1
|
Xu F, Zheng H, Dong X, Zhou A, Emu Q. miRNA expression signatures induced by pasteurella multocida infection in goats lung. Sci Rep 2024; 14:19626. [PMID: 39179681 PMCID: PMC11343864 DOI: 10.1038/s41598-024-69654-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/07/2024] [Indexed: 08/26/2024] Open
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression and are involved in bacterial pathogenesis and host-pathogen interactions. In this study, we investigated the function of miRNAs in the regulation of host responses to Pasteurella multocida infection. Using next-generation sequencing, we analyzed miRNA expression pattern and identified differentially expressed miRNAs in Pasteurella multocida-infected goat lungs. In addition, we investigated the function of differentially expressed miRNAs andtheir targeted signaling pathways in bacterial infection processes. The results showed that Pasteurella multocida infection led to 69 significantly differentially expressed miRNAs, including 28 known annotated miRNAs with miR-497-3p showing the most significant difference. Gene target prediction and functional enrichment analyses showed that the target genes were mainly involved in cell proliferation, regulation of the cellular metabolic process, positive regulation of cellular process, cellular senescence, PI3K-Akt signaling pathway, FoxO signaling pathway and infection-related pathways. In conclusion, these data provide a new perspective on the roles of miRNAs in Pasteurella multocida infection.
Collapse
Affiliation(s)
- Feng Xu
- Animal Genetics and Breeding Key Laboratory of Sichuan Province, Animal Science Academy of Sichuan Province, Chengdu, China
| | - Hao Zheng
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan, China
| | - Xia Dong
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan, China
| | - Ao Zhou
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan, China.
| | - Quzhe Emu
- Animal Genetics and Breeding Key Laboratory of Sichuan Province, Animal Science Academy of Sichuan Province, Chengdu, China.
| |
Collapse
|
2
|
Zhong C, Liao Z, Zhang B, Xiao L, Li J, Zhu X. Bta-miR-677 contribute to interferon pathway affecting the proliferation of caprine parainfluenza virus type 3. Microb Pathog 2022; 169:105642. [PMID: 35710089 DOI: 10.1016/j.micpath.2022.105642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/09/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
Caprine parainfluenza virus type 3 (CPIV3), a new strain of virus, was isolated from the goats in 2014 in China. Studies have shown that viral infection can induce changes in the expression profile of host miRNAs, which modulate natural immune responses and viral infection. In this study, we report that bta-miR-677 suppressed CPIV3 replication in Madin-Darby bovine kidney (MDBK) cells and guinea pigs. Bta-miR-677 overexpression promoted type I interferon (IFN-I) and IFN-stimulated genes (ISGs) production, thereby inhibiting CPIV3 replication, while bta-miR-677 inhibitor suppressed the antiviral innate immune response to promoted viral replication in MDBK cells. We showed that bta-miR-677 suppresses CPIV3 replication via directly targeted the 3'-untranslated region (3'-UTR) of mitochondrial antiviral signaling protein (MAVS) thus enhancing IFN pathway in MDBK cells. We also demonstrated that bta-miR-677 agomir could inhibit CPIV3 proliferation in guinea pigs, with much lower viral RNA levels in lung and trachea. Guinea pigs showed no obvious pathological changes and less severe lung lesions in bta-miR-677 agomir treated group at 7 dpi. This study contributes to our understanding of the molecular mechanisms underlying CPIV3 pathogenesis.
