1
|
Birkenheuer CH, Baines JD. Aberrant RNA polymerase initiation and processivity on the genome of a herpes simplex virus 1 mutant lacking ICP27. J Virol 2024; 98:e0071224. [PMID: 38780246 PMCID: PMC11237563 DOI: 10.1128/jvi.00712-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Within the first 15 minutes of infection, herpes simplex virus 1 immediate early proteins repurpose cellular RNA polymerase (Pol II) for viral transcription. An important role of the viral-infected cell protein 27 (ICP27) is to facilitate viral pre-mRNA processing and export viral mRNA to the cytoplasm. Here, we use precision nuclear run-on followed by deep sequencing (PRO-seq) to characterize transcription of a viral ICP27 null mutant. At 1.5 and 3 hours post infection (hpi), we observed increased total levels of Pol II on the mutant viral genome and accumulation of Pol II downstream of poly A sites indicating increased levels of initiation and processivity. By 6 hpi, Pol II accumulation on specific mutant viral genes was higher than that on wild-type virus either at or upstream of poly A signals, depending on the gene. The PRO-seq profile of the ICP27 mutant on late genes at 6 hpi was similar but not identical to that caused by treatment with flavopiridol, a known inhibitor of RNA processivity. This pattern was different from PRO-seq profiles of other α gene mutants and upon inhibition of viral DNA replication with PAA. Together, these results indicate that ICP27 contributes to the repression of aberrant viral transcription at 1.5 and 3 hpi by inhibiting initiation and decreasing RNA processivity. However, ICP27 is needed to enhance processivity on most late genes by 6 hpi in a mechanism distinguishable from its role in viral DNA replication.IMPORTANCEWe developed and validated the use of a processivity index for precision nuclear run-on followed by deep sequencing data. The processivity index calculations confirm infected cell protein 27 (ICP27) induces downstream of transcription termination on certain host genes. The processivity indices and whole gene probe data implicate ICP27 in transient immediate early gene-mediated repression, a process that also requires ICP4, ICP22, and ICP0. The data indicate that ICP27 directly or indirectly regulates RNA polymerase (Pol II) initiation and processivity on specific genes at specific times post infection. These observations support specific and varied roles for ICP27 in regulating Pol II activity on viral genes in addition to its known roles in post transcriptional mRNA processing and export.
Collapse
Affiliation(s)
- Claire H. Birkenheuer
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Joel D. Baines
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
2
|
Abstract
To determine the role of ICP22 in transcription, we performed precise nuclear run-on followed by deep sequencing (PRO-seq) and global nuclear run-on with sequencing (GRO-seq) in cells infected with a viral mutant lacking the entire ICP22-encoding α22 (US1/US1.5) gene and a virus derived from this mutant bearing a restored α22 gene. At 3 h postinfection (hpi), the lack of ICP22 reduced RNA polymerase (Pol) promoter proximal pausing (PPP) on the immediate early α4, α0, and α27 genes. Diminished PPP at these sites accompanied increased Pol processivity across the entire herpes simplex virus 1 (HSV-1) genome in GRO-seq assays, resulting in substantial increases in antisense and intergenic transcription. The diminished PPP on α gene promoters at 3 hpi was distinguishable from effects caused by treatment with a viral DNA polymerase inhibitor at this time. The ICP22 mutant had multiple defects at 6 hpi, including lower viral DNA replication, reduced Pol activity on viral genes, and increased Pol activity on cellular genes. The lack of ICP22 also increased PPP release from most cellular genes, while a minority of cellular genes exhibited decreased PPP release. Taken together, these data indicate that ICP22 acts to negatively regulate transcriptional elongation on viral genes in part to limit antisense and intergenic transcription on the highly compact viral genome. This regulatory function directly or indirectly helps to retain Pol activity on the viral genome later in infection. IMPORTANCE The longstanding observation that ICP22 reduces RNA polymerase II (Pol II) serine 2 phosphorylation, which initiates transcriptional elongation, is puzzling because this phosphorylation is essential for viral replication. The current study helps explain this apparent paradox because it demonstrates significant advantages in negatively regulating transcriptional elongation, including the reduction of antisense and intergenic transcription. Delays in elongation would be expected to facilitate the ordered assembly and functions of transcriptional initiation, elongation, and termination complexes. Such limiting functions are likely to be important in herpesvirus genomes that are otherwise highly transcriptionally active and compact, comprising mostly short, intronless genes near neighboring genes of opposite sense and containing numerous 3'-nested sets of genes that share transcriptional termination signals but differ at transcriptional start sites on the same template strand.
