1
|
Yin Y, Fang T, Lian Z, Zuo D, Hu H, Zhang G, Ding C, Tian M, Yu S. Erythronate utilization activates VdtR regulating its metabolism to promote Brucella proliferation, inducing abortion in mice. Microbiol Spectr 2023; 11:e0207423. [PMID: 37671873 PMCID: PMC10580937 DOI: 10.1128/spectrum.02074-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/08/2023] [Indexed: 09/07/2023] Open
Abstract
Brucella is a facultative intracellular pathogen that preferentially colonizes reproductive organs and utilizes erythritol as a preferred carbon source for its survival and proliferation. In this study, we identified a virulence-related DeoR-family transcriptional regulator (VdtR) and an erythronate metabolic pathway responsible for four-carbon acid sugar metabolism of D-erythronate and L-threonate in Brucella. We found that VdtR plays an important role in Brucella intracellular survival and trafficking to the endoplasmic reticulum in RAW 264.7 macrophages and in virulence in a mouse model. More importantly, we found that VdtR negatively regulates the erythronate metabolic pathway to promote extracellular proliferation of Brucella, depending on utilization of D-erythronate, an oxidative product of erythritol in the host. In a pregnant mouse model, the erythronate metabolic pathway was shown to cooperate with erythritol metabolism and play a crucial role in Brucella proliferation in the placenta, inducing placentitis and finally resulting in abortion or stillbirth. Our results demonstrate that, in addition to erythritol, erythronate is a preferred carbon source for Brucella utilization to promote its extracellular proliferation. This discovery updates the information on the preferential colonization of reproductive organs by Brucella and provides a novel insight into the Brucella-associated induction of abortion in pregnant animals. IMPORTANCE Brucella is an intracellular parasitic bacterium causing zoonosis, which is distributed worldwide and mainly characterized by reproductive disorders. Erythritol is found in allantoic fluid, chorion, and placenta of aborted animals, preferentially utilized by Brucella to cause infertility and abortion. However, the erythritol metabolism-defected mutant was unable to function as a vaccine strain due to its residual virulence. Here, we found that erythronate, an oxidative product of erythritol in the host, was also preferentially utilized by Brucella relying on the function of a deoxyribonucleoside regulator-family transcriptional regulator VdtR. Erythronate utilization activates VdtR regulation of the erythronate metabolic pathway to promote Brucella extracellular proliferation, inducing placentitis/abortion in mice. Double mutations on Brucella erythritol and D-erythronate metabolisms significantly reduced bacterial virulence. This study revealed a novel mechanism of Brucella infection-induced abortion, thus providing a new clue for the study of safer Brucella attenuated vaccines.
Collapse
Affiliation(s)
- Yi Yin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Tian Fang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Zhengmin Lian
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Dong Zuo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Hai Hu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Guangdong Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Mingxing Tian
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
- Veterinary Bio-Pharmaceutical, Jiangsu Agri-Animal Husbandry Vocational College, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, Jiangsu, China
| |
Collapse
|
2
|
Abdelgawad HA, Lian Z, Yin Y, Fang T, Tian M, Yu S. Characterization of Brucella abortus Mutant A19mut2, a Potential DIVA Vaccine Candidate with a Modification on Lipopolysaccharide. Vaccines (Basel) 2023; 11:1273. [PMID: 37515088 PMCID: PMC10385478 DOI: 10.3390/vaccines11071273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Brucella abortus is the main causative agent for bovine brucellosis. B. abortus A19 is a widely used vaccine strain to protect cows from Brucella infection in China. However, A19 has a similar lipopolysaccharide (LPS) antigen to that of the field virulent Brucella strain, whose immunization interferes with the serodiagnosis of vaccinated and infected animals. [Aim] To develop a novel Brucella DIVA vaccine candidate. STUDY DESIGN AND METHODS The B. abortus mutant A19mut2 with the formyltransferase gene wbkC is replaced by an acetyltransferase gene wbdR from E. coli O157 using the bacterial homologous recombination technique, generating a modified O-polysaccharide that cannot induce antibodies in mice against wild-type Brucella LPS. The biological phenotypes of the A19mut2 were assessed using a growth curve analysis, agglutination tests, Western blotting, and stress resistance assays. Histopathological changes and bacterial colonization in the spleens of vaccinated mice were investigated to assess the residual virulence and protection of the A19mut2. Humoral and cellular immunity was evaluated by measuring the levels of IgG, IgG subtypes, and the release of cytokines IFN-γ and IL10 in the splenocytes of the vaccinated mice. ELISA coated with wild-type LPS can distinguish mouse antibodies induced by A19 and A19mut2 immunization. RESULTS The A19mut2 showed a decreased residual virulence in mice, compared to the A19 strain, but induced significant humoral and cellular immune responses, as the A19 immunization did. The protection efficacy of A19mut2 immunization against B. abortus S2308 NalR infection was similar to that of A19 immunization. CONCLUSION The A19mut2 has potential as a novel DIVA vaccine candidate in the future.
