androgen receptor, glucocorticoid receptor, or progesterone receptor. The bICP0 early promoter contains three separate transcriptional enhancers that mediate cooperative transactivation. In contrast to the IEtu1 promoter, the bICP0 early promoter lacks consensus type I NHR binding sites. Consequently, we hypothesized that KLF4 and Sp1 binding sites are essential for type I NHR and KLF4 to transactivate the bICP0 promoter. Mutating KLF4 and Sp1 binding sites in each enhancer domain significantly reduced transactivation by KLF4 and a type I NHR. Chromatin immunoprecipitation (ChIP) studies demonstrated that occupancy of bICP0 early promoter sequences by KLF4 and type I NHR is significantly reduced when KLF4 and/or Sp1 binding sites are mutated. These studies suggest that cooperative transactivation of the bICP0 E promoter by type I NHRs and a stress-induced pioneer transcription factor (KLF4) promote viral replication and spread in neurons or nonneural cells in reproductive tissue. IMPORTANCE Understanding how stressful stimuli and changes in the cellular milieu mediate viral replication and gene expression in the natural host is important for developing therapeutic strategies that impair virus transmission and disease. For example, bovine herpesvirus 1 (BoHV-1) reactivation from latency is consistently induced by the synthetic corticosteroid dexamethasone, which mimics the effects of stress. Furthermore, BoHV-1 infection increases the incidence of abortion in pregnant cows, suggesting that sex hormones stimulate viral growth in certain tissues. Previous studies revealed that type I nuclear hormone receptors (NHRs) (androgen, glucocorticoid, or progesterone) and a pioneer transcription factor, Krüppel-like factor 4 (KLF4), cooperatively transactivate the BoHV-1 infected cell protein 0 (bICP0) early promoter. Transactivation was mediated by Sp1 and/or KLF4 consensus binding sites within the three transcriptional enhancers. These studies underscore the complexity by which BoHV-1 exploits type I NHR fluctuations to enhance viral gene expression, replication, and transmission in the natural host.
Collapse
Affiliation(s)
- Laximan Sawant
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Jeffery B. Ostler
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Clinton Jones
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| |
Collapse
|
24
|
Regulation of neurotropic herpesvirus productive infection and latency-reactivation cycle by glucocorticoid receptor and stress-induced transcription factors. VITAMINS AND HORMONES 2021; 117:101-132. [PMID: 34420577 DOI: 10.1016/bs.vh.2021.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neurotropic α-herpesvirinae subfamily members, herpes simplex virus type 1 (HSV-1) and bovine herpesvirus 1 (BoHV-1), are important viral pathogens in their respective hosts. Following acute infection on mucosal surfaces, these viruses establish life-long latency in neurons within trigeminal ganglia (TG) and central nervous system. Chronic or acute stress (physiological or psychological) increases the frequency of reactivation from latency, which leads to virus shedding, virus transmission, and recurrent disease. While stress impairs immune responses and inflammatory signaling cascades, we predict stressful stimuli directly stimulate viral gene expression and productive infection during early stages of reactivation from latency. For example, BoHV-1 and HSV-1 productive infection is impaired by glucocorticoid receptor (GR) antagonists but is stimulated by the synthetic corticosteroid dexamethasone. Promoters that drive expression of key viral transcriptional regulatory proteins are cooperatively stimulated by GR and specific Krüppel like transcription factors (KLF) induced during stress induced reactivation from latency. The BoHV-1 immediate early transcription unit 1 promoter and contains two GR response elements (GRE) that are essential for cooperative transactivation by GR and KLF15. Conversely, the HSV-1 infected cell protein 0 (ICP0) and ICP4 promoter as well as the BoHV-1 ICP0 early promoter lack consensus GREs: however, these promoters are cooperatively transactivated by GR and KLF4 or KLF15. Hence, growing evidence suggests GR and stress-induced transcription factors directly stimulate viral gene expression and productive infection during early stages of reactivation from latency. We predict the immune inhibitory effects of stress enhance virus spread at late stages during reactivation from latency.
Collapse
|
25
|
Sawant L, Thunuguntla P, Jones C. Cooperative activation of bovine herpesvirus 1 productive infection and viral regulatory promoters by androgen receptor and Krüppel-like transcription factors 4 and 15. Virology 2021; 552:63-72. [PMID: 33065464 DOI: 10.1016/j.virol.2020.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/12/2020] [Accepted: 08/28/2020] [Indexed: 01/01/2023]
Abstract
Bovine herpesvirus 1 (BoHV-1), a significant viral pathogen, establishes latency in sensory neurons. The viral genome contains more than 100 consensus glucocorticoid receptor (GR) regulatory elements (GREs): consequently, stress stimulates viral replication and reactivation from latency. The immediate early transcription unit 1 (IEtu1) and bICP0 early promoters are transactivated by GR and synthetic corticosteroid dexamethasone. The androgen receptor (AR), like GR, is a Type 1 nuclear hormone receptor that binds and stimulates certain promoters containing GREs. Consequently, we hypothesized AR and 5α-Dihydrotestosterone (DHT) stimulate productive infection and key viral promoters. New studies demonstrated AR, DHT, and Krüppel like transcription factor 4 (KLF4) cooperatively stimulated productive infection and bICP0 E promoter activity in mouse neuroblastoma cells (Neuro-2A). KLF15 also cooperated with AR and DHT to stimulate IEtu1 promoter activity. We suggest AR and testosterone increase the prevalence of virus in semen by stimulating viral gene expression and replication.
