1
|
Oliveira RP, da Silva JS, da Silva GC, Rosa JN, Bazzolli DMS, Mantovani HC. Prevalence and characteristics of ESBL-producing Escherichia coli in clinically healthy pigs: implications for antibiotic resistance spread in livestock. J Appl Microbiol 2024; 135:lxae058. [PMID: 38444193 DOI: 10.1093/jambio/lxae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/31/2024] [Accepted: 03/04/2024] [Indexed: 03/07/2024]
Abstract
AIM This study aimed to compare and characterize the resistance profile and the presence of extended-spectrum beta-lactamase (ESBL) related genes in Escherichia coli isolated from healthy finishing pigs fed with or without antibiotics in their diets. METHODS AND RESULTS A total of 27 ceftiofur-resistant E. coli isolates were obtained from 96 healthy pigs. The antibiotic resistance profile was tested, and all 27 isolates were classified as multidrug-resistant (MDR). A high proportion of isolates were resistant to cephalosporins, ampicillin, ciprofloxacin, and tetracyclines. The ESBL production was observed in 85% of isolates by double-disc synergy test. The MDR-E. coli isolates harbored ESBL genes, such as blaTEM, blaCTX-M-1, blaCTX-M-2, and blaCTX-M-8,25. In addition, other antibiotics resistance genes (ARGs) were also detected, such as sul2, ant(3″)-I, tetA, and mcr-1. The mobilization of the blaCTX-M gene was confirmed for nine E. coli isolates by conjugation assays. The presence of blaCTX-M on mobile genetic elements in these isolates was demonstrated by Southern blot hybridization, and the resistance to cephalosporins was confirmed in the transconjugants. Our results indicate the prevalence of CTX-M-producing E. coli strains harboring mobile genetic elements in the normal microbiota of healthy pigs. CONCLUSIONS These findings highlight the significance of ESBL genes as a global health concern in livestock and the potential spread of antimicrobial resistance to other members of the gastrointestinal tract microbiota.
Collapse
Affiliation(s)
- Rúzivia Pimentel Oliveira
- Department of Microbiology, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
- Laboratory of Molecular Genetics of Bacteria, Instituto de Biotecnologia Aplicada à Agropecuária (Bioagro), Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Juliana Soares da Silva
- Department of Microbiology, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Giarlã Cunha da Silva
- Department of Microbiology, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Jéssica Nogueira Rosa
- Department of Microbiology, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Denise Mara Soares Bazzolli
- Department of Microbiology, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
- Laboratory of Molecular Genetics of Bacteria, Instituto de Biotecnologia Aplicada à Agropecuária (Bioagro), Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Hilario C Mantovani
- Department of Microbiology, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 53706, Madison, WI, United States
| |
Collapse
|
2
|
Walas N, Müller NF, Parker E, Henderson A, Capone D, Brown J, Barker T, Graham JP. Application of phylodynamics to identify spread of antimicrobial-resistant Escherichia coli between humans and canines in an urban environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170139. [PMID: 38242459 DOI: 10.1016/j.scitotenv.2024.170139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
The transmission of antimicrobial resistant bacteria in the urban environment is poorly understood. We utilized genomic sequencing and phylogenetics to characterize the transmission dynamics of antimicrobial resistant Escherichia coli (AMR-Ec) cultured from putative canine (caninep) and human feces present on urban sidewalks in San Francisco, California. We isolated a total of fifty-six AMR-Ec isolates from human (n = 20) and caninep (n = 36) fecal samples from the Tenderloin and South of Market (SoMa) neighborhoods of San Francisco. We then analyzed phenotypic and genotypic antimicrobial resistance (AMR) of the isolates, as well as clonal relationships based on cgMLST and single nucleotide polymorphisms (SNPs) of the core genomes. Using Bayesian inference, we reconstructed the transmission dynamics between humans and caninesp from multiple local outbreak clusters using the marginal structured coalescent approximation (MASCOT). Our results provide evidence for multiple sharing events of AMR-Ec between humans and caninesp. In particular, we found one instance of likely transmission from caninesp to humans as well as an additional local outbreak cluster consisting of one caninep and one human sample. Based on this analysis, it appears that non-human feces act as an important reservoir of clinically relevant AMR-Ec within the urban environment for this study population. This work showcases the utility of genomic epidemiology to reconstruct potential pathways by which antimicrobial resistance spreads.