Collapse
Affiliation(s)
- Hosny Ahmed Abdelgawad
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Aswan University, Aswan 81528, Egypt
| | - Zhengmin Lian
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Yi Yin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Tian Fang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Mingxing Tian
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Taizhou 225309, China
| |
Collapse
|
3
|
The regulon of Brucella abortus two-component system BvrR/BvrS reveals the coordination of metabolic pathways required for intracellular life. PLoS One 2022; 17:e0274397. [PMID: 36129877 PMCID: PMC9491525 DOI: 10.1371/journal.pone.0274397] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/26/2022] [Indexed: 11/19/2022] Open
Abstract
Brucella abortus is a facultative intracellular pathogen causing a severe zoonotic disease worldwide. The two-component regulatory system (TCS) BvrR/BvrS of B. abortus is conserved in members of the Alphaproteobacteria class. It is related to the expression of genes required for host interaction and intracellular survival. Here we report that bvrR and bvrS are part of an operon composed of 16 genes encoding functions related to nitrogen metabolism, DNA repair and recombination, cell cycle arrest, and stress response. Synteny of this genomic region within close Alphaproteobacteria members suggests a conserved role in coordinating the expression of carbon and nitrogen metabolic pathways. In addition, we performed a ChIP-Seq analysis after exposure of bacteria to conditions that mimic the intracellular environment. Genes encoding enzymes at metabolic crossroads of the pentose phosphate shunt, gluconeogenesis, cell envelope homeostasis, nucleotide synthesis, cell division, and virulence are BvrR/BvrS direct targets. A 14 bp DNA BvrR binding motif was found and investigated in selected gene targets such as virB1, bvrR, pckA, omp25, and tamA. Understanding gene expression regulation is essential to elucidate how Brucella orchestrates a physiological response leading to a furtive pathogenic strategy.