Collapse
Affiliation(s)
- Laximan Sawant
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, OK, USA
| | - Prasanth Thunuguntla
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, OK, USA
| | - Clinton Jones
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, OK, USA.
| |
Collapse
|
26
|
Dias Queiroz-Castro VL, Santos MR, Augusto de Azevedo-Júnior M, Paulino da Costa E, Pereira Alves SV, Nascimento Silva LM, Dohanik VT, Silva-Júnior A. Bovine alphaherpesvirus 1 (BHV1) infection in testes and epididymis from bulls from a slaughterhouse. Theriogenology 2020; 159:1-6. [PMID: 33113438 DOI: 10.1016/j.theriogenology.2020.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 10/23/2022]
Abstract
Bovine alphaherpesvirus 1 (BHV1) is an agent associated with reproductive disease in cattle. Viral pathogenicity is related to disorders such as temporary infertility, embryonic death, and abortions in affected animals. Considering that natural infections in genital organs of males are understudied, this investigation evaluated the presence of BHV1 in both testicular and epididymal tissues obtained from naturally infected bulls by the evaluation of the presence of the BHV1 genome and antigens. Sixty samples of blood and genital organs of 60 bulls that were not vaccinated against BHV1 were assayed. Fragments from testes and head, body, and tail of epididymides were processed and analyzed by nested PCR and immunofluorescence with confocal laser scanning microscopy. Also, the BHV1 gB glycoprotein gene of 14 positive samples was partially sequenced. The percentage of BHV1 presence obtained by the immunolocalization assay corresponded to 95.9% of the testes, 100% of the epidydimal tissue in the head and tail portions, and 98% of the epididymal body. The nested PCR assay detected the viral nucleic acid in 59.2% of the testicular tissue and in 65.3, 75.5, and 83.7% of epididymis head, body, and tail samples, respectively. The partial sequences analyzed presented 100% of identity with other BHV1 strains. Accordingly, BHV1 detection in testes and epididymides of naturally infected bulls suggests that these organs may be sources of viral infection for semen.
Collapse
Affiliation(s)
- Vanessa Lopes Dias Queiroz-Castro
- Department of Veterinary, Division of Animal Reproduction, Laboratory of Oocyte Maturation and "in vitro" Fertilization, Federal University of Vicosa, Vicosa, Minas Gerais, Brazil
| | - Marcus Rebouças Santos
- Department of Veterinary, Division of Preventive Medicine and Public Health, Laboratory of Animal Virology, Federal University of Vicosa, Vicosa, Minas Gerais, Brazil
| | - Marcos Augusto de Azevedo-Júnior
- Department of Veterinary, Division of Animal Reproduction, Laboratory of Oocyte Maturation and "in vitro" Fertilization, Federal University of Vicosa, Vicosa, Minas Gerais, Brazil
| | - Eduardo Paulino da Costa
- Department of Veterinary, Division of Animal Reproduction, Laboratory of Oocyte Maturation and "in vitro" Fertilization, Federal University of Vicosa, Vicosa, Minas Gerais, Brazil
| | - Saullo Vinicius Pereira Alves
- Department of Veterinary, Division of Animal Reproduction, Laboratory of Oocyte Maturation and "in vitro" Fertilization, Federal University of Vicosa, Vicosa, Minas Gerais, Brazil
| | - Laura Morais Nascimento Silva
- Department of Veterinary, Division of Preventive Medicine and Public Health, Laboratory of Animal Virology, Federal University of Vicosa, Vicosa, Minas Gerais, Brazil
| | - Virgínia Teles Dohanik
- Department of General Biology, Division of Structural and Cell Biology, Laboratory of Structural Biology, Federal University of Vicosa, Vicosa, Minas Gerais, Brazil
| | - Abelardo Silva-Júnior
- Department of Veterinary, Division of Preventive Medicine and Public Health, Laboratory of Animal Virology, Federal University of Vicosa, Vicosa, Minas Gerais, Brazil.
| |
Collapse
|
27
|
Liu J, Song XR, Zheng K, Zhang WJ, Chen HC, Liu ZF. Feedback inhibition of bovine herpesvirus 5 replication by dual-copy bhv5-miR-B10-3p. J Gen Virol 2020; 101:290-298. [PMID: 31935178 DOI: 10.1099/jgv.0.001375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bovine herpesvirus 5 (BoHV-5) is a pathogen of cattle responsible for fatal meningoencephalitis. Like alpha herpesvirus subfamily members, BoHV-5 also encodes microRNA in lytic infections of epithelial cells. BoHV-5-miR-B10 was the most abundant miRNA detected in a high-throughput sequencing study. Here, we evaluated the kinetics of miR-B10 expression after BoHV-5 productive infection by stem-loop real-time quantitative PCR. miR-B10 candidate target sites in the virus were predicted, and BoHV-5 UL39 was confirmed as a target gene by dual-luciferase assay with the design of an miR-B10 tough decoy (TuD). The UL39 gene encoding ribonucleotide reductase (RR) large subunit plays an important role in the early stage of BoHV-5 lytic infection. As BoHV-5-miR-B10 is located in internal and terminal repeat regions, we generated a TuD gene-integrated BoHV-5 strain, which effectively down-regulated miR-B10-3p. Strikingly, the suppression of miR-B10-3p significantly improved BoHV-5 replication. Taking these findings together, our study established an efficient method to deliver and express TuD RNA for viral miRNA suppression, and demonstrated that virus-encoded miRNA suppresses viral-genome biogenesis with a feedback mode, which might serve as a brake for viral replication. Herpesviruses infect humans and a variety of animals. Almost all herpesviruses can encode miRNAs, but the functions of these miRNAs remain to be elucidated. Most herpesvirus-encoded miRNA harbours dual copies, which is difficult to be deleted by current genetic modulation. Here, we developed an efficient method to deliver and express TuD RNA to efficiently suppress viral miRNA with multiple copies. Using this method, we demonstrated for the first time that viral miRNA feedback regulates viral replication by suppressing the expression of RR.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xian-Rong Song
- Hubei Vocational College of Bio-Technology, Wuhan 430070, PR China
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ke Zheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Wen-Jing Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Huan-Chun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zheng-Fei Liu
- Present address: State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
- Hubei Vocational College of Bio-Technology, Wuhan 430070, PR China
| |
Collapse
|
28
|
The Role of Epidermal Growth Factor Receptor Signaling Pathway during Bovine Herpesvirus 1 Productive Infection in Cell Culture. Viruses 2020; 12:v12090927. [PMID: 32846937 PMCID: PMC7552022 DOI: 10.3390/v12090927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 12/17/2022] Open
Abstract
Accumulating studies have shown that the epidermal growth factor receptor (EGFR) signaling pathway plays an essential role in mediating cellular entry of numerous viruses. In this study, we report that bovine herpesvirus 1 (BoHV-1) productive infection in both the human lung carcinoma cell line A549 and bovine kidney (MDBK) cells leads to activation of EGFR, as demonstrated by the increased phosphorylation of EGFR at Tyr1068 (Y1068), which in turn plays important roles in virus infection. A time-of-addition assay supported that virus replication at post-entry stages was affected by the EGFR specific inhibitor Gefitinib. Interestingly, both phospholipase C-γ1 (PLC-γ1) and Akt, canonical downstream effectors of EGFR, were activated following virus infection in A549 cells, while Gefitinib could inhibit the activation of PLC-γ1 but not Akt. In addition, virus titers in A549 cells was inhibited by chemical inhibition of PLC-γ1, but not by the inhibition of Akt. However, the Akt specific inhibitor Ly294002 could significantly reduce the virus titer in MDBK cells. Taken together, our data suggest that PLC-γ1 is stimulated in part through EGFR for efficient replication in A549 cells, whereas Akt can be stimulated by virus infection independent of EGFR, and is not essential for virus productive infection, indicating that Akt modulates BoHV-1 replication in a cell type-dependent manner. This study provides novel insights on how BoHV-1 infection activates EGFR signaling transduction to facilitate virus replication.