Collapse
|
3
|
Abstract
The majority of drug discovery efforts against herpesviruses have focused on nucleoside analogs that target viral DNA polymerases, agents that are associated with dose-limiting toxicity and/or a narrow spectrum of activity. We are pursuing a strategy based on targeting two-metal ion-dependent (TMID) viral enzymes. This family of enzymes consists of structurally related proteins that share common active sites containing conserved carboxylates predicted to coordinate divalent cations essential for catalysis. Compounds that target TMID enzymes, such as HIV integrase and influenza endoribonuclease, have been successfully developed for clinical use. HIV integrase inhibitors have been reported to inhibit replication of herpes simplex virus (HSV) and other herpesviruses; however, the molecular targets of their antiviral activities have not been identified. We employed a candidate-based approach utilizing several two-metal-directed chemotypes and the potential viral TMID enzymatic targets in an effort to correlate target-based activity with antiviral potency. The panel of compounds tested included integrase inhibitors, the anti-influenza agent baloxavir, three natural products previously shown to exhibit anti-HSV activity, and two 8-hydroxyquinolines (8-HQs), AK-157 and AK-166, from our in-house program. The integrase inhibitors exhibited weak overall anti-HSV-1 activity, while the 8-HQs were shown to inhibit both HSV-1 and cytomegalovirus (CMV). Target-based analysis demonstrated that none of the antiviral compounds acted by inhibiting ICP8, contradicting previous reports. On the other hand, baloxavir inhibited the proofreading exonuclease of HSV polymerase, while AK-157 and AK-166 inhibited the alkaline exonuclease UL12. In addition, AK-157 also inhibited the catalytic activity of the HSV polymerase, which provides an opportunity to potentially develop dual-targeting agents against herpesviruses. IMPORTANCE Human herpesviruses (HHVs) establish lifelong latent infections, which undergo periodic reactivation and remain a major cause of morbidity and mortality, especially in immunocompromised individuals. Currently, HHV infections are treated primarily with agents that target viral DNA polymerase, including nucleoside analogs; however, long-term treatment can be complicated by the development of drug resistance. New therapies with novel modes of action would be important not only for the treatment of resistant viruses but also for use in combination therapy to reduce dose-limiting toxicities and potentially eliminate infection. Since many essential HHV proteins are well conserved, inhibitors of novel targets would ideally exhibit broad-spectrum activity against multiple HHVs.
Collapse
|
4
|
Schiavone DV, Kapkayeva DM, Li Q, Woodson ME, Casals AG, Morrison LA, Tavis JE, Murelli RP. Synthesis of Polyoxygenated Tropolones and their Antiviral Activity against Hepatitis B Virus and Herpes Simplex Virus-1. Chemistry 2022; 28:e202104112. [PMID: 34984767 PMCID: PMC8858858 DOI: 10.1002/chem.202104112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 11/06/2022]
Abstract
Polyoxygenated tropolones possess a broad range of biological activity, and as a result are promising lead structures or fragments for drug development. However, structure-function studies and subsequent optimization have been challenging, in part due to the limited number of readily available tropolones and the obstacles to their synthesis. Oxidopyrylium [5+2] cycloaddition can effectively generate a diverse array of seven-membered ring carbocycles, and as a result can provide a highly general strategy for tropolone synthesis. Here, we describe the use of 3-hydroxy-4-pyrone-based oxidopyrylium cycloaddition chemistry in the synthesis of functionalized 3,7-dimethoxytropolones, 3,7-dihydroxytropolones, and isomeric 3-hydroxy-7-methoxytropolones through complementary benzyl alcohol-incorporating procedures. The antiviral activity of these molecules against herpes simplex virus-1 and hepatitis B virus is also described, highlighting the value of this approach and providing new structure-function insights relevant to their antiviral activity.