Collapse
Affiliation(s)
- Chunyan Zhong
- Biological Engineering Department, Southwest Guizhou Vocational and Technical College for Nationalitie, Xingyi, 562400, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Zheng Liao
- College of Animal Science, Guizhou University, Guiyang, 550025, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Baotai Zhang
- College of Animal Science, Guizhou University, Guiyang, 550025, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Li Xiao
- College of Animal Science, Guizhou University, Guiyang, 550025, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Xing Zhu
- College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
3
|
Research Progress on Emerging Viral Pathogens of Small Ruminants in China during the Last Decade. Viruses 2022; 14:v14061288. [PMID: 35746759 PMCID: PMC9228844 DOI: 10.3390/v14061288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 11/26/2022] Open
Abstract
China is the country with the largest number of domestic small ruminants in the world. Recently, the intensive and large-scale sheep/goat raising industry has developed rapidly, especially in nonpastoral regions. Frequent trading, allocation, and transportation result in the introduction and prevalence of new pathogens. Several new viral pathogens (peste des petits ruminants virus, caprine parainfluenza virus type 3, border disease virus, enzootic nasal tumor virus, caprine herpesvirus 1, enterovirus) have been circulating and identified in China, which has attracted extensive attention from both farmers and researchers. During the last decade, studies examining the etiology, epidemiology, pathogenesis, diagnostic methods, and vaccines for these emerging viruses have been conducted. In this review, we focus on the latest findings and research progress related to these newly identified viral pathogens in China, discuss the current situation and problems, and propose research directions and prevention strategies for different diseases in the future. Our aim is to provide comprehensive and valuable information for the prevention and control of these emerging viruses and highlight the importance of surveillance of emerging or re-emerging viruses.
Collapse
|
4
|
Ren K, Zhu Y, Sun H, Li S, Duan X, Li S, Li Y, Li B, Chen L. IRF2 inhibits ZIKV replication by promoting FAM111A expression to enhance the host restriction effect of RFC3. Virol J 2021; 18:256. [PMID: 34930359 PMCID: PMC8691090 DOI: 10.1186/s12985-021-01724-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although interferon regulatory factor 2 (IRF2) was reported to stimulate virus replication by suppressing the type I interferon signaling pathway, because cell cycle arrest was found to promote viral replication, IRF2-regulated replication fork factor (FAM111A and RFC3) might be able to affect ZIKV replication. In this study, we aimed to investigate the function of IRF2, FAM111A and RFC3 to ZIKV replication and underlying mechanism. METHODS siIRF2, siFAM111A, siRFC3 and pIRF2 in ZIKV-infected A549, 2FTGH and U5A cells were used to explore the mechanism of IRF2 to inhibit ZIKV replication. In addition, their expression was analyzed by RT-qPCR and western blots, respectively. RESULTS In this study, we found IRF2 expression was increased in ZIKV-infected A549 cells and IRF2 inhibited ZIKV replication independent of type I IFN signaling pathway. IRF2 could activate FAM111A expression and then enhanced the host restriction effect of RFC3 to inhibit replication of ZIKV. CONCLUSIONS We speculated the type I interferon signaling pathway might not play a leading role in regulating ZIKV replication in IRF2-silenced cells. We found IRF2 was able to upregulate FAM111A expression and thus enhance the host restriction effect of RFC3 on ZIKV.
Collapse
Affiliation(s)
- Kai Ren
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Road, Chengdu, 610051, China.,The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ya Zhu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Road, Chengdu, 610051, China
| | - Honggang Sun
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Road, Chengdu, 610051, China
| | - Shilin Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Road, Chengdu, 610051, China
| | - Xiaoqiong Duan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Road, Chengdu, 610051, China
| | - Shuang Li
- Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yujia Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Road, Chengdu, 610051, China.
| | - Bin Li
- The Joint Laboratory on Transfusion-Transmitted Diseases (TTDs) Between Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Nanning Blood Center, Naning Blood Center, Nanning, China.
| | - Limin Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Road, Chengdu, 610051, China. .,The Joint Laboratory on Transfusion-Transmitted Diseases (TTDs) Between Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Nanning Blood Center, Naning Blood Center, Nanning, China. .,Toronto General Research Institute, University of Toronto, Toronto, Canada.