Collapse
|
29
|
Sawant L, Wijesekera N, Jones C. Pioneer transcription factors, progesterone receptor and Krüppel like transcription factor 4, cooperatively stimulate the bovine herpesvirus 1 ICP0 early promoter and productive late protein expression. Virus Res 2020; 288:198115. [PMID: 32795492 DOI: 10.1016/j.virusres.2020.198115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022]
Abstract
Bovine herpesvirus 1 (BoHV-1), including commercially available modified live vaccines, readily infect the fetus and ovaries, which can cause reproductive failure. The BoHV-1 latency-reactivation cycle in sensory neurons further complicates reproductive failure because progesterone sporadically induces reactivation from latency. The progesterone receptor (PR) and Krüppel-like transcription factor 15 (KLF15) cooperatively stimulate productive infection and the immediate early transcription unit 1 (IEtu1) promoter. In addition to the IEtu1 promoter, the bICP0 gene also contains a separate early (E) promoter. In this study, we tested the hypothesis that PR and KLF family members transactivate the bICP0 E promoter. PR and KLF4 stimulated bICP0 E promoter activity and expression of late productive viral protein expression in a cooperative manner. Additional studies revealed three enhancer domains within the bICP0 E promoter were responsive to PR and KLF4. Chromatin immunoprecipitation studies demonstrated PR and KLF4 occupy bICP0 E promoter sequences in transfected Neuro-2A cells and at late times following infection of bovine kidney cells. Co-immunoprecipitation studies indicated PR and KLF4 stably interact with each other. These studies suggest cooperative activation of the bICP0 E promoter by PR and KLF4 correlate with interactions between these pioneer transcription factors.
Collapse
Affiliation(s)
- Laximan Sawant
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, OK 74078, United States
| | - Nishani Wijesekera
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, OK 74078, United States
| | - Clinton Jones
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, OK 74078, United States.
| |
Collapse
|
30
|
Walz PH, Chamorro MF, M Falkenberg S, Passler T, van der Meer F, R Woolums A. Bovine viral diarrhea virus: An updated American College of Veterinary Internal Medicine consensus statement with focus on virus biology, hosts, immunosuppression, and vaccination. J Vet Intern Med 2020; 34:1690-1706. [PMID: 32633084 PMCID: PMC7517858 DOI: 10.1111/jvim.15816] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/01/2022] Open
Abstract
Control of bovine viral diarrhea virus (BVDV) in cattle populations across most of the world has remained elusive in spite of advances in knowledge about this viral pathogen. A central feature of virus perseverance in cattle herds is the unique mechanism of persistent infection. Managing BVDV infection in herds involves controlling persistently infected carrier animals using a multidimensional approach of vaccination, biosecurity, and identification of BVDV reservoirs. A decade has passed since the original American College of Veterinary Internal Medicine consensus statement on BVDV. While much has remained the same with respect to clinical signs of disease, pathogenesis of infection including persistent infection, and diagnosis, scientific articles published since 2010 have led to a greater understanding of difficulties associated with control of BVDV. This consensus statement update on BVDV presents greater focus on topics currently relevant to the biology and control of this viral pathogen of cattle, including changes in virus subpopulations, infection in heterologous hosts, immunosuppression, and vaccination.
Collapse
Affiliation(s)
- Paul H Walz
- College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Manuel F Chamorro
- College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Shollie M Falkenberg
- USDA Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
| | - Thomas Passler
- College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Frank van der Meer
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Amelia R Woolums
- College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi, USA
| |
Collapse
|
31
|
Fulton RW. Viruses in Bovine Respiratory Disease in North America: Knowledge Advances Using Genomic Testing. Vet Clin North Am Food Anim Pract 2020; 36:321-332. [PMID: 32451028 PMCID: PMC7244414 DOI: 10.1016/j.cvfa.2020.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Advances in viral detection in bovine respiratory disease (BRD) have resulted from advances in viral sequencing of respiratory tract samples. New viruses detected include influenza D virus, bovine coronavirus, bovine rhinitis A, bovine rhinitis B virus, and others. Serosurveys demonstrate widespread presence of some of these viruses in North American cattle. These viruses sometimes cause disease after animal challenge, and some have been found in BRD cases more frequently than in healthy cattle. Continued work is needed to develop reagents for identification of new viruses, to confirm their pathogenicity, and to determine whether vaccines have a place in their control.