Collapse
Affiliation(s)
- Daniel V. Schiavone
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA,PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
| | - Diana M. Kapkayeva
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA
| | - Qilan Li
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | - Molly E. Woodson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | - Andreu Gazquez Casals
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | - Lynda A. Morrison
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | - John E. Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | - Ryan P. Murelli
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA,PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
| |
Collapse
|
5
|
Dwivedy A, Mariadasse R, Ahmad M, Chakraborty S, Kar D, Tiwari S, Bhattacharyya S, Sonar S, Mani S, Tailor P, Majumdar T, Jeyakanthan J, Biswal BK. Characterization of the NiRAN domain from RNA-dependent RNA polymerase provides insights into a potential therapeutic target against SARS-CoV-2. PLoS Comput Biol 2021; 17:e1009384. [PMID: 34516563 PMCID: PMC8478224 DOI: 10.1371/journal.pcbi.1009384] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 09/28/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
Apart from the canonical fingers, palm and thumb domains, the RNA dependent RNA polymerases (RdRp) from the viral order Nidovirales possess two additional domains. Of these, the function of the Nidovirus RdRp associated nucleotidyl transferase domain (NiRAN) remains unanswered. The elucidation of the 3D structure of RdRp from the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), provided the first ever insights into the domain organisation and possible functional characteristics of the NiRAN domain. Using in silico tools, we predict that the NiRAN domain assumes a kinase or phosphotransferase like fold and binds nucleoside triphosphates at its proposed active site. Additionally, using molecular docking we have predicted the binding of three widely used kinase inhibitors and five well characterized anti-microbial compounds at the NiRAN domain active site along with their drug-likeliness. For the first time ever, using basic biochemical tools, this study shows the presence of a kinase like activity exhibited by the SARS-CoV-2 RdRp. Interestingly, a well-known kinase inhibitor- Sorafenib showed a significant inhibition and dampened viral load in SARS-CoV-2 infected cells. In line with the current global COVID-19 pandemic urgency and the emergence of newer strains with significantly higher infectivity, this study provides a new anti-SARS-CoV-2 drug target and potential lead compounds for drug repurposing against SARS-CoV-2. The on-going coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is significantly affecting the world health. Unfortunately, over 180 million cases of COVID-19 resulting in nearly 4 million deaths have been reported till June, 2021. In this study, using a combination of bioinformatics, biochemical and mass spectrometry methods, we show that the Nidovirus RdRp associated Nucleotidyl transferase (NiRAN) domain of the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 exhibits a kinase like activity. Additionally, we also show that few broad spectrum anti-cancer and anti-microbial drugs dampen this kinase like activity. Of note, Sorafenib, an FDA approved anti-cancer kinase inhibiting drug significantly reduces the SARS-CoV-2 load in cell lines. Our study suggests that NiRAN domain of the SARS-CoV-2 RdRp is indispensible for the successful viral life cycle and shows that abolishing this enzymatic function of RdRp by small molecule inhibitors may open novel avenues for COVID-19 therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sudipta Sonar
- Translational Health Science and Technology Institute, Faridabad, India
| | - Shailendra Mani
- Translational Health Science and Technology Institute, Faridabad, India
| | | | - Tanmay Majumdar
- National Institute of Immunology, New Delhi, India
- * E-mail: (TM); (JJ); (BKB)
| | - Jeyaraman Jeyakanthan
- Department of Bioinformatics, Alagappa University, Tamil Nadu, India
- * E-mail: (TM); (JJ); (BKB)
| | | |
Collapse
|
6
|
Dwivedy A, Mariadasse R, Ahmad M, Chakraborty S, Kar D, Tiwari S, Bhattacharyya S, Sonar S, Mani S, Tailor P, Majumdar T, Jeyakanthan J, Biswal BK. Characterization of the NiRAN domain from RNA-dependent RNA polymerase provides insights into a potential therapeutic target against SARS-CoV-2. PLoS Comput Biol 2021. [DOI: https://doi.org/10.1371/journal.pcbi.1009384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apart from the canonical fingers, palm and thumb domains, the RNA dependent RNA polymerases (RdRp) from the viral order Nidovirales possess two additional domains. Of these, the function of the Nidovirus RdRp associated nucleotidyl transferase domain (NiRAN) remains unanswered. The elucidation of the 3D structure of RdRp from the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), provided the first ever insights into the domain organisation and possible functional characteristics of the NiRAN domain. Using in silico tools, we predict that the NiRAN domain assumes a kinase or phosphotransferase like fold and binds nucleoside triphosphates at its proposed active site. Additionally, using molecular docking we have predicted the binding of three widely used kinase inhibitors and five well characterized anti-microbial compounds at the NiRAN domain active site along with their drug-likeliness. For the first time ever, using basic biochemical tools, this study shows the presence of a kinase like activity exhibited by the SARS-CoV-2 RdRp. Interestingly, a well-known kinase inhibitor- Sorafenib showed a significant inhibition and dampened viral load in SARS-CoV-2 infected cells. In line with the current global COVID-19 pandemic urgency and the emergence of newer strains with significantly higher infectivity, this study provides a new anti-SARS-CoV-2 drug target and potential lead compounds for drug repurposing against SARS-CoV-2.