Collapse
Affiliation(s)
| | | | | | | | - Drew Capone
- The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joe Brown
- The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Troy Barker
- The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
3
|
Allain M, Mahérault AC, Gachet B, Martinez C, Condamine B, Magnan M, Kempf I, Denamur E, Landraud L. Dissemination of IncI plasmid encoding bla CTX-M-1 is not hampered by its fitness cost in the pig's gut. Antimicrob Agents Chemother 2023; 67:e0011123. [PMID: 37702541 PMCID: PMC10583664 DOI: 10.1128/aac.00111-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/01/2023] [Indexed: 09/14/2023] Open
Abstract
Multiresistance plasmids belonging to the IncI incompatibility group have become one of the most pervasive plasmid types in extended-spectrum beta-lactamase-producing Escherichia coli of animal origin. The extent of the burden imposed on the bacterial cell by these plasmids seems to modulate the emergence of "epidemic" plasmids. However, in vivo data in the natural environment of the strains are scarce. Here, we investigated the cost of a bla CTX-M-1-IncI1 epidemic plasmid in a commensal E. coli animal strain, UB12-RC, before and after oral inoculation of 15 6- to 8-week- old specific-pathogen-free pigs. Growth rate in rich medium was determined on (i) UB12-RC and derivatives, with or without plasmid, in vivo and/or in vitro evolved, and (ii) strains that acquired the plasmid in the gut during the experiment. Although bla CTX-M-1-IncI1 plasmid imposed no measurable burden on the recipient strain after conjugation and during the longitudinal carriage in the pig's gut, we observed a significant difference in the bacterial growth rate between IncI1 plasmid-carrying and plasmid-free isolates collected during in vivo carriage. Only a few mutations on the chromosome of the UB12-RC derivatives were detected by whole-genome sequencing. RNA-Seq analysis of a selected set of these strains showed that transcriptional responses to the bla CTX-M-1-IncI1 acquisition were limited, affecting metabolism, stress response, and motility functions. Our data suggest that the effect of IncI plasmid on host cells is limited, fitness cost being insufficient to act as a barrier to IncI plasmid spread among natural population of E. coli in the gut niche.
Collapse
Affiliation(s)
- Margaux Allain
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
- AP-HP, Laboratoire de Microbiologie Hygiène, Hôpital Louis Mourier, Colombes, France
| | - Anne Claire Mahérault
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
- AP-HP, Laboratoire de Microbiologie Hygiène, Hôpital Louis Mourier, Colombes, France
| | - Benoit Gachet
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
| | - Caroline Martinez
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
| | - Bénédicte Condamine
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
| | - Mélanie Magnan
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
| | - Isabelle Kempf
- ANSES, Laboratoire de Ploufragan-Plouzané-Niort, Ploufragan, France
| | - Erick Denamur
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
- AP-HP, Laboratoire de Génétique Moléculaire, Hôpital Bichat, Paris, France
| | - Luce Landraud
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
- AP-HP, Laboratoire de Microbiologie Hygiène, Hôpital Louis Mourier, Colombes, France
| |
Collapse
|
4
|
Walas N, Müller NF, Parker E, Henderson A, Capone D, Brown J, Barker T, Graham JP. Phylodynamics Uncovers the Transmission of Antibiotic-Resistant Escherichia coli between Canines and Humans in an Urban Environment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543064. [PMID: 37398411 PMCID: PMC10312604 DOI: 10.1101/2023.06.01.543064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The role of canines in transmitting antibiotic resistant bacteria to humans in the urban environment is poorly understood. To elucidate this role, we utilized genomic sequencing and phylogenetics to characterize the burden and transmission dynamics of antibiotic resistant Escherichia coli (ABR-Ec) cultured from canine and human feces present on urban sidewalks in San Francisco, California. We collected a total of fifty-nine ABR-Ec from human (n=12) and canine (n=47) fecal samples from the Tenderloin and South of Market (SoMa) neighborhoods of San Francisco. We then analyzed phenotypic and genotypic antibiotic resistance (ABR) of the isolates, as well as clonal relationships based on cgMLST and single nucleotide polymorphisms (SNPs) of the core genomes. Using Bayesian inference, we reconstructed the transmission dynamics between humans and canines from multiple local outbreak clusters using the marginal structured coalescent approximation (MASCOT). Overall, we found human and canine samples to carry similar amounts and profiles of ABR genes. Our results provide evidence for multiple transmission events of ABR-Ec between humans and canines. In particular, we found one instance of likely transmission from canines to humans as well as an additional local outbreak cluster consisting of one canine and one human sample. Based on this analysis, it appears that canine feces act as an important reservoir of clinically relevant ABR-Ec within the urban environment. Our findings support that public health measures should continue to emphasize proper canine feces disposal practices, access to public toilets and sidewalk and street cleaning. Importance: Antibiotic resistance in E. coli is a growing public health concern with global attributable deaths projected to reach millions annually. Current research has focused heavily on clinical routes of antibiotic resistance transmission to design interventions while the role of alternative reservoirs such as domesticated animals remain less well understood. Our results suggest canines are part of the transmission network that disseminates high-risk multidrug resistance in E. coli within the urban San Francisco community. As such, this study highlights the need to consider canines, and potentially domesticated animals more broadly, when designing interventions to reduce the prevalence of antibiotic resistance in the community. Additionally, it showcases the utility of genomic epidemiology to reconstruct the pathways by which antimicrobial resistance spreads.