| |
Collapse
|
5
|
Choi SW, Kim S, Park HT, Park HE, Choi JS, Yoo HS. MicroRNA profiling in bovine serum according to the stage of Mycobacterium avium subsp. paratuberculosis infection. PLoS One 2021; 16:e0259539. [PMID: 34735546 PMCID: PMC8568169 DOI: 10.1371/journal.pone.0259539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne's disease (JD), and it causes diarrhea and weakness in cattle. During a long subclinical stage, infected animals without clinical signs shed pathogens through feces. For this reason, the diagnosis of JD during the subclinical stage is very important. Circulating miRNAs are attracting attention as useful biomarkers in various veterinary diseases because of their expression changes depending on the state of the disease. Based on current knowledge, circulating miRNAs extracted from bovine serum were used to develop a diagnostic tool for JD. In this study, the animals were divided into 4 groups according to fecal shedding, the presence of antibodies, and clinical signs. Gene expression was analyzed by performing miRNA sequencing for each group, and it was identified that the miRNA expression changed more as the MAP infection progressed. The eight miRNAs that were differentially expressed in all infected groups were selected as biomarker candidates based on their significant differences compared to the control group. These biomarker candidates were validated by qRT-PCR. Considering the sequencing data, two upregulated miRNAs and two downregulated miRNAs showed the same trend in the validation results. Network analysis was also conducted and the results showed that mRNAs (IL-10, TGF-β1) associated with regulatory T cells were predicted to be activated in the subclinical stage. Taken together, our data suggest that two miRNAs (bta-miR-374b, bta-miR-2887) may play major roles in the immune response to MAP infection during the subclinical stage.
Collapse
Affiliation(s)
- Sung-Woon Choi
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Suji Kim
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hong-Tae Park
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Eui Park
- Department of Microbiology, Research Institute of Life Science, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Jeong-Soo Choi
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Han Sang Yoo
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Li J, Yang L, Mao L, Li W, Sun M, Liu C, Xue T, Zhang W, Liu M, Li B. Caprine parainfluenza virus type 3 N protein promotes viral replication via inducing apoptosis. Vet Microbiol 2021; 259:109129. [PMID: 34087675 DOI: 10.1016/j.vetmic.2021.109129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/16/2021] [Indexed: 11/28/2022]
Abstract
Caprine parainfluenza virus type 3 (CPIV3) is one of the most important viral respiratory pathogens of goat. Accumulating evidence demonstrates that apoptosis is a cellular mechanism for the host response to pathogens, and it participates in regulating viral replication. However, there is little study on CPIV3-induced host cells apoptosis. In this study, primary goat tracheal epithelial (GTE) cells were established as a cellular model that is permissive to CPIV3 infection. Then, we showed that CPIV3 infection induced apoptosis in GTE cells, as determined by morphological changes, flow cytometry and TUNEL assay. Moreover, Caspase activity and the expression of pro-apoptotic genes further suggested that CPIV3 induced apoptosis by activating both the intrinsic and extrinsic pathways. Mechanistically, the ability of CPIV3 to induce apoptosis was activated by N protein, and the viral protein increased CPIV3 replication through effecting apoptosis. Overall, our findings showed that GTE cells that will enable further analysis of CPIV3 infection and offers novel insights into the mechanisms of CPIV3-induced apoptosis in host cells.
Collapse
Affiliation(s)
- Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China; School of Pharmacy, Linyi University, Linyi, 276000, China; Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Leilei Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Li Mao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Wenliang Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China; Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Min Sun
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Chuanmin Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China; School of Pharmacy, Linyi University, Linyi, 276000, China; Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Tao Xue
- School of Pharmacy, Linyi University, Linyi, 276000, China
| | - Wenwen Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Maojun Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China; Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China; Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
7
|
Screening interferon antagonists from accessory proteins encoded by P gene for immune escape of Caprine parainfluenza virus 3. Vet Microbiol 2021; 254:108980. [PMID: 33445054 DOI: 10.1016/j.vetmic.2021.108980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/03/2021] [Indexed: 12/25/2022]
Abstract
The Caprine parainfluenza virus 3 (CPIV3) is a novel Paramyxovirus that is isolated from goats suffering from respiratory diseases. Presently, the pathogenesis of CPIV3 infection has not yet been fully characterized. The Type I interferon (IFN) is a key mediator of innate antiviral responses, as many viruses have developed strategies to circumvent IFN response, whether or how CPIV3 antagonizes type I IFN antiviral effects have not yet been characterized. This study observed that CPIV3 was resistant to IFN-α treatment and antagonized IFN-α antiviral responses on MDBK and goat tracheal epithelial (GTE) cell models. Western blot analysis showed that CPIV3 infection reduced STAT1 expression and phosphorylation, which inhibited IFN-α signal transduction on GTE cells. By screening and utilizing specific monoclonal antibodies (mAbs), three CPIV3 accessory proteins C, V and D were identified during the virus infection process on the GTE cell models. Accessory proteins C and V, but not protein D, was identified to antagonize IFN-α antiviral signaling. Furthermore, accessory protein C, but not protein V, reduced the level of IFN-α driven phosphorylated STAT1 (pSTAT1), and then inhibit STAT1 signaling. Genetic variation analysis to the PIV3 accessory protein C has found two highly variable regions (VR), with VR2 (31-70th aa) being involved in for the CPIV3 accessory protein C to hijack the STAT1 signaling activation. The above data indicated that CPIV3 is capable of inhibiting IFN-α signal transduction by reducing STAT1 expression and activation, and that the accessory protein C, plays vital roles in the immune escape process.