Collapse
|
7
|
RNA Polymerase II Promoter-Proximal Pausing and Release to Elongation Are Key Steps Regulating Herpes Simplex Virus 1 Transcription. J Virol 2020; 94:JVI.02035-19. [PMID: 31826988 DOI: 10.1128/jvi.02035-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) genes are transcribed by cellular RNA polymerase II (Pol II). Expression of viral immediate early (α) genes is followed sequentially by early (β), late (γ1), and true late (γ2) genes. We used precision nuclear run-on with deep sequencing to map and to quantify Pol II on the HSV-1(F) genome with single-nucleotide resolution. Approximately 30% of total Pol II relocated to viral genomes within 3 h postinfection (hpi), when it occupied genes of all temporal classes. At that time, Pol II on α genes accumulated most heavily at promoter-proximal pause (PPP) sites located ∼60 nucleotides downstream of the transcriptional start site, while β genes bore Pol II more evenly across gene bodies. At 6 hpi, Pol II increased on γ1 and γ2 genes while Pol II pausing remained prominent on α genes. At that time, average cytoplasmic mRNA expression from α and β genes decreased, relative to levels at 3 hpi, while γ1 relative expression increased slightly and γ2 expression increased more substantially. Cycloheximide treatment during the first 3 h reduced the amount of Pol II associated with the viral genome and confined most of the remaining Pol II to α gene PPP sites. Inhibition of both cyclin-dependent kinase 9 activity and viral DNA replication reduced Pol II on the viral genome and restricted much of the remaining Pol II to PPP sites.IMPORTANCE These data suggest that viral transcription is regulated not only by Pol II recruitment to viral genes but also by control of elongation into viral gene bodies. We provide a detailed map of Pol II occupancy on the HSV-1 genome that clarifies features of the viral transcriptome, including the first identification of Pol II PPP sites. The data indicate that Pol II is recruited to late genes early in infection. Comparing α and β gene occupancy at PPP sites and gene bodies suggests that Pol II is released more efficiently into the bodies of β genes than α genes at 3 hpi and that repression of α gene expression late in infection is mediated by prolonged promoter-proximal pausing. In addition, DNA replication is required to maintain full Pol II occupancy on viral DNA and to promote elongation on late genes later in infection.