Collapse
Affiliation(s)
| | - Nicola F. Müller
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Emily Parker
- University of California, Berkeley, California, USA
| | | | - Drew Capone
- Indiana University, Bloomington, Indiana, USA
| | - Joe Brown
- The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Troy Barker
- The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
5
|
Mourand G, Paboeuf F, Grippon P, Lucas P, Bougeard S, Denamur E, Kempf I. Impact of Escherichia coli probiotic strains ED1a and Nissle 1917 on the excretion and gut carriage of extended-spectrum beta-lactamase-producing E. coli in pigs. Vet Anim Sci 2021; 14:100217. [PMID: 34825108 PMCID: PMC8604716 DOI: 10.1016/j.vas.2021.100217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 11/05/2022] Open
Abstract
The inoculated cefotaxime-resistant E. coli was a good pig gut colonizer. Probiotics could not reduce faecal excretion of resistant E. coli in inoculated pigs. Resistant E. coli titers were lower in digestive tracts of the probiotic-treated pigs. No transfer of the blaCTX−M-1 gene was detected.
We evaluated the impact of the administration of two Escherichia coli probiotic strains (ED1a and Nissle 1917) to pigs on the gut carriage or shedding of extended-spectrum beta-lactamase-producing E. coli. The probiotics were given to four sows from 12 days before farrowing to the weaning day, and to the 23 piglets (infected treated group (IPro)) from birth to the age of 49 days. Four other sows and their 24 piglets (infected non-treated group (INT)) did not receive the probiotics. IPro and INT piglets (n = 47) were orally inoculated with the strain E. coli 17–348F-RifR carrying the blaCTX−M-1 gene and resistant to rifampicin. Cefotaxime-resistant (CTXR) E. coli and rifampicin-resistant (RifR) E. coli were cultured and excretion of probiotics was studied using PCR on individual faecal and post-mortem samples, and from manure collected after the challenge with resistant E. coli. CTXR and RifRE.coli isolates were characterized to detect transfer of the blaCTX−M-1 to other strains.. Overall, there was no significant reduction in faecal excretion of CTXR and RifRE. coli in IPro pigs compared with INT pigs, although the CTXR and RifRE. coli titres were slightly, but significantly lower in the colon, caecum and rectum at post mortem. Excretion of the probiotics decreased with age, but Nissle 1917 was detected in most pigs at post-mortem. No transfer of the blaCTX−M-1 gene to probiotic and other E. coli strains was detected. In conclusion, in our experimental conditions, the used probiotics did not reduce shedding of the challenge strain.
Collapse
Affiliation(s)
| | - Frédéric Paboeuf
- ANSES, Laboratoire de Ploufragan-Plouzané-Niort, Ploufragan, France
| | - Pauline Grippon
- ANSES, Laboratoire de Ploufragan-Plouzané-Niort, Ploufragan, France
| | - Pierrick Lucas
- ANSES, Laboratoire de Ploufragan-Plouzané-Niort, Ploufragan, France
| | | | - Erick Denamur
- Université de Paris, IAME, INSERM UMR 1137, Paris, France.,APHP, Hôpital Bichat Claude-Bernard, Laboratoire de Génétique Moléculaire, Paris, France
| | - Isabelle Kempf
- ANSES, Laboratoire de Ploufragan-Plouzané-Niort, Ploufragan, France
| |
Collapse
|
6
|
Lin Z, Yuan T, Zhou L, Cheng S, Qu X, Lu P, Feng Q. Impact factors of the accumulation, migration and spread of antibiotic resistance in the environment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1741-1758. [PMID: 33123928 DOI: 10.1007/s10653-020-00759-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
Antibiotic resistance is a great concern, which leads to global public health risks and ecological and environmental risks. The presence of antibiotic-resistant genes and antibiotic-resistant bacteria in the environment exacerbates the risk of spreading antibiotic resistance. Among them, horizontal gene transfer is an important mode in the spread of antibiotic resistance genes, and it is one of the reasons that the antibiotic resistance pollution has become increasingly serious. At the same time, free antibiotic resistance genes and resistance gene host bacterial also exist in the natural environment. They can not only affect horizontal gene transfer, but can also migrate and aggregate among environmental media in many ways and then continue to affect the proliferate and transfer of antibiotic resistance genes. All this shows the seriousness of antibiotic resistance pollution. Therefore, in this review, we reveal the sensitive factors affecting the distribution and spread of antibiotic resistance through three aspects: the influencing factors of horizontal gene transfer, the host bacteria of resistance genes and the migration of antibiotic resistance between environmental media. This review reveals the huge role of environmental migration in the spread of antibiotic resistance, and the environmental behavior of antibiotic resistance deserves wider attention. Meanwhile, extracellular antibiotic resistance genes and intracellular antibiotic resistance genes play different roles, so they should be studied separately.