Collapse
Affiliation(s)
- Robert W Fulton
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
32
|
Two Pioneer Transcription Factors, Krüppel-Like Transcription Factor 4 and Glucocorticoid Receptor, Cooperatively Transactivate the Bovine Herpesvirus 1 ICP0 Early Promoter and Stimulate Productive Infection. J Virol 2020; 94:JVI.01670-19. [PMID: 31776270 DOI: 10.1128/jvi.01670-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022] Open
Abstract
An important site for bovine herpesvirus 1 (BoHV-1) latency is sensory neurons within trigeminal ganglia (TG). The synthetic corticosteroid dexamethasone consistently induces BoHV-1 reactivation from latency. Expression of four Krüppel-like transcription factors (KLF), i.e., KLF4, KLF6, PLZF (promyelocytic leukemia zinc finger), and KLF15, are induced in TG neurons early during dexamethasone-induced reactivation. The glucocorticoid receptor (GR) and KLF15 form a feed-forward transcription loop that cooperatively transactivates the BoHV-1 immediate early transcription unit 1 (IEtu1) promoter that drives bovine infected cell protein 0 (bICP0) and bICP4 expression. Since the bICP0 gene also contains a separate early (E) promoter, we tested the hypothesis that GR and KLF family members transactivate the bICP0 E promoter. GR and KLF4, both pioneer transcription factors, cooperated to stimulate bICP0 E promoter activity in a ligand-independent manner in mouse neuroblastoma cells (Neuro-2A). Furthermore, GR and KLF4 stimulated productive infection. Mutating both half GR binding sites did not significantly reduce GR- and KLF4-mediated transactivation of the bICP0 E promoter, suggesting that a novel mechanism exists for transactivation. GR and KLF15 cooperatively stimulated bICP0 activity less efficiently than GR and KL4: however, KLF6, PLZF, and GR had little effect on the bICP0 E promoter. GR, KLF4, and KLF15 occupied bICP0 E promoter sequences in transfected Neuro-2A cells. GR and KLF15, but not KLF4, occupied the bICP0 E promoter at late times during productive infection of bovine cells. Collectively, these studies suggest that cooperative transactivation of the bICP0 E promoter by two pioneer transcription factors (GR and KLF4) correlates with stimulating lytic cycle viral gene expression following stressful stimuli.IMPORTANCE Bovine herpesvirus 1 (BoHV-1), an important bovine pathogen, establishes lifelong latency in sensory neurons. Reactivation from latency is consistently induced by the synthetic corticosteroid dexamethasone. We predict that increased corticosteroid levels activate the glucocorticoid receptor (GR). Consequently, viral gene expression is stimulated by the activated GR. The immediate early transcription unit 1 promoter (IEtu1) drives expression of two viral transcriptional regulatory proteins, bovine infected cell protein 0 (bICP0) and bICP4. Interestingly, a separate early promoter also drives bICP0 expression. Two pioneer transcription factors, GR and Krüppel-like transcription factor 4 (KLF4), cooperatively transactivate the bICP0 early (E) promoter. GR and KLF15 cooperate to stimulate bICP0 E promoter activity but significantly less than GR and KLF4. The bICP0 E promoter contains enhancer-like domains necessary for GR- and KLF4-mediated transactivation that are distinct from those for GR and KLF15. Stress-induced pioneer transcription factors are proposed to activate key viral promoters, including the bICP0 E promoter, during early stages of reactivation from latency.
Collapse
|
33
|
El-Mayet FS, Sawant L, Wijesekera N, Jones C. Progesterone increases the incidence of bovine herpesvirus 1 reactivation from latency and stimulates productive infection. Virus Res 2020; 276:197803. [PMID: 31697987 PMCID: PMC7068234 DOI: 10.1016/j.virusres.2019.197803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023]
Abstract
Bovine herpesvirus 1 (BoHV-1), including modified live vaccines, can cause abortions in pregnant cows. Progesterone maintains pregnancy and promotes spermiogenesis and testosterone biosynthesis in males: furthermore, progesterone is a neuro-steroid. Recent published studies demonstrated progesterone stimulated the BoHV-1 immediate early transcription unit 1 (IEtu1) promoter, and two glucocorticoid receptor response elements within the promoter were required for progesterone mediated transactivation. In this study, we tested whether progesterone induces reactivation from latency in rabbits. As expected, the synthetic corticosteroid dexamethasone consistently induced reactivation from latency in males and females. While progesterone induced reactivation from latency in approximately one-half of male rabbits, virus shedding was sporadic compared to dexamethasone and less efficient in female rabbits. Progesterone significantly increased productive infection in rabbit skin cells, which correlated with stimulating reactivation. These studies suggest progesterone promotes BoHV-1 spread in cattle, in part, by increasing the frequency of reactivation from latency.
Collapse
Affiliation(s)
- Fouad S El-Mayet
- Oklahoma State University, College for Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, OK, United States; Benha University, Faculty of Veterinary Medicine, Department of Virology, Moshtohor 13736, Kaliobyia, Egypt
| | - Laximan Sawant
- Oklahoma State University, College for Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, OK, United States
| | - Nishani Wijesekera
- Oklahoma State University, College for Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, OK, United States
| | - Clinton Jones
- Oklahoma State University, College for Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, OK, United States.
| |
Collapse
|
34
|
Petrini S, Righi C, Iscaro C, Viola G, Gobbi P, Scoccia E, Rossi E, Pellegrini C, De Mia GM. Evaluation of Passive Immunity Induced by Immunisation Using Two Inactivated gE-deleted Marker Vaccines against Infectious Bovine Rhinotracheitis (IBR) in Calves. Vaccines (Basel) 2020; 8:vaccines8010014. [PMID: 31947899 PMCID: PMC7157740 DOI: 10.3390/vaccines8010014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022] Open
Abstract
Different types of vaccines against Infectious Bovine Rhinotracheitis (IBR) are commercially available. Among these, inactivated glycoprotein E (gE)-deleted marker vaccines are commonly used, but their ability to induce passive immunity is poorly known. Here, we evaluated the passive immunity transferred from dams immunised with commercial inactivated gE-deleted marker vaccines to calves. We vaccinated 12 pregnant cattle devoid of neutralising antibodies against Bovine alphaherpesvirus 1 (BoHV-1) and divided them into two groups with 6 animals each. Both groups were injected with a different inactivated gE-deleted marker vaccine administrated via intranasal or intramuscular routes. An additional 6 pregnant cattle served as the unvaccinated control group. After calving, the number of animals in each group was increased by the newborn calves. In the dams, the humoral immune response was evaluated before calving and, subsequently, at different times until post-calving day 180 (PCD180). In addition, the antibodies in colostrum, milk, and in serum samples from newborn calves were evaluated at different times until PCD180. The results indicated that inactivated glycoprotein E (gE)-deleted marker vaccines are safe and produce a good humoral immune response in pregnant cattle until calving and PCD180. Moreover, results showed that, in calf serum, passive immunity persists until PCD180.
Collapse
Affiliation(s)
- Stefano Petrini
- National Reference Laboratory for Infectious Bovine Rhinotracheitis (IBR), Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, 06126 Perugia, Italy; (C.R.); (C.I.); (P.G.); (E.S.); (E.R.); (C.P.); (G.M.D.M.)