Collapse
|
8
|
Lanave G, Martella V, Tempesta M, Catella C, Murelli RP, Morrison LA, Lucente MS, Buonavoglia C, Camero M. Antiviral activity of Α-hydroxytropolones on caprine alphaherpesvirus 1 in vitro. Res Vet Sci 2020; 129:99-102. [PMID: 31954321 DOI: 10.1016/j.rvsc.2020.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 11/29/2022]
Abstract
The emergence of human alphaherpesvirus strains (i.e. HHV-1 and -2) resistant to commonly used antiviral drugs has prompted the research for alternative, biologically active anti-herpetic agents. Natural-product and synthetic α-hydroxytropolones (αHTs) have been identified as lead therapeutic agents for a number of infections, including HHV-1 and -2, and several veterinary herpesviruses, i.e. bovine alphaherpesvirus 1 (BoHV-1), equine alphaherpesvirus 1 (EHV-1) and feline alphaherpesvirus 1 (FHV-1). In the present study we evaluated the activity in vitro of two natural and two synthetic α-hydroxytropolones (αHTs) against Caprine alphaherpesvirus 1 (CpHV-1) which is regarded as a useful homologous animal model for the study of HSV-2 infection, chiefly for the assessment of antiviral drugs in in vivo studies. AlphaHTs were able to decrease significantly CpHV-1 viral titres up to 4.25 log10 TCID50/50 μl and suppressed extensively CpHV-1 nucleic acids up to 8.71 log10 viral DNA copy number/10 μl. This study demonstrated the efficacy of αHTs against CpHV-1 in vitro, adding to their activity observed against the human and animal alphaherpesviruses in vitro. The activity of αHTs against CpHV-1 appeared similar but not identical to the patterns of activity observed against other alphaherpesviruses, suggesting virus-related variability in terms of response to specific αHT molecules. These findings open several perspectives in terms of future studies using the CpHV-1 homologous animal model, for the development of therapeutic tools against herpesviruses.
Collapse
Affiliation(s)
- Gianvito Lanave
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy.
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Maria Tempesta
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Cristiana Catella
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Ryan P Murelli
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, USA; The Graduate Center of the City University of New York, New York, NY, USA
| | - Lynda A Morrison
- Departments of Molecular Microbiology and Immunology and of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA
| | | | - Canio Buonavoglia
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Michele Camero
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| |
Collapse
|
9
|
Agyemang NB, Kukla CR, Edwards TC, Li Q, Langen MK, Schaal A, Franson AD, Casals AG, Donald KA, Yu AJ, Donlin MJ, Morrison LA, Tavis JE, Murelli RP. Divergent synthesis of a thiolate-based α-hydroxytropolone library with a dynamic bioactivity profile. RSC Adv 2019; 9:34227-34234. [PMID: 33042521 PMCID: PMC7543996 DOI: 10.1039/c9ra06383h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Here we describe a rapid and divergent synthetic route toward structurally novel αHTs functionalized with either one or two thioether or sulfonyl appendages. Evaluation of this library against hepatitis B and herpes simplex virus, as well as the pathogenic fungus Cryptococcus neoformans, and a human hepatoblastoma (HepDES19) revealed complementary biological profiles and new lead compounds with sub-micromolar activity against each pathogen.
Collapse
Affiliation(s)
- Nana B Agyemang
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States.,PhD Program in Chemistry, The Graduate Center of The City University of New York, New York, New York 10016, United States
| | - Cassandra R Kukla
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States
| | - Tiffany C Edwards
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States
| | - Qilan Li
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States
| | - Madison K Langen
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, 63104, United States
| | - Alexandra Schaal
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, 63104, United States
| | - Abaigeal D Franson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States
| | - Andreu Gazquez Casals
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States
| | - Katherine A Donald
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States
| | - Alice J Yu
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States
| | - Maureen J Donlin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, 63104, United States
| | - Lynda A Morrison
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States.,Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, 63110, United States
| | - John E Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States
| | - Ryan P Murelli
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States.,PhD Program in Chemistry, The Graduate Center of The City University of New York, New York, New York 10016, United States
| |
Collapse
|
10
|
Berkowitz AJ, Franson AD, Gazquez Cassals A, Donald KA, Yu AJ, Garimallaprabhakaran AK, Morrison LA, Murelli RP. Importance of lipophilicity for potent anti-herpes simplex virus-1 activity of α-hydroxytropolones. MEDCHEMCOMM 2019; 10:1173-1176. [PMID: 31391890 DOI: 10.1039/c9md00225a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/24/2019] [Indexed: 12/25/2022]
Abstract
We previously reported that troponoid compounds profoundly inhibit replication of herpes simplex virus (HSV)-1 and HSV-2 in cell culture, including acyclovir-resistant mutants. Synthesis of 26 alpha-hydroxylated tropolones (αHTs) led to a preliminary structure-activity relationship highlighting the potency of bi-phenyl side chains. Here, we explore the structure-activity relationship in more detail, with a focus on various biaryl and other lipophilic molecules. Along with our prior structure-function analysis, we present a refined structure-activity relationship that reveals the importance of the lipophilicity and nature of the side chain for potent anti-HSV-1 activity in cells. We expect this new information will help guide future optimization of αHTs as HSV antivirals.