Collapse
Affiliation(s)
- Zibo Lin
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221000, Jiangsu, China
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou, 221008, China
| | - Tao Yuan
- Department of Construction Equipment and Municipal Engineering, Jiangsu Vocational Institute of Architectural Technology, Xuzhou, 221000, Jiangsu, China
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou, 221008, China
- Jiangsu Collaborative Innovation Center for Building Energy Saving and Construct Technology, Xuzhou, 221116, China
| | - Lai Zhou
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221000, Jiangsu, China
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou, 221008, China
| | - Sen Cheng
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221000, Jiangsu, China
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou, 221008, China
| | - Xu Qu
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221000, Jiangsu, China
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou, 221008, China
| | - Ping Lu
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221000, Jiangsu, China.
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou, 221008, China.
| | - Qiyan Feng
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221000, Jiangsu, China
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou, 221008, China
| |
Collapse
|
7
|
Zhang Y, Sun YH, Wang JY, Chang MX, Zhao QY, Jiang HX. A Novel Structure Harboring blaCTX-M-27 on IncF Plasmids in Escherichia coli Isolated from Swine in China. Antibiotics (Basel) 2021; 10:antibiotics10040387. [PMID: 33916584 PMCID: PMC8065532 DOI: 10.3390/antibiotics10040387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 01/11/2023] Open
Abstract
The aim of this study was to elucidate the prevalence of blaCTX-M-27-producing Escherichia coli and transmission mechanisms of blaCTX-M-27 from swine farms in China. A total of 333 E. coli isolates were collected from two farms from 2013 to 2016. Thirty-two CTX-M-27-positive E. coli were obtained, and all were multidrug-resistant. Pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) profiles indicated a wide range of strain types that carried blaCTX-M-27, and the sequence type ST10 predominated. Conjugation, replicon typing, S1-PFGE and hybridization experiments confirmed that 28 out of 32 CTX-M-27 positive isolates carried blaCTX-M-27 genes on plasmids F18:A-:B10 (16) and F24:A-:B1 (12).The blaCTX-M-27 genes for 24 isolates were transmitted by plasmids with sizes ranging from 40 to 155 kb. A comparative analysis with blaCTX-M-27-plasmids indicated that the tra-trb region of F24:A-:B1 plasmids was destroyed by insertion of a complex region (eight isolates) and a novel structure containing blaCTX-M-27 in the F18:A-:B10 plasmids (12 isolates). The novel structure increased the stability of the blaCTX-M-27 gene in E. coli. This study indicated that the predominant vehicle for blaCTX-M-27 transmission has diversified over time and that control strategies to limit blaCTX-M-27 transmission in farm animals are necessary.
Collapse
Affiliation(s)
- Yan Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China;
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.-H.S.); (J.-Y.W.); (M.-X.C.); (Q.-Y.Z.)
| | - Yin-Huan Sun
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.-H.S.); (J.-Y.W.); (M.-X.C.); (Q.-Y.Z.)
| | - Jiang-Yang Wang
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.-H.S.); (J.-Y.W.); (M.-X.C.); (Q.-Y.Z.)
| | - Man-Xia Chang
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.-H.S.); (J.-Y.W.); (M.-X.C.); (Q.-Y.Z.)
| | - Qiu-Yun Zhao
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.-H.S.); (J.-Y.W.); (M.-X.C.); (Q.-Y.Z.)
| | - Hong-Xia Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China;
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.-H.S.); (J.-Y.W.); (M.-X.C.); (Q.-Y.Z.)