Collapse
|
8
|
Li J, Zhong C, Liao Z, Mao L, Li W, Sun M, Liu M, Ji X, Liu C, Xue T, Yang L, Zhang W. Bta-miR-98 Suppresses Replication of Caprine Parainfluenza Virus Type 3 Through Inhibiting Apoptosis by Targeting Caspase-3. Front Immunol 2020; 11:1575. [PMID: 32983081 PMCID: PMC7484655 DOI: 10.3389/fimmu.2020.01575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 06/15/2020] [Indexed: 12/26/2022] Open
Abstract
Caprine parainfluenza virus type 3 (CPIV3) is an emerging respiratory pathogen that affects the sheep and goat industry in China and possibly other countries around the world. Accumulating evidence suggests that microRNAs play important roles in regulating virus-host interactions and can suppress or facilitate viral replication. In this study, we showed that CPIV3 infection induced apoptosis in Madin-Darby bovine kidney (MDBK) cells, as determined by morphological changes and flow cytometry. Caspase activity and the expression of pro-apoptotic genes further indicated that CPIV3 induced apoptosis by activating both the intrinsic and extrinsic pathways. We also demonstrated the involvement of bta-microRNA-98 (bta-miR-98) in regulating CPIV3-induced apoptosis. Bta-miR-98 was downregulated in MDBK cells infected with CPIV3. Overexpression of bta-miR-98 significantly decreased the activities of caspase-3, -8, and -9. Conversely, inhibition of bta-miR-98 had completely opposite effects. Furthermore, our data showed that bta-miR-98 markedly affected CPIV3 replication by regulating apoptosis. Importantly, we found that bta-miR-98 modulated CPIV3-induced apoptosis by targeting caspase-3, an effector of apoptosis. Collectively, our results may suggest that CPIV3 infection induced apoptosis and downregulated the levels of bta-miR-98, and this miRNA regulated viral replication through effected apoptosis. This study contributes to our understanding of the molecular mechanisms underlying CPIV3 pathogenesis.
Collapse
Affiliation(s)
- Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China.,School of Pharmacy, Linyi University, Linyi, China.,Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Chunyan Zhong
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Zheng Liao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Li Mao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China.,Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wenliang Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China.,Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Min Sun
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
| | - Maojun Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China.,Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xinqin Ji
- College of Animal Science, Guizhou University, Guiyang, China
| | - Chuanmin Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
| | - Tao Xue
- School of Pharmacy, Linyi University, Linyi, China
| | - Leilei Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
| | - Wenwen Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
| |
Collapse
|
9
|
Li W, Li J, Sun M, Yang L, Mao L, Hao F, Liu M, Zhang W. Viperin protein inhibits the replication of caprine parainfluenza virus type 3 (CPIV 3) by interaction with viral N protein. Antiviral Res 2020; 184:104903. [PMID: 32800881 DOI: 10.1016/j.antiviral.2020.104903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/18/2020] [Accepted: 07/27/2020] [Indexed: 12/24/2022]
Abstract
Caprine parainfluenza virus type3 (CPIV3) is a newly identified member of Paramyxoviridae family. CPIV3 is highly prevalence in China and showed pathogenicity to goats; in addition, CPIV3 infection causes severe clinical disease under stress and/or co-infection conditions. Viperin is one of the hundreds of interferon-stimulated genes (ISGs), and possesses a wide range of antiviral activities. The aim of this study was to systemically explore the anti-CPIV3 activity of ruminants' Viperin. CPIV3 infection up-regulated Viperin transcription but not protein expression in MDBK cells. Bovine and caprine Viperin genes (bVi and gVi) were amplified and analyzed by BLAST and multiple alignment. The obtained bVi/gVi amino acid sequences showed 99.5%-100% identity with previously submitted sequences and has variants at N-terminal domain (1-70aa) between each other. The pcDNA3.1 plasmids containing bVi and gVi genes were constructed to over-express the target proteins. CPIV3 was inoculated in MDBK cells over-expressing bVi/gVi and viral load was detected by qRT-PCR, virus titration and Western