- Correspondence: ; Tel.: +39-075-3433069
| | - Cecilia Righi
- National Reference Laboratory for Infectious Bovine Rhinotracheitis (IBR), Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, 06126 Perugia, Italy; (C.R.); (C.I.); (P.G.); (E.S.); (E.R.); (C.P.); (G.M.D.M.)
| | - Carmen Iscaro
- National Reference Laboratory for Infectious Bovine Rhinotracheitis (IBR), Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, 06126 Perugia, Italy; (C.R.); (C.I.); (P.G.); (E.S.); (E.R.); (C.P.); (G.M.D.M.)
| | - Giulio Viola
- Veterinary Practitioner, 62026 San Ginesio, Italy;
| | - Paola Gobbi
- National Reference Laboratory for Infectious Bovine Rhinotracheitis (IBR), Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, 06126 Perugia, Italy; (C.R.); (C.I.); (P.G.); (E.S.); (E.R.); (C.P.); (G.M.D.M.)
| | - Eleonora Scoccia
- National Reference Laboratory for Infectious Bovine Rhinotracheitis (IBR), Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, 06126 Perugia, Italy; (C.R.); (C.I.); (P.G.); (E.S.); (E.R.); (C.P.); (G.M.D.M.)
| | - Elisabetta Rossi
- National Reference Laboratory for Infectious Bovine Rhinotracheitis (IBR), Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, 06126 Perugia, Italy; (C.R.); (C.I.); (P.G.); (E.S.); (E.R.); (C.P.); (G.M.D.M.)
| | - Claudia Pellegrini
- National Reference Laboratory for Infectious Bovine Rhinotracheitis (IBR), Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, 06126 Perugia, Italy; (C.R.); (C.I.); (P.G.); (E.S.); (E.R.); (C.P.); (G.M.D.M.)
| | - Gian Mario De Mia
- National Reference Laboratory for Infectious Bovine Rhinotracheitis (IBR), Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, 06126 Perugia, Italy; (C.R.); (C.I.); (P.G.); (E.S.); (E.R.); (C.P.); (G.M.D.M.)
| |
Collapse
|
35
|
Muñoz Murcia AL, Motta-Delgado PA, Herrera W, Polania R, Cháves LC. Prevalencia del virus de la rinotraqueitis infecciosa bovina en el departamento del Caquetá, Amazonia Colombiana. REVISTA DE LA FACULTAD DE MEDICINA VETERINARIA Y DE ZOOTECNIA 2020. [DOI: 10.15446/rfmvz.v67n1.87675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
La rinotraqueitis infecciosa bovina (IBR) es una enfermedad ampliamente difundida enel mundo con gran repercusión socio-económica en las ganaderías bovinas. El objetivodel presente estudio fue determinar la prevalencia de IBR en 100 hatos del departamentodel Caquetá, para lo cual, se muestrearon 960 bovinos mayores de 36 meses entre eneroy marzo de 2016 en predios seleccionados a partir de los criterios: a) tamaño (50-180hectáreas), b) con más de 10 vacas en ordeño, c) disponibilidad de los productores paracooperar y d) accesibilidad de las vías. Las muestras de suero sanguíneo se remitieronal Laboratorio de Diagnóstico Clínico Veterinario del ICA y se analizaron a través laprueba Elisa de bloqueo (BHV-1) gB. Los sueros con porcentaje de bloqueo superior al55% se consideraron positivos a anticuerpos para IBR. Se encontró alta seroprevalencia(73,13%), mayor además en machos que en hembras (p < 0,05). A nivel municipal laseroprevalencia fue mayor en los municipios de El Doncello, Puerto Rico y San Vicentedel Caguán y se encontró diferencia significativa (p < 0,05) entre los nueve municipiosanalizados. A nivel de hatos, la prevalencia fue del 99%. En conclusión, la prevalenciadel virus de la rinotraqueitis infecciosa bovina (IBR) en bovinos de doble propósito deldepartamento del Caquetá fue muy alta.
Collapse
|
36
|
Xu J, Cai Y, Jiang B, Li X, Jin H, Liu W, Kong Z, Hong J, Sealy JE, Iqbal M, Li Y. An optimized aptamer-binding viral tegument protein VP8 inhibits the production of Bovine Herpesvirus-1 through blocking nucleocytoplasmic shuttling. Int J Biol Macromol 2019; 140:1226-1238. [PMID: 31445153 DOI: 10.1016/j.ijbiomac.2019.08.165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 10/26/2022]
Abstract
Bovine herpesvirus 1 (BoHV-1) is a major pathogen of infectious bovine rhinotracheitis in bovine. Previously, we generated the aptamer IBRV A4 using systemic evolution of ligands by exponential enrichment. This aptamer inhibited infectivity of BoHV-1 by blocking viral particle absorption onto cell membranes. In this study, we found that the major tegument protein VP8 of BoHV-1 was involved in inhibition of infectious virus production by IBRV A4. We improved the affinity of IBRV A4 for VP8 by optimizing aptamer's structure and repeat conformation. An optimized aptamer, IBRV A4.7, was constructed with quadruple binding sites and a new stem-loop structure, which had a stronger binding affinity for VP8 or BoHV-1 than raw aptamer IBRV A4. IBRV A4.7 bound to VP8 with a dissociation constant (Kd) value of 0.2054 ± 0.03948 nM and bound to BoHV-1 with a Kd value of 0.3637 ± 0.05452 nM. Crucially, IBRV A4.7 had improved antiviral activity compared to IBRV A4, with a half-maximal inhibitory concentration of 1.16 ± 0.042 μM. Our results also revealed IBRV A4.7 inhibited BoHV-1 production in MDBK cells through blocking nucleocytoplasmic shuttling of viral VP8 in BoHV-1-infected MDBK cells. In conclusion, the aptamer IBRV A4.7 may have potency in preventing outbreaks in herds due to reactivation of latency.
Collapse
Affiliation(s)
- Jian Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing 100097, PR China
| | - Yunhong Cai
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing 100097, PR China
| | - Bo Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing 100097, PR China
| | - Xiaoyang Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing 100097, PR China
| | - Huan Jin
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing 100097, PR China
| | - Wenxiao Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing 100097, PR China
| | - Zimeng Kong
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Jiabing Hong
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Joshua E Sealy
- Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing 100097, PR China; The Pirbright Institute, Ash Rd, Pirbright, Woking GU24 0NF, United Kingdom
| | - Munir Iqbal
- Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing 100097, PR China; The Pirbright Institute, Ash Rd, Pirbright, Woking GU24 0NF, United Kingdom
| | - Yongqing Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing 100097, PR China.