- Correspondence: ; Tel.: +86-20-8528-3934
| |
Collapse
|
8
|
Verliat F, Hemonic A, Chouet S, Le Coz P, Liber M, Jouy E, Perrin-Guyomard A, Chevance A, Delzescaux D, Chauvin C. An efficient cephalosporin stewardship programme in French swine production. Vet Med Sci 2021; 7:432-439. [PMID: 33555119 PMCID: PMC8025622 DOI: 10.1002/vms3.377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 07/20/2020] [Accepted: 09/16/2020] [Indexed: 12/30/2022] Open
Abstract
By 2010, systems set up to monitor the antimicrobial resistance of pathogenic bacteria and antimicrobial usage identified a sustained increase regarding third‐ and fourth‐generation cephalosporin resistance in French pig production. This sector mobilised and collectively committed to responsible action in the following months. This led to a multi‐professional voluntary stewardship programme that was started in 2011. A consensus of veterinary opinion led to the definition of restrictive rules on the prescription of the third‐ and fourth‐generation cephalosporins targeted by the antimicrobial stewardship programme (ASP). All pig sector professionals, including farmers, were informed. Existing monitoring systems for usage and resistance were supplemented by data from the records of veterinarians' cephalosporin deliveries and from individual pig farm surveys investigating antimicrobial usage. The second step, from 2014, entailed regulatory measures that consolidated the programme by setting quantitative reduction objectives and specifying the terms and conditions for prescribing and dispensing a list of critical antimicrobial molecules including cephalosporins. All the data sources confirmed a significant fall of more than 90% in cephalosporin usage in the French pig production sector between 2010 and 2016. Monitoring systems recorded that the resistance of commensal and pathogenic Escherichia coli isolates also tended to decrease over the same period. The stewardship programme proved highly effective in reducing usage and containing resistance, illustrating the efficiency of a well‐defined multi‐professional strategy.
Collapse
Affiliation(s)
- Fabien Verliat
- French interprofessional pork organisation (INAPORC), Paris, France
| | - Anne Hemonic
- French Pork and Pig Institute (IFIP), Le Rheu, France
| | - Sylvie Chouet
- Association of Swine Veterinarians (AFMVP), Toulouse, France
| | - Philippe Le Coz
- National Society of Veterinary Technical Groups (SNGTV), Paris, France
| | - Mélanie Liber
- Association of veterinarians practising in animal production (AVPO), Rennes, France
| | - Eric Jouy
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory Ploufragan, Ploufragan, France
| | - Agnès Perrin-Guyomard
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Laboratory, Javené, France
| | - Anne Chevance
- French Agency for Veterinary Medicinal Products (ANSES-ANMV), Fougères, France
| | | | - Claire Chauvin
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory Ploufragan, Ploufragan, France
| |
Collapse
|
9
|
Mencía-Ares O, Cabrera-Rubio R, Cobo-Díaz JF, Álvarez-Ordóñez A, Gómez-García M, Puente H, Cotter PD, Crispie F, Carvajal A, Rubio P, Argüello H. Antimicrobial use and production system shape the fecal, environmental, and slurry resistomes of pig farms. MICROBIOME 2020; 8:164. [PMID: 33213522 PMCID: PMC7678069 DOI: 10.1186/s40168-020-00941-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/17/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND The global threat of antimicrobial resistance (AMR) is a One Health problem impacted by antimicrobial use (AMU) for human and livestock applications. Extensive Iberian swine production is based on a more sustainable and eco-friendly management system, providing an excellent opportunity to evaluate how sustained differences in AMU impact the resistome, not only in the animals but also on the farm environment. Here, we evaluate the resistome footprint of an extensive pig farming system, maintained for decades, as compared to that of industrialized intensive pig farming by analyzing 105 fecal, environmental and slurry metagenomes from 38 farms. RESULTS Our results evidence a significantly higher abundance of antimicrobial resistance genes (ARGs) on intensive farms and a link between AMU and AMR to certain antimicrobial classes. We observed differences in the resistome across sample types, with a higher richness and dispersion of ARGs within environmental samples than on those from feces or slurry. Indeed, a deeper analysis revealed that differences among the three sample types were defined by taxa-ARGs associations. Interestingly, mobilome analyses revealed that the observed AMR differences between intensive and extensive farms could be linked to differences in the abundance of mobile genetic elements (MGEs). Thus, while there were no differences in the abundance of chromosomal-associated ARGs between intensive and extensive herds, a significantly higher abundance of integrons in the environment and plasmids, regardless of the sample type, was detected on intensive farms. CONCLUSIONS Overall, this study shows how AMU, production system, and sample type influence, mainly through MGEs, the profile and dispersion of ARGs in pig production. Video Abstract.