Collapse
Affiliation(s)
- Alex J Berkowitz
- Department of Chemistry , Brooklyn College , The City University of New York , Brooklyn , NY , USA . .,Ph.D. Program in Chemistry , The Graduate Center , The City University of New York , New York , NY , USA
| | - Abaigeal D Franson
- Department of Molecular Microbiology and Immunology , Saint Louis University School of Medicine , St. Louis , MO , USA .
| | - Andreu Gazquez Cassals
- Department of Molecular Microbiology and Immunology , Saint Louis University School of Medicine , St. Louis , MO , USA .
| | - Katherine A Donald
- Department of Molecular Microbiology and Immunology , Saint Louis University School of Medicine , St. Louis , MO , USA .
| | - Alice J Yu
- Department of Molecular Microbiology and Immunology , Saint Louis University School of Medicine , St. Louis , MO , USA .
| | | | - Lynda A Morrison
- Department of Molecular Microbiology and Immunology , Saint Louis University School of Medicine , St. Louis , MO , USA . .,Department of Internal Medicine , Saint Louis University School of Medicine , St. Louis , MO , USA
| | - Ryan P Murelli
- Department of Chemistry , Brooklyn College , The City University of New York , Brooklyn , NY , USA . .,Ph.D. Program in Chemistry , The Graduate Center , The City University of New York , New York , NY , USA
| |
Collapse
|
11
|
Hirsch DR, Metrano AJ, Stone EA, Storch G, Miller SJ, Murelli RP. Troponoid Atropisomerism: Studies on the Configurational Stability of Tropone-Amide Chiral Axes. Org Lett 2019; 21:2412-2415. [PMID: 30869521 PMCID: PMC6504963 DOI: 10.1021/acs.orglett.9b00707] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Configurationally stable, atropisomeric motifs are an important structural element in a number of molecules, including chiral ligands, catalysts, and molecular devices. Thus, understanding features that stabilize chiral axes is of fundamental interest throughout the chemical sciences. The following details the high rotational barriers about the Ar-C(O) bond of tropone amides, which significantly exceed those of analogous benzamides. These studies are supported by both experimental and computational rotational barrier measurements. We also report the resolution of an axially chiral α-hydroxytropolone amide into its individual atropisomers, and demonstrate its configurational stability at physiological pH and temperatures over 24 h.
Collapse
Affiliation(s)
- Danielle R. Hirsch
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States
- PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016 United States
| | - Anthony J. Metrano
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Elizabeth A. Stone
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Golo Storch
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Ryan P. Murelli
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States
- PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016 United States
| |
Collapse
|
12
|
The HIV Integrase Inhibitor Raltegravir Inhibits Felid Alphaherpesvirus 1 Replication by Targeting both DNA Replication and Late Gene Expression. J Virol 2018; 92:JVI.00994-18. [PMID: 30045987 DOI: 10.1128/jvi.00994-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/17/2018] [Indexed: 11/20/2022] Open
Abstract
Alphaherpesvirus-associated ocular infections in humans caused by human alphaherpesvirus 1 (HHV-1) remain challenging to treat due to the frequency of drug application required and the potential for the selection of drug-resistant viruses. Repurposing on-the-market drugs is a viable strategy to accelerate the pace of drug development. It has been reported that the human immunodeficiency virus (HIV) integrase inhibitor raltegravir inhibits HHV-1 replication by targeting the DNA polymerase accessory factor and limits terminase-mediated genome cleavage of human betaherpesvirus 5 (HHV-5). We have previously shown, both in vitro and in vivo, that raltegravir can also inhibit the replication of felid alphaherpesvirus 1 (FeHV-1), a common ocular pathogen of cats with a pathogenesis similar to that of HHV-1 ocular disease. In contrast to what was reported for HHV-1, we were unable to select for a raltegravir-resistant FeHV-1 strain in order to define any basis for drug action. A candidate-based approach to explore the mode of action of raltegravir against FeHV-1 showed that raltegravir did not impact FeHV-1 terminase function, as described for HHV-5. Instead, raltegravir inhibited DNA replication, similarly to HHV-1, but by targeting the initiation of viral DNA replication rather than elongation. In addition, we found that raltegravir specifically repressed late gene expression independently of DNA replication, and both activities are consistent with inhibition of ICP8. Taken together, these results suggest that raltegravir could be a valuable therapeutic agent against herpesviruses.IMPORTANCE The rise of drug-resistant herpesviruses is a longstanding concern, particularly among immunocompromised patients. Therefore, therapies targeting viral proteins other than the DNA polymerase that may be less likely to lead to drug-resistant viruses are urgently needed. Using FeHV-1, an alphaherpesvirus closely related to HHV-1 that similarly causes ocular herpes in its natural host, we found that the HIV integrase inhibitor raltegravir targets different stages of the virus life cycle beyond DNA replication and that it does so without developing drug resistance under the conditions tested. This shows that the drug could provide a viable strategy for the treatment of herpesvirus infections.