| |
Collapse
|
37
|
Nagasawa Y, Kiku Y, Sugawara K, Hirose A, Kai C, Kitano N, Takahashi T, Nochi T, Aso H, Sawada SI, Akiyoshi K, Hayashi T. Staphylococcus aureus-specific IgA antibody in milk suppresses the multiplication of S. aureus in infected bovine udder. BMC Vet Res 2019; 15:286. [PMID: 31399125 PMCID: PMC6688226 DOI: 10.1186/s12917-019-2025-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 07/29/2019] [Indexed: 12/20/2022] Open
Abstract
Background Bovine mastitis caused by Staphylococcus aureus (S. aureus) is extremely difficult to control and new methods for its prevention and management are required. Nasal vaccines may prevent initial bovine mastitis infection caused by S. aureus. However, limited information is available regarding induction of mucosal immune response through nasal immunization with antigen and its suppression of S. aureus multiplication during bovine mastitis. This study sought to investigate whether induction of immunoglobulin A (IgA) in milk by nasal immunization could suppress multiplication of S. aureus in the bovine udder. Results Nasal immunization with formalin-killed S. aureus conjugated with a cationic cholesteryl-group-bearing pullulan-nanogel was performed. Anti-S. aureus-specific IgA antibodies were significantly more abundant in the milk of immunized cows than in non-immunized animals (P < 0.05). S. aureus counts in the quarter were negative in both non-immunized and nasal-immunized cows 1 week after mock infusion. In S. aureus-infused quarters, S. aureus multiplication was significantly suppressed in immunized compared with non-immunized cows (P < 0.05). Furthermore, a significant negative correlation was found between S. aureus-specific IgA antibodies and S. aureus counts in infused quarters of both non-immunized and nasal-immunized cows (r = − 0.811, P < 0.01). Conclusion In conclusion, the present study demonstrates that S. aureus-specific IgA antibodies in milk successfully suppressed the multiplication of S. aureus in infected bovine udders. Although the exact mechanism explaining such suppressive effect remains to be elucidated, nasal vaccines that can induce humoral immunity may help prevent initial infection with S. aureus and the onset of bovine mastitis. Electronic supplementary material The online version of this article (10.1186/s12917-019-2025-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuya Nagasawa
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan
| | - Yoshio Kiku
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan
| | - Kazue Sugawara
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan
| | - Aya Hirose
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan
| | - Chiaki Kai
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan
| | - Nana Kitano
- Graduate school of Dairy Science, Rakuno Gakuen University, 582, Bunkyodai-Midorimachi, Ebetsu, Hokkaido, 069-8501, Japan
| | - Toshihiko Takahashi
- Graduate school of Dairy Science, Rakuno Gakuen University, 582, Bunkyodai-Midorimachi, Ebetsu, Hokkaido, 069-8501, Japan
| | - Tomonori Nochi
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Hisashi Aso
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Tomohito Hayashi
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan.
| |
Collapse
|
38
|
d'Offay JM, Fulton RW, Fishbein M, Eberle R, Dubovi EJ. Isolation of a naturally occurring vaccine/wild-type recombinant bovine herpesvirus type 1 (BoHV-1) from an aborted bovine fetus. Vaccine 2019; 37:4518-4524. [PMID: 31266667 DOI: 10.1016/j.vaccine.2019.06.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 01/17/2023]
Abstract
Bovine herpesvirus type 1 (BoHV-1) causes various disease syndromes in cattle including respiratory disease and abortions. During an investigation into the potential role of BoHV-1 modified-live vaccines (MLV) causing diseases in cattle, we performed whole genome sequencing on six BoHV-1 field strains isolated at Cornell Animal Health Diagnostic Center in the late 1970s. Three isolates (two respiratory and a fetal) were identified as vaccine-derived isolates, having SNP patterns identical to that of a previously sequenced MLV virus that exhibited a deleted US2 and truncated US1.67 genes. Two other isolates (a respiratory and a fetal) were categorized as wild-type (WT) viruses based on their unique SNP pattern that is distinct from MLV viruses. The sixth isolate from an aborted fetus was a recombinant virus with 62% of its genome exhibiting SNPs identical to one of the above-mentioned WT viruses also recovered from an aborted fetus. The remaining 38% consisted of two blocks of sequences derived from the MLV virus. The first block replaced the UL9-UL19 region, and the second vaccine-derived sequence block encompassed all the genes within the unique short region and the internal/terminal repeats containing the regulatory genes BICP4 and BICP22. This is confirmatory evidence that recombination between BoHV-1 MLV and WT viruses can occur under natural conditions and cause disease. It is important in that it underscores the potential for the glycoprotein E negative (gE-) marker vaccine used to eradicate BoHV-1 in some countries, to recombine with virulent field strains allowing them to capture the gE- marker, thereby endangering the control and eradication programs.
Collapse
Affiliation(s)
- Jean M d'Offay
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Robert W Fulton
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Mark Fishbein
- Department of Plant Biology, Ecology & Evolution, Oklahoma State University, 301 Physical Sciences, Stillwater, OK 74078, USA
| | - R Eberle
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Edward J Dubovi
- Animal Health Diagnostic Center, Cornell University, Ithaca, NY 14852, USA
| |
Collapse
|
39
|
Jones C. Bovine Herpesvirus 1 Counteracts Immune Responses and Immune-Surveillance to Enhance Pathogenesis and Virus Transmission. Front Immunol 2019; 10:1008. [PMID: 31134079 PMCID: PMC6514135 DOI: 10.3389/fimmu.2019.01008] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/18/2019] [Indexed: 12/21/2022] Open
Abstract
Infection of cattle by bovine herpesvirus 1 (BoHV-1) can culminate in upper respiratory tract disorders, conjunctivitis, or genital disorders. Infection also consistently leads to transient immune-suppression. BoHV-1 is the number one infectious agent in cattle that is associated with abortions in cattle. BoHV-1, as other α-herpesvirinae subfamily members, establishes latency in sensory neurons. Stressful stimuli, mimicked by the synthetic corticosteroid dexamethasone, consistently induce reactivation from latency in latently infected calves and rabbits. Increased corticosteroid levels due to stress have a two-pronged effect on reactivation from latency by: (1) directly stimulating viral gene expression and replication, and (2) impairing antiviral immune responses, thus enhancing virus spread and transmission. BoHV-1 encodes several proteins, bICP0, bICP27, gG, UL49.5, and VP8, which interfere with key antiviral innate immune responses in the absence of other viral genes. Furthermore, the ability of BoHV-1 to infect lymphocytes and induce apoptosis, in particular CD4+ T cells, has negative impacts on immune responses during acute infection. BoHV-1 induced immune-suppression can initiate the poly-microbial disorder known as bovine respiratory disease complex, which costs the US cattle industry more than one billion dollars annually. Furthermore, interfering with antiviral responses may promote viral spread to ovaries and the developing fetus, thus enhancing reproductive issues associated with BoHV-1 infection of cows or pregnant cows. The focus of this review is to describe the known mechanisms, direct and indirect, by which BoHV-1 interferes with antiviral immune responses during the course of infection.