Collapse
Affiliation(s)
- Oscar Mencía-Ares
- Department of Animal Health, Faculty of Veterinary, Universidad de León, León, Spain
| | - Raúl Cabrera-Rubio
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland
| | - José Francisco Cobo-Díaz
- Department of Food Hygiene and Technology, Faculty of Veterinary, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology, Faculty of Veterinary, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Manuel Gómez-García
- Department of Animal Health, Faculty of Veterinary, Universidad de León, León, Spain
| | - Héctor Puente
- Department of Animal Health, Faculty of Veterinary, Universidad de León, León, Spain
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, Co. Cork, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland
| | - Ana Carvajal
- Department of Animal Health, Faculty of Veterinary, Universidad de León, León, Spain.
| | - Pedro Rubio
- Department of Animal Health, Faculty of Veterinary, Universidad de León, León, Spain
| | - Héctor Argüello
- Department of Animal Health, Faculty of Veterinary, Universidad de León, León, Spain
| |
Collapse
|
10
|
Moffat J, Chalmers G, Reid-Smith R, Mulvey MR, Agunos A, Calvert J, Cormier A, Ricker N, Weese JS, Boerlin P. Resistance to extended-spectrum cephalosporins in Escherichia coli and other Enterobacterales from Canadian turkeys. PLoS One 2020; 15:e0236442. [PMID: 32925914 PMCID: PMC7489564 DOI: 10.1371/journal.pone.0236442] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/05/2020] [Indexed: 12/26/2022] Open
Abstract
The goal of this study was to determine the frequency of resistance to extended-spectrum cephalosporins (ESCs) in Escherichia coli and other Enterobacterales from turkeys in Canada and characterize the associated resistance determinants. Pooled fecal samples were collected in 77 turkey farms across British Columbia, Québec, and Ontario. Isolates were obtained with and without selective enrichment cultures and compared to isolates from diagnostic submissions of suspected colibacillosis cases in Ontario. Isolates were identified using MALDI-TOF and susceptibility to ESCs was assessed by disk diffusion. The presence of blaCMY, blaCTX-M, blaTEM, and blaSHV was tested by PCR. Transformation experiments were used to characterize blaCMY plasmids. Genome sequencing with short and long reads was performed on a representative sample of blaCTX-M-positive isolates to assess isolates relatedness and characterize blaCTX-M plasmids. For the positive enrichment cultures (67% of total samples), 93% (587/610) were identified as E. coli, with only a few other Enterobacterales species identified. The frequency of ESC resistance was low in E. coli isolates from diagnostic submission (4%) and fecal samples without selective enrichment (5%). Of the ESC-resistant Enterobacterales isolates from selective enrichments, 71%, 18%, 14%, and 8% were positive for blaCMY, blaTEM, blaCTX-M, and blaSHV, respectively. IncI1 followed by IncK were the main incompatibility groups identified for blaCMY plasmids. The blaCTX-M-1 gene was found repeatedly on IncI1 plasmids of the pMLST type 3, while blaCTX-M-15, blaCTX-M-55, and blaCTX-M-65 were associated with a variety of IncF plasmids. Clonal spread of strains carrying blaCTX-M genes between turkey farms was observed, as well as the presence of an epidemic blaCTX-M-1 plasmid in unrelated E. coli strains. In conclusion, Enterobacterales resistant to ESCs were still widespread at low concentration in turkey feces two years after the cessation of ceftiofur use. Although blaCMY-2 is the main ESC resistance determinant in E. coli from Canadian turkeys, blaCTX-M genes also occur which are often carried by multidrug resistance plasmids. Both clonal spread and horizontal gene transfer are involved in parallel in the spread of blaCTX-M genes in Enterobacterales from Canadian turkeys.
Collapse
Affiliation(s)
- Jonathan Moffat
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Gabhan Chalmers
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Richard Reid-Smith
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Michael R. Mulvey
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Agnes Agunos
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Julie Calvert
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Ashley Cormier
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Nicole Ricker
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - J. Scott Weese
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Patrick Boerlin
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
11
|
Valcek A, Roer L, Overballe-Petersen S, Hansen F, Bortolaia V, Leekitcharoenphon P, Korsgaard HB, Seyfarth AM, Hendriksen RS, Hasman H, Hammerum AM. IncI1 ST3 and IncI1 ST7 plasmids from CTX-M-1-producing Escherichia coli obtained from patients with bloodstream infections are closely related to plasmids from E. coli of animal origin. J Antimicrob Chemother 2020; 74:2171-2175. [PMID: 31089683 DOI: 10.1093/jac/dkz199] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/07/2019] [Accepted: 04/08/2019] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Fully sequenced IncI1 plasmids obtained from CTX-M-1-producing Escherichia coli of human and animal origin were compared. METHODS Twelve E. coli isolates sharing identical ESBL genes and plasmid multilocus STs sequenced on Illumina and MinION platforms were obtained from the Danish antimicrobial resistance surveillance programme, DANMAP. After de novo assembly, the sequences of plasmids harbouring blaCTX-M-1 were manually curated and ORFs annotated. Within-group comparisons were performed separately for the IncI1 ST3 plasmid type and the IncI1 ST7 plasmid type. The IncI1 ST3 plasmid group was obtained from 10 E. coli isolates (2 from patients with bloodstream infections, 6 from food and 2 from animals). The IncI1 ST7 plasmids originated from E. coli isolates obtained from a patient with bloodstream infection and from a pig. Sequences of IncI1 ST3 and IncI1 ST7 plasmids harbouring blaCTX-M-1 with determined origin were retrieved from GenBank and used for comparison within the respective group. RESULTS The 10 IncI1 ST3 blaCTX-M-1 plasmids were highly similar in structure and organization with only minor plasmid rearrangements and differences in the variable region. The IncI1 ST7 blaCTX-M-1 plasmids also showed high similarity in structure and organization. The high level of similarity was also observed when including plasmids from E. coli of animal origin from Australia, Switzerland, the Netherlands and France. CONCLUSIONS This study shows broad spread of a very successful CTX-M-1-producing IncI1 type plasmid among E. coli of both human and animal origin.