blot. Both of the bVi and gVi significantly inhibited CPIV3 genome copy numbers and viral titers at 24 and 48 hpi (P < 0.01); and viral N protein expression was also decreased, comparing with those of mock transfected group. The last 50aa C-terminal region was crucial for its anti-CPIV3 activity. In addition, the over-expression of bVi/gVi did not influence CPIV3 binding, entry and release in the cells. These results indicated the anti-CPIV3 activity occurred in viral RNA/protein synthesis progress of the viral replication cycle. The Viperin also showed similar inhibitory effect on different CPIV3 strains. The potential interaction of Viperin with viral proteins (N, P, C and V) was determined by confocal laser scanning microscopy and Co-IP assay. Co-localization of Viperin with N, P or C, but not V, was observed; while only N protein direct interacted with Viperin in Co-IP test, no matter using viral protein expressing plasmids transfected or CPIV3 infected cell samples. In conclusion, the bVi and gVi Viperin effectively inhibited CPIV3 replication potentially via the interaction of Viperin with viral N protein. The present results gave more information about antiviral activity of ruminants Viperin and provided foundation for further studies of the interaction of Viperin with CPIV3 and other related viruses.
Collapse
Affiliation(s)
- Wenliang Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Min Sun
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Leilei Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Li Mao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Fei Hao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Maojun Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Wenwen Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| |
Collapse
|
10
|
Interferon-stimulated genes inhibit caprine parainfluenza virus type 3 replication in Madin-Darby bovine kidney cells. Vet Microbiol 2020; 241:108573. [DOI: 10.1016/j.vetmic.2019.108573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/19/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022]
|
11
|
Hou P, Zhao M, He W, He H, Wang H. Cellular microRNA bta-miR-2361 inhibits bovine herpesvirus 1 replication by directly targeting EGR1 gene. Vet Microbiol 2019; 233:174-183. [PMID: 31176405 DOI: 10.1016/j.vetmic.2019.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 01/20/2023]
Abstract
Bovine herpesvirus 1 (BHV-1) is an economically important pathogen of cattle and has led to significant consequences on the cattle industry worldwide. MicroRNAs (miRNAs) are a class of regulators that play critical roles in virus and host interaction. However, the roles of host miRNAs in BHV-1 infection remain largely unclear. In this study, a set of differentially expressed miRNAs by small RNA deep sequencing were analyzed in the Madin-Darby Bovine Kidney Cells (MDBK) infected with BHV-1 after 12 h, 24 h and 48 h post-infection compared to mock infection, and it was confirmed that bta-miR-2361 was significantly down-regulated. Moreover, bta-miR-2361 mimics transfection could inhibit BHV-1 replication. Combined with up-regulated genes from BHV-1-infected MDBK cells by deep RNA-sequencing and predicted by bioinformatics tools, early growth response 1 (EGR1) was putative target of bta-miR-2361. Furthermore, EGR1 was up-regulated during BHV-1 infection, and overexpression of EGR1 promoted BHV-1 replication whereas knockdown of EGR1 had the opposite effects. Subsequently, the target association between bta-miR-2361 and 3'UTR of EGR1 was further validated using a dual-luciferase reporter assay. In addition, overexpression of bta-miR-2361 resulted in decreased EGR1 mRNA and protein levels. Further mechanistic study showed that EGR1 stimulated BHV-1 UL46 promoter activity, but overexpression of bta-miR-2361 suppressed the production of UL46 gene. Collectively, this is the first study to reveal that bta-miR-2361 as a novel host factor regulates BHV-1 replication via directly targeting the EGR1 gene, which is a transcription factor that regulates viral UL46 gene of BHV-1. These results provide further insight into the study of BHV-1 pathogenesis.
Collapse
Affiliation(s)
- Peili Hou
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China.
| | - Min Zhao
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China.
| | - Wenqi He
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Hongbin He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China.
| | - Hongmei Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|