Collapse
Affiliation(s)
- Clinton Jones
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
40
|
Noor HD, Tri U, Haryadi WM, Widya A, Koichi A. DNA Sequence variability analysis of the gD and the UL36 genes of Bovine herpesvirus-1 isolated from field cases in Indonesia. JOURNAL OF APPLIED ANIMAL RESEARCH 2019. [DOI: 10.1080/09712119.2019.1600521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Hidayati Dewi Noor
- Department of Microbiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, Indonesia
- Department of Product Development, PUSVETMA (National Center of Veterinary and Biological Product), Surabaya, Indonesia
| | - Untari Tri
- Department of Microbiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, Indonesia
| | - Wibowo Michael Haryadi
- Department of Microbiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, Indonesia
| | - Asmara Widya
- Department of Microbiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, Indonesia
| | - Akiyama Koichi
- Advanced Research Support Centre (ADRES), Ehime University, Matsuyama, Japan
| |
Collapse
|
41
|
Van Anne TR, Rinehart CL, Buterbaugh RE, Bauer MJ, Young AJ, Blaha ML, Klein AL, Chase CCL. Cell-mediated and humoral immune responses to bovine herpesvirus type 1 and bovine viral diarrhea virus in calves following administration of a killed-virus vaccine and bovine herpesvirus type 1 challenge. Am J Vet Res 2019; 79:1166-1178. [PMID: 30372148 DOI: 10.2460/ajvr.79.11.1166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate cell-mediated and humoral immune responses of calves receiving 2 doses of a dual-adjuvanted vaccine containing inactivated bovine herpesvirus type 1 (BHV1) and bovine viral diarrhea virus types 1 (BVDV1) and 2 (BVDV2) before and after exposure to BHV1. ANIMALS 24 Holstein steers negative for anti-BHV1 antibodies and proliferative cell-mediated immune responses against BHV1 and BVDV. PROCEDURES Calves were randomly assigned to 3 groups. The vaccinated group (n = 10) received 2 doses of vaccine on days 0 and 21. Control (n = 10) and seeder (4) groups remained unvaccinated. Calves were commingled during the study except for the 3-day period (days 53 to 55) when seeders were inoculated with BHV1 (1.04 × 107 TCID50, IV) to serve as a source of virus for challenge (days 56 through 84). Rectal temperature and clinical illness scores were monitored, and blood and nasal specimens were obtained for determination of clinicopathologic and immunologic variables. RESULTS After BHV1 challenge, mean rectal temperature and clinical illness scores were lower for vaccinates than controls. In vaccinates, antibody titers against BHV1 and BVDV2, but not BVDV1, increased after challenge as did extracellular and intracellular interferon-γ expression, indicating a T helper 1 memory response. Additional results of cell marker expression were variable, with no significant increase or decrease associated with treatment. CONCLUSIONS AND CLINICAL RELEVANCE Calves administered 2 doses of a killed-virus vaccine developed cell-mediated and humoral immune responses to BHV1 and BVDV, which were protective against disease when those calves were subsequently exposed to BHV1.
Collapse
|
42
|
El-Mayet FS, El-Habbaa AS, D'Offay J, Jones C. Synergistic Activation of Bovine Herpesvirus 1 Productive Infection and Viral Regulatory Promoters by the Progesterone Receptor and Krüppel-Like Transcription Factor 15. J Virol 2019; 93:e01519-18. [PMID: 30305353 PMCID: PMC6288325 DOI: 10.1128/jvi.01519-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/03/2018] [Indexed: 12/17/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1), including modified live vaccines, readily infects the fetus and ovaries, which can lead to reproductive failure. The BoHV-1 latency reactivation cycle in sensory neurons may further complicate reproductive failure in pregnant cows. The immediate early transcription unit 1 (IEtu1) promoter drives expression of important viral transcriptional regulators (bICP0 and bICP4). This promoter contains two functional glucocorticoid receptor (GR) response elements (GREs) that have the potential to stimulate productive infection following stressful stimuli. Since progesterone and the progesterone receptor (PR) can activate many GREs, we hypothesized that the PR and/or progesterone regulates productive infection and viral transcription. New studies demonstrated that progesterone stimulated productive infection. Additional studies revealed the PR and Krüppel-like transcription factor 15 (KLF15) cooperated to stimulate productive infection and IEtu1 promoter activity. IEtu1 promoter activation required both GREs, which correlated with the ability of the PR to interact with wild-type (wt) GREs but not mutant GREs. KLF15 also cooperated with the PR to transactivate the bICP0 early promoter, a promoter that maintains bICP0 protein expression during productive infection. Intergenic viral DNA fragments (less than 400 bp) containing two GREs and putative KLF binding sites present within genes encoding unique long 52 (UL-52; component of DNA primase/helicase complex), Circ, bICP4, and IEtu2 were stimulated by KLF15 and the PR more than 10-fold, suggesting that additional viral promoters are activated by these transcription factors. Collectively, these studies suggest progesterone and the PR promote BoHV-1 spread to reproductive tissues, thus increasing the incidence of reproductive failure.IMPORTANCE Bovine herpesvirus 1 (BoHV-1) is the most frequently diagnosed cause of abortions in pregnant cows and can cause "abortion storms" in susceptible herds. Virulent field strains and even commercially available modified live vaccines can induce abortion, in part because BoHV-1 replicates efficiently in the ovary and corpus luteum. We now demonstrate that progesterone and the progesterone receptor (PR) stimulate productive infection. The BoHV-1 genome contains approximately 100 glucocorticoid receptor (GR) response elements (GREs). Interestingly, the PR can bind and activate many promoters that contain GREs. The PR and Krüppel-like transcription factor 15 (KLF15), which regulate key steps during embryo implantation, cooperate to stimulate productive infection and two viral promoters that drive expression of key viral transcriptional regulators. These studies suggest that the ability of progesterone and the PR to stimulate productive infection has the potential to promote virus spread in reproductive tissue and induce reproductive failure.