Collapse
Affiliation(s)
- Adam Valcek
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark.,Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Louise Roer
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | | | - Frank Hansen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Valeria Bortolaia
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Pimlapas Leekitcharoenphon
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Helle B Korsgaard
- Division for Risk Assessment and Nutrition, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anne Mette Seyfarth
- Danish Veterinary and Food Administration, Laboratories Division, Ringsted, Denmark
| | - Rene S Hendriksen
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Henrik Hasman
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Anette M Hammerum
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
12
|
Zelendova M, Dolejska M, Masarikova M, Jamborova I, Vasek J, Smola J, Manga I, Cizek A. CTX-M-producing Escherichia coli in pigs from a Czech farm during production cycle. Lett Appl Microbiol 2020; 71:369-376. [PMID: 32452042 DOI: 10.1111/lam.13331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 01/13/2023]
Abstract
We evaluated the prevalence and epidemiology of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli isolates in pigs during production cycle on a Czech farm with the history of previous use of ceftiofur. ESBL-producing E. coli isolates were obtained from rectal swabs from pigs of different age groups (suckling piglets, weaned piglets, growers and sows). Collected samples were directly cultivated on MacConkey agar with cefotaxime (2 mg l-1 ), whereas intestinal swabs of slaughtered pigs and surface swabs from pig carcasses were also pre-enriched in buffered peptone water without antimicrobials before the cultivation. Clonal relationship of selected isolates was determined by XbaI pulse-field gel electrophoresis and multi-locus sequence typing. The transferability of plasmids carrying blaCTX-M genes was tested by conjugation experiments. From all examined samples, 141 (43·7%, n = 323) were positive for ESBL-producing E. coli. All ESBL-producing isolates showed resistance to multiple antimicrobials and were positive for blaCTX-M genes. The blaCTX-M-1 was carried by conjugative IncN/ST1 plasmids (c. 40-45 kb) while the blaCTX-M-15 was located on conjugative F plasmids with F:18:A5:B1 formula (c. 165 kb). This study demonstrated the persistence of CTX-M-positive E. coli isolates 2 months after banner of ceftiofur usage and indicated possible risk of transmission of these isolates to humans via the food chain.
Collapse
Affiliation(s)
- M Zelendova
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - M Dolejska
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - M Masarikova
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - I Jamborova
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - J Vasek
- Ruminant and Swine Clinic, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - J Smola
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,Ruminant and Swine Clinic, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - I Manga
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - A Cizek
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| |
Collapse
|
13
|
Baron S, Le Devendec L, Lucas P, Larvor E, Jové T, Kempf I. Characterisation of plasmids harbouring extended-spectrum cephalosporin resistance genes in Escherichia coli from French rivers. Vet Microbiol 2020; 243:108619. [PMID: 32273005 DOI: 10.1016/j.vetmic.2020.108619] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 11/19/2022]
Abstract
Antimicrobial resistance is a "One Health" issue that requires improved knowledge of the presence and abundance of resistant bacteria in the environment. Extended-spectrum cephalosporins (ESCs) are critically important antibiotics (CIAs), and resistance to these CIAs is often encoded by beta-lactamase genes borne on conjugative plasmids. We thus decided to characterise 21 plasmids of ESC-resistant Escherichia coli randomly selected from isolates previously obtained from river water collected in a rural area in western France. The plasmids encoding ESC resistance were sequenced to investigate the diversity of the genes encoding ESC resistance and their genetic context. Sequences revealed that eleven IncI1 pMLST3 plasmids carried the blaCTX-M-1 and sul2 genes, and some of them also had the tet(A), aadA5 or dfrA17 genes. The blaCTX-M-1 gene was also detected on an IncN plasmid. Five plasmids obtained from four rivers contained blaCTX-M-14, either on IncI1 or on IncFII plasmids. Two strains from two rivers contained blaCTX-M-15 on IncN pMLST7 plasmids, with qnrS1 and dfrA14 genes. One plasmid contained the blaCTX-M-55, a blaTEM-1B-like, and fosA genes. One plasmid contained the blaCMY-2 gene. The diversity of the genes and plasmids of the resistant bacteria isolated from French rivers is probably related to the various animal and human origins of the isolated bacteria.