Collapse
|
13
|
Miller JT, Zhao H, Masaoka T, Varnado B, Cornejo Castro EM, Marshall VA, Kouhestani K, Lynn AY, Aron KE, Xia A, Beutler JA, Hirsch DR, Tang L, Whitby D, Murelli RP, Le Grice SFJ. Sensitivity of the C-Terminal Nuclease Domain of Kaposi's Sarcoma-Associated Herpesvirus ORF29 to Two Classes of Active-Site Ligands. Antimicrob Agents Chemother 2018; 62:e00233-18. [PMID: 30061278 PMCID: PMC6153795 DOI: 10.1128/aac.00233-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/19/2018] [Indexed: 01/03/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), the etiological agent of Kaposi's sarcoma, belongs to the Herpesviridae family, whose members employ a multicomponent terminase to resolve nonparametric viral DNA into genome-length units prior to their packaging. Homology modeling of the ORF29 C-terminal nuclease domain (pORF29C) and bacteriophage Sf6 gp2 have suggested an active site clustered with four acidic residues, D476, E550, D661, and D662, that collectively sequester the catalytic divalent metal (Mn2+) and also provided important insight into a potential inhibitor binding mode. Using this model, we have expressed, purified, and characterized the wild-type pORF29C and variants with substitutions at the proposed active-site residues. Differential scanning calorimetry demonstrated divalent metal-induced stabilization of wild-type (WT) and D661A pORF29C, consistent with which these two enzymes exhibited Mn2+-dependent nuclease activity, although the latter mutant was significantly impaired. Thermal stability of WT and D661A pORF29C was also enhanced by binding of an α-hydroxytropolone (α-HT) inhibitor shown to replace divalent metal at the active site. For the remaining mutants, thermal stability was unaffected by divalent metal or α-HT binding, supporting their role in catalysis. pORF29C nuclease activity was also inhibited by two classes of small molecules reported to inhibit HIV RNase H and integrase, both of which belong to the superfamily of nucleotidyltransferases. Finally, α-HT inhibition of KSHV replication suggests ORF29 nuclease function as an antiviral target that could be combined with latency-activating compounds as a shock-and-kill antiviral strategy.
Collapse
Affiliation(s)
- Jennifer T Miller
- Basic Research Laboratory, National Cancer Institute, Frederick, Maryland, USA
| | - Haiyan Zhao
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Takashi Masaoka
- Basic Research Laboratory, National Cancer Institute, Frederick, Maryland, USA
| | - Brittany Varnado
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York, USA
| | - Elena M Cornejo Castro
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Vickie A Marshall
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Kaivon Kouhestani
- Basic Research Laboratory, National Cancer Institute, Frederick, Maryland, USA
| | - Anna Y Lynn
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Keith E Aron
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Anqi Xia
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - John A Beutler
- Molecular Targets Program, National Cancer Institute, Frederick, Maryland, USA
| | - Danielle R Hirsch
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York, USA
- Molecular Targets Program, National Cancer Institute, Frederick, Maryland, USA
| | - Liang Tang
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Ryan P Murelli
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York, USA
- Ph.D. Program in Chemistry, The Graduate Center of The City University of New York, New York, New York, USA
| | - Stuart F J Le Grice
- Basic Research Laboratory, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|