Collapse
|
4
|
Tian M, Li Z, Qu J, Fang T, Yin Y, Zuo D, Abdelgawad HA, Hu H, Wang S, Qi J, Wang G, Yu S. The novel LysR-family transcriptional regulator BvtR is involved in the resistance of Brucella abortus to nitrosative stress, detergents and virulence through the genetic regulation of diverse pathways. Vet Microbiol 2022; 267:109393. [PMID: 35259600 DOI: 10.1016/j.vetmic.2022.109393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/22/2022] [Accepted: 02/28/2022] [Indexed: 11/22/2022]
Abstract
Brucella is a facultative intracellular bacterium lacking classical virulence factors; its virulence instead depends on its ability to invade and proliferate within host cells. After entering cells, Brucella rapidly modulates the expression of a series of genes involved in metabolism and immune evasion. Here, a novel LysR-family transcriptional regulator, designated Brucellavirulence-related transcriptional regulator (BvtR), was found to be associated with Brucella abortus virulence. We first successfully constructed a BvtR mutant, ΔbvtR, and a complemented strain, ΔbvtR-Com. Subsequently, we performed cell infection experiments, which indicated that the ΔbvtR strain exhibited similar adhesion, invasion and survival within HeLa cells or RAW264.7 macrophages to those of the wild-type strain. In stress resistance tests, the ΔbvtR strain showed enhanced sensitivity to sodium nitroprusside and sodium dodecyl sulfate, but not to hydrogen peroxide, cumene hydroperoxide, polymyxin B and natural serum. Mouse infection experiments indicated that the virulence of the ΔbvtR strain significantly decreased at 4 weeks post-infection. Finally, we analyzed differentially expressed genes regulated by BvtR with RNA-seq, COG classification and KEGG pathway analysis. Nitrogen metabolism, siderophore biosynthesis and oligopeptide transport were found to be the predominantly altered functions, and key metabolic and regulatory networks were delineated in the ΔbvtR mutant. Thus, we identified a novel Brucella virulence-related regulator, BvtR, and demonstrated that BvtR regulation affects Brucella resistance to killing by sodium nitroprusside and sodium dodecyl sulfate. The differentially expressed genes responding to BvtR are involved in diverse functions or pathways in Brucella, thus, suggesting the breadth of BvtR's regulatory functions. This study provides novel clues regarding Brucella pathogenesis.
Collapse
Affiliation(s)
- Mingxing Tian
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Zichen Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Jing Qu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China; Songjiang District Center for Animal Disease Control and Prevention, Shanghai 201699, China
| | - Tian Fang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China; College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yi Yin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Dong Zuo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Hosny Ahmed Abdelgawad
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Hai Hu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Jingjing Qi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Guijun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China.
| |
Collapse
|
5
|
Fan X, Chen G, Shan F, Ma F, Gong P, Liang Y, Meng C, Xu J. Molecular Insights into the mechanisms of mucosal immunity induced by Brucella abortus infection in nasal-associated lymphoid tissues. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1972348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Xutao Fan
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, Jining, People’s Republic of China
| | - Guowu Chen
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, Jining, People’s Republic of China
| | - Fenglian Shan
- Infectious Diseases Division, Affiliated Hospital of Jining Medical University, Jining, People’s Republic of China
| | - Fengyu Ma
- Department of Spine Surgery, People's Hospital of Rizhao, Rizhao, People’s Republic of China
| | - Pihao Gong
- Graduate School of Jining Medical University, Jining, People’s Republic of China
| | - Yanhu Liang
- Graduate School of Jining Medical University, Jining, People’s Republic of China
| | - Chunyang Meng
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, Jining, People’s Republic of China
- Neuropathic Pain Institute for Spinal Nerve of Jining Medical University, Jining, People’s Republic of China
| | - Jing Xu
- Infectious Diseases Division, Affiliated Hospital of Jining Medical University, Jining, People’s Republic of China
| |
Collapse
|
6
|
Quantification of Brucella abortus population structure in a natural host. Proc Natl Acad Sci U S A 2021; 118:2023500118. [PMID: 33688053 DOI: 10.1073/pnas.2023500118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cattle are natural hosts of the intracellular pathogen Brucella abortus, which inflicts a significant burden on the health and reproduction of these important livestock. The primary routes of infection in field settings have been described, but it is not known how the bovine host shapes the structure of B. abortus populations during infection. We utilized a library of uniquely barcoded B. abortus strains to temporally and spatially quantify population structure during colonization of cattle through a natural route of infection. Introducing 108 bacteria from this barcoded library to the conjunctival mucosa resulted in expected levels of local lymph node colonization at a 1-wk time point. We leveraged variance in strain abundance in the library to demonstrate that only 1 in 10,000 brucellae introduced at the site of infection reached a parotid lymph node. Thus, cattle restrict the overwhelming majority of B. abortus introduced via the ocular conjunctiva at this dose. Individual strains were spatially restricted within the host tissue, and the total B. abortus census was dominated by a small number of distinct strains in each lymph node. These results define a bottleneck that B. abortus must traverse to colonize local lymph nodes from the conjunctival mucosa. The data further support a model in which a small number of spatially isolated granulomas founded by unique strains are present at 1 wk postinfection. These experiments demonstrate the power of barcoded transposon tools to quantify infection bottlenecks and to define pathogen population structure in host tissues.