Collapse
Affiliation(s)
- Fouad S El-Mayet
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
- Benha University, Faculty of Veterinary Medicine, Department of Virology, Benha, Egypt
| | - Ayman S El-Habbaa
- Benha University, Faculty of Veterinary Medicine, Department of Virology, Benha, Egypt
| | - Jean D'Offay
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Clinton Jones
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| |
Collapse
|
43
|
Guo J, Li Q, Jones C. The bovine herpesvirus 1 regulatory proteins, bICP4 and bICP22, are expressed during the escape from latency. J Neurovirol 2018; 25:42-49. [PMID: 30402823 DOI: 10.1007/s13365-018-0684-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/14/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023]
Abstract
Following acute infection of mucosal surfaces by bovine herpesvirus 1 (BoHV-1), sensory neurons are a primary site for lifelong latency. Stress, as mimicked by the synthetic corticosteroid dexamethasone, consistently induces reactivation from latency. Two viral regulatory proteins (VP16 and bICP0) are expressed within 1 h after calves latently infected with BoHV-1 are treated with dexamethasone. Since the immediate early transcription unit 1 (IEtu1) promoter regulates both BoHV-1 infected cell protein 0 (bICP0) and bICP4 expressions, we hypothesized that the bICP4 protein is also expressed during early stages of reactivation from latency. In this study, we tested whether bICP4 and bICP22, the only other BoHV-1 protein known to be encoded by an immediate early gene, were expressed during reactivation from latency by generating peptide-specific antiserum to each protein. bICP4 and bICP22 protein expression were detected in trigeminal ganglionic (TG) neurons during early phases of dexamethasone-induced reactivation from latency, operationally defined as the escape from latency. Conversely, bICP4 and bICP22 were not readily detected in TG neurons of latently infected calves. In summary, it seems clear that all proteins encoded by known BoHV-1 IE genes (bICP4, bICP22, and bICP0) were expressed during early stages of dexamethasone-induced reactivation from latency.
Collapse
Affiliation(s)
- Junqing Guo
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, 116 Huayuan Rd., Zhengzhou, People's Republic of China.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Qingmei Li
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, 116 Huayuan Rd., Zhengzhou, People's Republic of China.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Clinton Jones
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
44
|
Induction of Oxidative DNA Damage in Bovine Herpesvirus 1 Infected Bovine Kidney Cells (MDBK Cells) and Human Tumor Cells (A549 Cells and U2OS Cells). Viruses 2018; 10:v10080393. [PMID: 30049996 PMCID: PMC6115950 DOI: 10.3390/v10080393] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/23/2018] [Indexed: 01/06/2023] Open
Abstract
Bovine herpesvirus 1 (BoHV-1) is an important pathogen of cattle that causes lesions in mucosal surfaces, genital tracts and nervous systems. As a novel oncolytic virus, BoHV-1 infects and kills numerous human tumor cells. However, the mechanisms underlying the virus-induced cell damages are not fully understood. In this study, we demonstrated that virus infection of MDBK cells induced high levels of DNA damage, because the percentage of comet tail DNA (tailDNA%) determined by comet assay, a direct indicator of DNA damage, and the levels of 8-hydroxyguanine (8-oxoG) production, an oxidative DNA damage marker, consistently increased following the virus infection. The expression of 8-oxoguanine DNA glycosylase (OGG-1), an enzyme responsible for the excision of 8-oxoG, was significantly decreased due to the virus infection, which corroborated with the finding that BoHV-1 infection stimulated 8-oxoG production. Furthermore, the virus replication in human tumor cells such as in A549 cells and U2OS cells also induced DNA damage. Chemical inhibition of reactive oxidative species (ROS) production by either ROS scavenger N-Acetyl-l-cysteine or NOX inhibitor diphenylene iodonium (DPI) significantly decreased the levels of tailDNA%, suggesting the involvement of ROS in the virus induced DNA lesions. Collectively, these results indicated that BoHV-1 infection of these cells elicits oxidative DNA damages, providing a perspective in understanding the mechanisms by which the virus induces cell death in both native host cells and human tumor cells.
Collapse
|
45
|
Chothe SK, Sebastian A, Thomas A, Nissly RH, Wolfgang D, Byukusenge M, Mor SK, Goyal SM, Albert I, Tewari D, Jayarao BM, Kuchipudi SV. Whole-genome sequence analysis reveals unique SNP profiles to distinguish vaccine and wild-type strains of bovine herpesvirus-1 (BoHV-1). Virology 2018; 522:27-36. [PMID: 30014855 DOI: 10.1016/j.virol.2018.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/03/2018] [Accepted: 06/26/2018] [Indexed: 01/02/2023]
Abstract
Bovine herpesvirus-1 (BoHV-1) is a major pathogen affecting cattle worldwide causing primarily respiratory illness referred to as infectious bovine rhinotracheitis (IBR), along with reproductive disorders including abortion and infertility in cattle. While modified live vaccines (MLVs) effectively induce immune response against BoHV-1, they are implicated in disease outbreaks in cattle. Current diagnostic methods cannot distinguish between MLVs and field strains of BoHV-1. We performed whole genome sequencing of 18 BoHV-1 isolates from Pennsylvania and Minnesota along with five BoHV-1 vaccine strains using the Illumina Miseq platform. Based on nucleotide polymorphisms (SNPs) the sequences were clustered into three groups with two different vaccine groups and one distinct cluster of field isolates. Using this information, we developed a novel SNP-based PCR assay that can allow differentiation of vaccine and clinical strains and help accurately determine the incidence of BoHV-1 and the association of MLVs with clinical disease in cattle.
Collapse
Affiliation(s)
- Shubhada K Chothe
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Aswathy Sebastian
- Dept of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Asha Thomas
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Ruth H Nissly
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - David Wolfgang
- Pennsylvania Department of Agriculture, Bureau of Animal Health and Diagnostic Services, Harrisburg, PA, United States
| | - Maurice Byukusenge
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Sunil Kumar Mor
- Veterinary Population Medicine, University of Minnesota, St. Paul, MN, United States
| | - Sagar M Goyal
- Veterinary Population Medicine, University of Minnesota, St. Paul, MN, United States
| | - Istvan Albert
- Dept of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Deepanker Tewari
- Pennsylvania Department of Agriculture, Bureau of Animal Health and Diagnostic Services, Harrisburg, PA, United States
| | - Bhushan M Jayarao
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Suresh V Kuchipudi
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|