Collapse
Affiliation(s)
- Sandrine Baron
- ANSES, Ploufragan-Plouzané-Niort Laboratory, 22440 Ploufragan, France
| | | | - Pierrick Lucas
- ANSES, Ploufragan-Plouzané-Niort Laboratory, 22440 Ploufragan, France
| | - Emeline Larvor
- ANSES, Ploufragan-Plouzané-Niort Laboratory, 22440 Ploufragan, France
| | - Thomas Jové
- INSERM, CHU Limoges, RESINFIT, U1092, University of Limoges, Limoges, France
| | - Isabelle Kempf
- ANSES, Ploufragan-Plouzané-Niort Laboratory, 22440 Ploufragan, France.
| |
Collapse
|
14
|
Gay E, Bour M, Cazeau G, Jarrige N, Martineau C, Madec JY, Haenni M. Antimicrobial Usages and Antimicrobial Resistance in Commensal Escherichia coli From Veal Calves in France: Evolution During the Fattening Process. Front Microbiol 2019; 10:792. [PMID: 31031738 PMCID: PMC6473463 DOI: 10.3389/fmicb.2019.00792] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 03/27/2019] [Indexed: 11/13/2022] Open
Abstract
Extended-Spectrum-Cephalosporin (ESC)-resistant Enterobacteriaceae have widely spread in all settings worldwide. In animals, Extended-Spectrum Beta-Lactamase (ESBL) producers have been frequently identified in veal calves. The objectives of this study were to investigate the trends in the ESBL load and antimicrobial resistance (AMR) proportions, and antimicrobial usages (AMU) in veal calves during the fattening process. Ten fattening farms were selected and 50 animals per farm were sampled. AMR was assessed in bacteria from the dominant flora (collected on non-selective MacConckey agar) and in ESBL/AmpC-carrying bacteria from the subdominant flora (selected on ChromID ESBL selective plates) upon arrival and 5-6 months later before slaughter. The number and types of treatments during fattening were also collected. Rates of ESBL-producing E. coli from the subdominant flora significantly decreased in all farms (arrival: 67.7%; departure: 20.4%) whereas rates of multidrug-resistant E. coli from the dominant flora have significantly increased (arrival: 60.2%; departure: 67.2%; p = 0.025). CTX-M-1 was the most frequently identified ESBL enzyme (arrival: 59.3%; departure: 52.0%). The plasmid-mediated mcr-1 gene was also identified occasionally. In parallel, levels of resistances to non-critically important antimicrobials were already high upon arrival but have still further increased over time until slaughter. Our study also highlighted that if only ESBL-producing isolates were monitored, it might have led to a partial (and partly false) picture of AMR rates globally decreasing during the fattening period. The mean number of antimicrobial treatments per calf (NTPC) was 8.75 but no association between AMU and AMR was evidenced. Most ESBL producers were clonally unrelated suggesting multiple sources and not cross-contaminations among calves during transportation. Feeding milk containing antimicrobial residues to veal calves is hypothesized to explain the high ESBL loads in animals at the entrance on farms.
Collapse
Affiliation(s)
- Emilie Gay
- Université de Lyon - ANSES, Laboratoire de Lyon, Unité Épidémiologie et Appui à la Surveillance, Lyon, France
| | - Maxime Bour
- Université de Lyon - ANSES, Laboratoire de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France.,Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Géraldine Cazeau
- Université de Lyon - ANSES, Laboratoire de Lyon, Unité Épidémiologie et Appui à la Surveillance, Lyon, France
| | - Nathalie Jarrige
- Université de Lyon - ANSES, Laboratoire de Lyon, Unité Épidémiologie et Appui à la Surveillance, Lyon, France
| | | | - Jean-Yves Madec
- Université de Lyon - ANSES, Laboratoire de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Marisa Haenni
- Université de Lyon - ANSES, Laboratoire de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| |
Collapse
|