Collapse
|
7
|
Rajendhran J. Genomic insights into Brucella. INFECTION GENETICS AND EVOLUTION 2020; 87:104635. [PMID: 33189905 DOI: 10.1016/j.meegid.2020.104635] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 01/21/2023]
Abstract
Brucellosis is a zoonotic disease caused by certain species of Brucella. Each species has its preferred host animal, though it can infect other animals too. For a longer period, only six classical species were recognized in the genus Brucella. No vaccine is available for human brucellosis. Therefore, human brucellosis can be controlled only by controlling brucellosis in animals. The genus is now expanding with the newly isolated atypical strains from various animals, including marine mammals. Presently, 12 species of Brucella have been recognized. The first genome of Brucella was released in 2002, and today, we have more than 1500 genomes of Brucella spp. isolated worldwide. Multiple genome sequences are available for the major zoonotic species, B. abortus, B. melitensis, and B. suis. The Brucella genome has two chromosomes with the approximate sizes of 2.1 and 1.2 Mbp. The genome of Brucella is highly conserved across all the species at the nucleotide level. One of the unanswered questions is what makes host preference in different species of Brucella. Here, I summarize the recent advancements in the Brucella genomics research.
Collapse
Affiliation(s)
- Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India.
| |
Collapse
|
8
|
The Endoribonuclease RNase E Coordinates Expression of mRNAs and Small Regulatory RNAs and Is Critical for the Virulence of Brucella abortus. J Bacteriol 2020; 202:JB.00240-20. [PMID: 32747427 DOI: 10.1128/jb.00240-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
RNases are key regulatory components in prokaryotes, responsible for the degradation and maturation of specific RNA molecules at precise times. Specifically, RNases allow cells to cope with changes in their environment through rapid alteration of gene expression. To date, few RNases have been characterized in the mammalian pathogen Brucella abortus In the present work, we sought to investigate several RNases in B. abortus and determine what role, if any, they have in pathogenesis. Of the 4 RNases reported in this study, the highly conserved endoribonuclease, RNase E, was found to play an integral role in the virulence of B. abortus Although rne, which encodes RNase E, is essential in B. abortus, we were able to generate a strain encoding a defective version of RNase E lacking the C-terminal portion of the protein, and this strain (rne-tnc) was attenuated in a mouse model of Brucella infection. RNA-sequencing analysis revealed massive RNA dysregulation in B. abortus rne-tnc, with 122 upregulated and 161 downregulated transcripts compared to the parental strain. Interestingly, several mRNAs related to metal homeostasis were significantly decreased in the rne-tnc strain. We also identified a small regulatory RNA (sRNA), called Bsr4, that exhibited significantly elevated levels in rne-tnc, demonstrating an important role for RNase E in sRNA-mediated regulatory pathways in Brucella Overall, these data highlight the importance of RNase E in B. abortus, including the role of RNase E in properly controlling mRNA levels and contributing to virulence in an animal model of infection.IMPORTANCE Brucellosis is a debilitating disease of humans and animals globally, and there is currently no vaccine to combat human infection by Brucella spp. Moreover, effective antibiotic treatment in humans is extremely difficult and can lead to disease relapse. Therefore, it is imperative that systems and pathways be identified and characterized in the brucellae so new vaccines and therapies can be generated. In this study, we describe the impact of the endoribonuclease RNase E on the control of mRNA and small regulatory RNA (sRNA) levels in B. abortus, as well as the importance of RNase E for the full virulence of B. abortus This work greatly enhances our understanding of ribonucleases in the biology and pathogenesis of Brucella spp.
Collapse
|